


Analytical Mechanics



This page intentionally left blank 



Analytical Mechanics
An Introduction

Antonio Fasano
University of Florence

Stefano Marmi
SNS, Pisa

Translated by
Beatrice Pelloni

University of Reading

1



3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© 2002, Bollati Boringhieri editore, Torino

English translation c© Oxford University Press 2006
Translation of Meccanica Analytica by Antonio Fasano and

Stefano Marmi originally published in
Italian by Bollati-Boringhieri editore, Torino 2002

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published in English 2006

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloging in Publication Data
Fasano, A. (Antonio)

Analytical mechanics : an introduction / Antonio Fasano, Stefano Marmi;
translated by Beatrice Pelloni.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978–0–19–850802–1
ISBN-10: 0–19–850802–6

1. Mechanics, Analytic. I. Marmi, S. (Stefano), 1963- II. Title.
QA805.2.F29 2002
531′.01—dc22 2005028822

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed in Great Britain

on acid-free paper by
Biddles Ltd., King’s Lynn

ISBN 0–19–850802–6 978–0–19–850802–1

1 3 5 7 9 10 8 6 4 2



Preface to the English Translation

The proposal of translating this book into English came from Dr. Sonke Adlung
of OUP, to whom we express our gratitude. The translation was preceded by hard
work to produce a new version of the Italian text incorporating some modifications
we had agreed upon with Dr. Adlung (for instance the inclusion of worked out
problems at the end of each chapter). The result was the second Italian edition
(Bollati-Boringhieri, 2002), which was the original source for the translation. How-
ever, thanks to the kind collaboration of the translator, Dr. Beatrice Pelloni, in the
course of the translation we introduced some further improvements with the aim of
better fulfilling the original aim of this book: to explain analytical mechanics (which
includes some very complex topics) with mathematical rigour using nothing more
than the notions of plain calculus. For this reason the book should be readable by
undergraduate students, although it contains some rather advanced material which
makes it suitable also for courses of higher level mathematics and physics.
Despite the size of the book, or rather because of it, conciseness has been a

constant concern of the authors. The book is large because it deals not only with
the basic notions of analytical mechanics, but also with some of its main applica-
tions: astronomy, statistical mechanics, continuum mechanics and (very briefly)
field theory.
The book has been conceived in such a way that it can be used at different levels:

for instance the two chapters on statistical mechanics can be read, skipping the
chapter on ergodic theory, etc. The book has been used in various Italian universities
for more than ten years and we have been very pleased by the reactions of colleagues
and students. Therefore we are confident that the translation can prove to be useful.

Antonio Fasano

Stefano Marmi
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1 GEOMETRIC AND KINEMATIC FOUNDATIONS
OF LAGRANGIAN MECHANICS

Geometry is the art of deriving good reasoning from badly drawn pictures1

The first step in the construction of a mathematical model for studying the
motion of a system consisting of a certain number of points is necessarily the
investigation of its geometrical properties. Such properties depend on the possible
presence of limitations (constraints) imposed on the position of each single point
with respect to a given reference frame. For a one-point system, it is intuitively
clear what it means for the system to be constrained to lie on a curve or on a
surface, and how this constraint limits the possible motions of the point. The
geometric and hence the kinematic description of the system becomes much more
complicated when the system contains two or more points, mutually constrained;
an example is the case when the distance between each pair of points in the
system is fixed. The correct set-up of the framework for studying this problem
requires that one first considers some fundamental geometrical properties; the
study of these properties is the subject of this chapter.

1.1 Curves in the plane

Curves in the plane can be thought of as level sets of functions F : U → R
(for our purposes, it is sufficient for F to be of class C2), where U is an open
connected subset of R2. The curve C is defined as the set

C = {(x1, x2) ∈ U |F (x1, x2) = 0}. (1.1)

We assume that this set is non-empty.

Definition 1.1 A point P on the curve (hence such that F (x1, x2) = 0) is called
non-singular if the gradient of F computed at P is non-zero:

∇F (x1, x2) =/ 0. (1.2)

A curve C whose points are all non-singular is called a regular curve. �

By the implicit function theorem, if P is non-singular, in a neighbourhood of P
the curve is representable as the graph of a function x2 = f(x1), if (∂F/∂x2)P =/ 0,

1 Anonymous quotation, in Felix Klein, Vorlesungen über die Entwicklung der Mathematik
im 19. Jahrhundert, Springer-Verlag, Berlin 1926.
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or of a function x1 = f(x2), if (∂F/∂x1)P =/ 0. The function f is differentiable
in the same neighbourhood. If x2 is the dependent variable, for x1 in a suitable
open interval I,

C = graph (f) = {(x1, x2) ∈ R2|x1 ∈ I, x2 = f(x1)}, (1.3)

and

f ′(x1) = −∂F/∂x1
∂F/∂x2

.

Equation (1.3) implies that, at least locally, the points of the curve are in
one-to-one correspondence with the values of one of the Cartesian coordinates.
The tangent line at a non-singular point x0 = x(t0) can be defined as the

first-order term in the series expansion of the difference x(t)−x0 ∼ (t− t0)ẋ(t0),
i.e. as the best linear approximation to the curve in the neighbourhood of x0.
Since ẋ ·∇F (x(t)) = 0, the vector ẋ(t0), which characterises the tangent line and
can be called the velocity on the curve, is orthogonal to ∇F (x0) (Fig. 1.1).
More generally, it is possible to use a parametric representation (of class C2)

x : (a, b) → R2, where (a, b) is an open interval in R:

C = x((a, b)) = {(x1, x2) ∈ R2| there exists t ∈ (a, b), (x1, x2) = x(t)}. (1.4)

Note that the graph (1.3) can be interpreted as the parametrisation x(t) =
(t, f(t)), and that it is possible to go from (1.3) to (1.4) introducing a function
x1 = x1(t) of class C2 and such that ẋ1(t) =/ 0.
It follows that Definition 1.1 is equivalent to the following.

x2

F(x1, x2) = 0

∇F

x (t)

x1

x (t)·

Fig. 1.1
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Definition 1.2 If the curve C is given in the parametric form x = x(t), a point
x(t0) is called non-singular if ẋ(t0) =/ 0. �

Example 1.1
A circle x21 + x22 − R2 = 0 centred at the origin and of radius R is a regular
curve, and can be represented parametrically as x1 = R cos t, x2 = R sin t;
alternatively, if one restricts to the half-plane x2 > 0, it can be represented as
the graph x2 =

√
1− x21. The circle of radius 1 is usually denoted S1 or T1. �

Example 1.2
Conic sections are the level sets of the second-order polynomials F (x1, x2). The
ellipse (with reference to the principal axes) is defined by

x21
a2

+
x22
b2

− 1 = 0,

where a > b > 0 denote the lengths of the semi-axes. One easily verifies that
such a level set is a regular curve and that a parametric representation is given
by x1 = a sin t, x2 = b cos t. Similarly, the hyperbola is given by

x21
a2

− x22
b2

− 1 = 0

and admits the parametric representation x1 = a cosh t, x2 = b sinh t. The
parabola x2 − ax21 − bx1 − c = 0 is already given in the form of a graph. �

Remark 1.1
In an analogous way one can define the curves in Rn (cf. Giusti 1989) as
maps x : (a, b) → Rn of class C2, where (a, b) is an open interval in R. The vec-
tor ẋ(t) = (ẋ1(t), . . . , ẋn(t)) can be interpreted as the velocity of a point moving
in space according to x = x(t) (i.e. along the parametrised curve).
The concept of curve can be generalised in various ways; as an example, when

considering the kinematics of rigid bodies, we shall introduce ‘curves’ defined in
the space of matrices, see Examples 1.27 and 1.28 in this chapter. �

1.2 Length of a curve and natural parametrisation

Let C be a regular curve, described by the parametric representation x = x(t).

Definition 1.3 The length l of the curve x = x(t), t ∈ (a, b), is given by the
integral

l =
∫ b

a

√
ẋ(t) · ẋ(t) dt =

∫ b

a

|ẋ(t)|dt. (1.5)
�
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In the particular case of a graph x2 = f(x1), equation (1.5) becomes

l =
∫ b

a

√
1 + (f ′(t))2 dt. (1.6)

Example 1.3
Consider a circle of radius r. Since |ẋ(t)| = |(−r sin t, r cos t)| = r, we have
l =

∫ 2π
0 r dt = 2πr. �

Example 1.4
The length of an ellipse with semi-axes a ≥ b is given by

l =
∫ 2π

0

√
a2 cos2 t+ b2 sin2 tdt = 4a

∫ π/2

0

√
1− a2 − b2

a2
sin2 tdt

= 4aE

(√
a2 − b2

a2

)
= 4aE(e),

where E is the complete elliptic integral of the second kind (cf. Appendix 2) and
e is the ellipse eccentricity. �

Remark 1.2
The length of a curve does not depend on the particular choice of paramet-
risation. Indeed, let τ be a new parameter; t = t(τ) is a C2 function such that
dt/dτ =/ 0, and hence invertible. The curve x(t) can thus be represented by

x(t(τ)) = y(τ),

with t ∈ (a, b), τ ∈ (a′, b′), and t(a′) = a, t(b′) = b (if t′(τ) > 0; the opposite case
is completely analogous). It follows that

l =
∫ b

a

|ẋ(t)|dt =
∫ b′

a′

∣∣∣∣dxdt (t(τ))
∣∣∣∣ ∣∣∣∣ dtdτ

∣∣∣∣ dτ =
∫ b′

a′

∣∣∣∣dydτ (τ)
∣∣∣∣ dτ. �

Any differentiable, non-singular curve admits a natural parametrisation with
respect to a parameter s (called the arc length, or natural parameter). Indeed,
it is sufficient to endow the curve with a positive orientation, to fix an origin O
on it, and to use for every point P on the curve the length s of the arc OP
(measured with the appropriate sign and with respect to a fixed unit measure)
as a coordinate of the point on the curve:

s(t) = ±
∫ t

0
|ẋ(τ)|dτ (1.7)
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x2

x1

O S
P(s)

Fig. 1.2

(the choice of sign depends on the orientation given to the curve, see Fig. 1.2).
Note that |ṡ(t)| = |ẋ(t)| =/ 0.
Considering the natural parametrisation, we deduce from the previous remark

the identity

s =
∫ s

0

∣∣∣∣dxdσ
∣∣∣∣ dσ,

which yields ∣∣∣∣dxds (s)
∣∣∣∣ = 1 for all s. (1.8)

Example 1.5
For an ellipse of semi-axes a ≥ b, the natural parameter is given by

s(t) =
∫ t

0

√
a2 cos2 τ + b2 sin2 τ dτ = 4aE

(
t,

√
a2 − b2

a2

)

(cf. Appendix 2 for the definition of E(t, e)). �

Remark 1.3
If the curve is of class C1, but the velocity ẋ is zero somewhere, it is pos-
sible that there exist singular points, i.e. points in whose neighbourhoods the
curve cannot be expressed as the graph of a function x2 = f(x1) (or x1 = g(x2))
of class C1, or else for which the tangent direction is not uniquely defined. �

Example 1.6
Let x(t) = (x1(t), x2(t)) be the curve

x1(t) =

{
−t4, if t ≤ 0,
t4, if t > 0,

x2(t) = t2,
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x2

x1

Fig. 1.3

x2

O

1

1 x1

Fig. 1.4

given by the graph of the function x2 =
√|x1| (Fig. 1.3). The function x1(t) is

of class C3, but the curve has a cusp at t = 0, where the velocity is zero. �

Example 1.7
Consider the curve

x1(t) =

{
0, if t ≤ 0,
e−1/t, if t > 0,

x2(t) =

{
e1/t, if t < 0,
0, if t ≥ 0.

Both x1(t) and x2(t) are of class C∞ but the curve has a corner corresponding
to t = 0 (Fig. 1.4). �
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x2

x1

1–1

1
2

1
3

1
4

Fig. 1.5

Example 1.8
For the plane curve defined by

x1(t) =

⎧⎪⎨⎪⎩
e1/t, if t < 0,
0, if t = 0,
−e−1/t, if t > 0,

x2(t) =

⎧⎪⎨⎪⎩
e1/t sin(πe−1/t), if t < 0,
0, if t = 0,
e−1/t sin(πe1/t), if t > 0,

the tangent direction is not defined at t = 0 in spite of the fact that both
functions x1(t) and x2(t) are in C∞.
Such a curve is the graph of the function

x2 = x1 sin
π

x1

with the origin added (Fig. 1.5). �

For more details on singular curves we recommend the book by Arnol’d (1991).

1.3 Tangent vector, normal vector and curvature of plane curves

Consider a plane regular curve C defined by equation (1.1). It is well known that
∇F , computed at the points of C, is orthogonal to the curve. If one considers
any parametric representation, x = x(t), then the vector dx/dt is tangent to the
curve. Using the natural parametrisation, it follows from (1.8) that the vector
dx/ds is of unit norm. In addition,

d2x
ds2

· dx
ds

= 0,

which is valid for any vector of constant norm. These facts justify the following
definitions.
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x2

O S

n (s)
t (s)

x1

Fig. 1.6

Definition 1.4 The unit vector

t(s) =
dx(s)
ds

(1.9)

is called the unit tangent vector to the curve. �

Definition 1.5 At any point at which d2x/ds2 =/ 0 it is possible to define the
unit vector

n(s) =
1

k(s)
d2x
ds2

, (1.10)

called the principal unit normal vector (Fig. 1.6), where k(s) = |d2x/ds2| is the
curvature of the plane curve. R(s) = 1/k(s) is the radius of curvature. �

It easily follows from the definition that straight lines have zero curvature
(hence their radius of curvature is infinite) and that the circle of radius R has
curvature 1/R.

Remark 1.4
Given a point on the curve, it follows from the definition that n(s) lies in
the half-plane bounded by the tangent t(s) and containing the curve in a neigh-
bourhood of the given point. The orientation of t(s) is determined by the positive
orientation of the curve. �

Remark 1.5
Consider a point of unit mass, constrained to move along the curve with a
time dependence given by s = s(t). We shall see that in this case the curvature
determines the strength of the constraining reaction at each point. �

The radius of curvature has an interesting geometric interpretation. Consider
the family of circles that are tangent to the curve at a point P . Then the circle
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c

x(s)

x(s0)

Fig. 1.7

that best approximates the curve in a neighbourhood of P has radius equal to
the radius of curvature at the point P . Indeed, choosing a circle of radius r and
centred in a point c = (c1, c2) lying on the normal line to the curve at a point
x(s0), we can measure the difference between the circle and the curve (Fig. 1.7)
by the function

g(s) = |x(s)− c| − r,

with s a variable in a neighbourhood of s0. Since

g′(s0) =
1
r
(x(s0)− c) · t(s0) = 0,

g′′(s0) =
1
r
(1− kr),

it follows that g(s) is an infinitesimal of order greater than (s−s0)2 if g′′(s0) = 0,
and hence if c− x(s0) = R(s0)n(s0).

Definition 1.6 The circle tangent to the given curve, with radius equal to the
radius of curvature and centre belonging to the half-plane containing the unit
vector n is called the osculating circle. �

Considering a generic parametrisation x = x(t), one obtains the following
relations:

ẋ(t) = v(t) = ṡt (1.11)

and

ẍ(t) = a(t) = s̈t+
ṡ2

R
n, (1.12)

which implies for the curvature

k(t) =
1

|v(t)|2
∣∣∣∣a(t)− v(t) · a(t)

|v(t)|2 v(t)
∣∣∣∣ . (1.13)
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The vectors v, a are also called the velocity and acceleration, respectively; this
refers to their kinematic interpretation, when the parameter t represents time
and the function s = s(t) expresses the time dependence of the point moving
along the curve.
We remark that, if the curvature is non-zero, and ṡ =/ 0, then the normal

component of the acceleration ṡ2/R is positive.
We leave it as an exercise to verify that the curvature of the graph x2 = f(x1)

is given by

k(x1) =
|f ′′(x1)|

[1 + f ′2(x1)]3/2
, (1.14)

while, if the curve is expressed in polar coordinates and r = r(ϕ), then the
curvature is given by

k(ϕ) =
|2r′2(ϕ)− r(ϕ)r′′(ϕ) + r2(ϕ)|

[r′2(ϕ) + r2(ϕ)]3/2
. (1.15)

Example 1.9
Consider an ellipse

x1(t) = a cos t, x2(t) = b sin t.

In this case, the natural parameter s cannot be expressed in terms of t through
elementary functions (indeed, s(t) is given by an elliptic integral). The velocity
and acceleration are:

v(t) = (−a sin t, b cos t) = ṡt, a(t) = (−a cos t,−b sin t) = s̈t+
ṡ2

R
n,

and using equation (1.13) it is easy to derive the expression for the curvature. Note
that v(t) · a(t) = ṡs̈ =/ 0 because the parametrisation is not the natural one. �

Theorem 1.1 (Frenet) Let s → x(s) = (x1(s), x2(s)) be a plane curve of class
at least C3, parametrised with respect to the natural parameter s. Then

dt
ds

= k(s)n,

dn
ds

= −k(s)t.
(1.16)

Proof
The first formula is simply equation (1.10). The second can be trivially
derived from

d
ds

(n · n) = 0,
d
ds

(n · t) = 0. �
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We end the analysis of plane curves by remarking that the curvature function
k(s) completely defines the curve up to plane congruences. Namely, ignoring the
trivial case of zero curvature, we have the following.

Theorem 1.2 Given a regular function k : (a, b) → R such that k(s) > 0 for
every s ∈ (a, b), there exists a unique plane regular curve, defined up to translations
and rotations, such that k(s) is its curvature, and s its natural parameter.

Proof
The proof of this theorem depends on Frenet’s formulae and on the existence
and uniqueness theorem for solutions of ordinary differential equations. Indeed,
from (1.16) it follows that

d2t
ds2

− k′(s)
k(s)

dt
ds

+ k2(s)t = 0; (1.17)

after integration this yields t = dx/ds, up to a constant vector (i.e. a rotation
of the curve). One subsequent integration yields x(s) up to a second constant
vector (i.e. a translation of the curve). �

Remark 1.6
Uniqueness can only be guaranteed if the curvature is not zero. As a
counterexample, consider the two curves of class C2 (Fig. 1.8)

x(t) = (t, t3);

y(t) =

{
(t, t3), if t < 0,
(t,−t3), if t ≥ 0.

These curves are evidently distinct for t > 0, but their curvatures are equal
for every t and vanish for t = 0. �

x2

x1

(t, t3)

(t, t3) (t, – t3)

Fig. 1.8
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1.4 Curves in R3

We have already remarked how it is possible to define regular curves in R3 in
analogy with (1.4): such curves are maps x : (a, b) → R3 of class C2, with ẋ =/ 0.
Consider now a curve t → x(t) = (x1(t), x2(t), x3(t)) ∈ R3; the equation defining
the natural parameter is

ds
dt

=
√
ẋ21 + ẋ22 + ẋ23.

Suppose that the curve is parametrised through the natural parameter s. As for
the case of a plane curve, we can introduce the unit tangent vector t, the unit
normal vector n, and the curvature k(s) according to Definitions 1.4 and 1.5.
However, contrary to the plane case, these quantities are not sufficient to fully
characterise a curve in three-dimensional space.

Definition 1.7 The unit vector

b = t× n (1.18)

is called a binormal unit vector. The triple of vectors (t,n,b) is orthonormal. �

In the case of a plane curve, it is easy to verify that db/ds = 0, and hence
that the binormal unit vector is constant and points in the direction orthogonal
to the plane containing the curve. Hence the derivative db/ds quantifies how far
the curve is from being a plane curve. To be more precise, consider a point x(s0)
on the curve, and the pencil of planes whose axis is given by the line tangent
to the curve at x(s0). The equation of the plane of the pencil with unit normal
vector ν is

(x− x(s0)) · ν = 0.

The distance from such a plane of a point x(s) on the curve is given (up to
sign) by

g(s) = [x(s)− x(s0)] · ν,

and hence

g′(s0) = t(s0) · ν = 0;

in addition,

g′′(s0) = k(s0)n(s0) · ν.

It follows that if n(s0) is defined (i.e. if k(s0) =/ 0), there exists a unique plane
such that g′′(s0) = 0; this plane is the one whose normal vector is precisely the
unit vector b(s0).
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b

n

t

osculating plane

Fig. 1.9

Definition 1.8 The plane normal to b(s0) is called the osculating plane to the
curve at the point x(s0) (Fig. 1.9). �

Hence the osculating plane has parametric equation

y = x(s0) + λt(s0) + µk(s0)n(s0). (1.19)

In the case of curves in space as well, we have the following.

Theorem 1.3 (Frenet) Let s → x(s) = (x1(s), x2(s), x3(s)) be a curve in R3

endowed with the natural parametrisation. Then the following equations hold:

dt
ds

= +k(s)n(s),

dn
ds

= −k(s)t(s) −χ(s)b(s),

db
ds

= +χ(s)n(s),

(1.20)

where χ(s) is called the torsion (or second curvature) of the curve. �

The proof of Frenet’s theorem is based on the following lemma, of interest in
its own right.

Lemma 1.1 Let A : (t1, t2) → O(l) be a function of class C1, taking values in
the group of orthogonal matrices l × l, such that A(t0) = 1. Then Ȧ(t0) is a
skew-symmetric matrix.

Proof
By differentiation of the orthogonality relation

AT (t)A(t) = 1

for all t ∈ (t1, t2), if B(t) = dA/dt (t), one obtains

BT (t)A(t) +AT (t)B(t) = 0.
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Evaluating this relation at t = t0, we obtain

BT (t0) = −B(t0). �

Proof of Theorem 1.3
Apply Lemma 1.1 to the matrix A(s′ − s), transforming the orthonormal triple
(t(s),n(s),b(s)) to the orthonormal triple (t(s′),n(s′),b(s′)). Evidently A(s′ −s)
is orthogonal and A(0) = 1. Hence its derivative at the point s′ = s is a skew-
symmetric matrix; equations (1.20) follow if we observe that, by definition dt/ds =
k(s)n, while χ(s) is defined as the other non-zero element of the matrix A′(0). �

The third of equations (1.20) implies that the osculating plane tends to rotate
around the tangent line with velocity equal to the torsion χ(s). The second of
equations (1.20) shows what causes variation in n: under the effect of curvature,
the normal vector tends to rotate in the osculating plane, while under the effect
of torsion it tends to follow the rotation of the osculating plane. Moreover, if
χ(s) =/ 0, the curve crosses the osculating plane. This follows from the fact that

d3x
ds3

=
d2t
ds2

=
dk
ds

n− k2t− kχb;

hence for s � s0 one has x(s)−x(s0) � (s−s0)t+ 1
2 ·(s−s0)2kn+ 1

6 (s−s0)3(k′n−
k2t− kχb), and thus (x(s)− x(s0)) · b � − 1

6 kχ(s− s0)3.

Example 1.10
Consider the cylindrical circular helix

x1 = R cos ϕ, x2 = R sin ϕ, x3 = λϕ.

If the origin of the arcs is at A (Fig. 1.10), we have s(ϕ) =
√
R2 + λ2 ϕ;

hence

t =
dx
dϕ

dϕ
ds

=
1√

R2 + λ2
(−R sin ϕ,R cos ϕ, λ),

dt
ds

=
dt
dϕ

dϕ
ds

= − R

R2 + λ2
(cos ϕ, sin ϕ, 0),

from which it follows that

n = (− cos ϕ,− sin ϕ, 0), k(s) =
R

R2 + λ2
,

and finally

b =
1√

R2 + λ2
(λ sin ϕ,−λ cos ϕ,R).

It is easy to compute that

db
ds

= − λ

R2 + λ2
n,



1.5 Geometric and kinematic foundations of Lagrangian mechanics 15

x3

x2

x1

tn

A

w

Fig. 1.10

yielding for the torsion

χ = − λ

R2 + λ2
. �

Curvature and torsion are the only two geometric invariants of a curve in
space. Namely we have the following.

Theorem 1.4 Let k(s) > 0 and χ(s) be two given regular functions. There exists
a unique curve in space, up to congruences (rotations and translations), which
has s as natural parameter, and k and χ as curvature and torsion, respectively.

�

The proof is similar to the proof of Theorem 1.2 and is based on the fact that
t(s) solves the differential equation

d2t
ds2

− k′

k

dt
ds

+ k2t+ χt× dt
ds

= 0. (1.21)

1.5 Vector fields and integral curves

In complete analogy with (1.4), a regular curve in Rl is a map x : (a, b) → Rl

of class C1 such that ẋ =/ 0.
In this section we shall investigate the relation between curves and vector

fields.
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Definition 1.9 Let U be an open subset of Rl. A vector field X on U is a
regular function X : U → Rl (e.g. of class C∞) associating with every point x ∈ U
a vector X(x) of Rl, which is said to be applied at the point x. �

Example 1.11
To every regular function f : U → R one can associate the gradient vector field

X(x) = ∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xl
(x)

)
.

The gradient vector field is orthogonal to the level sets of f . �

Definition 1.10 A curve x : (a, b) → Rl is called an integral curve of a vector
field X : U → Rl if for all t ∈ (a, b) the following conditions hold:

(a) x(t) ∈ U ;
(b) ẋ(t) = X(x(t)). �

Example 1.12
Consider the vector field in R2 defined by X(x1, x2) = (x2,−x1). The integral
curve of the field passing through (x1(0), x2(0)) at t = 0 is given by

x1(t) = x1(0) cos t+ x2(0) sin t,

x2(t) = −x1(0) sin t+ x2(0) cos t.

Note that, if (x1(0), x2(0)) = (0, 0), the integral curve is degenerate at the point
(0, 0). This is possible because at the point (0, 0) the vector field vanishes, i.e. it
has a singular point. �

It evidently follows from Definition 1.10 that the existence and uniqueness
theorem for ordinary differential equations ensures the existence of a unique
integral curve of a vector field passing through a given point. The question of
the continuation of solutions of differential equations (hence of the existence of
a maximal integral curve) yields the following definition.

Definition 1.11 A vector field is called complete if for every point x the maximal
integral curve (cf. Appendix 1) passing through x is defined over all of R. �

Example 1.13
The vector field given in Example 1.12 is complete. The field X : R → R,
X(x) = 1 + x2 is not complete. �

When not otherwise stated, we shall implicitly assume that the vector fields
considered are complete.

1.6 Surfaces

The study of the local properties of plane curves, which we considered in the
first three sections of this chapter, is rather simple: one invariant—curvature (as
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a function of arc length)—is sufficient to characterise the curve. Matters are not
much more complicated in the case of curves in R3. The essential reason for this
is that the intrinsic geometry of curves is ‘trivial’, in the sense that for all curves
there exists a natural parametrisation, i.e. a map x(s) from an interval (a, b) of
R to the curve, such that the distance between any two points x(s1) and x(s2)
of the curve, measured along the curve, is equal to |s2 − s1|. Hence the metric
(i.e. the notion of distance) defined by means of the arc length coincides with
that of R.
The situation is much more complicated for the case of surfaces in R3. We

shall see that the intrinsic geometry of surfaces is non-trivial due to the fact
that, in general, there is no isometry property between surfaces and subsets of
R2 analogous to that of the previous case, and it is not possible to define a
metric using just one scalar function.
In analogy with the definition of a curve in the plane (as the level set of a

function of two variables), surfaces in R3 can be obtained by considering the
level sets of a function F : U → R (for simplicity, we assume that this function is
of class C∞, but it would be sufficient for the function to be of class C2), where
U is an open subset of R3. The surface S is hence defined by

S = {(x1, x2, x3) ∈ U |F (x1, x2, x3) = 0}, (1.22)

assuming that such a set is non-empty.

Definition 1.12 A point (x1, x2, x3) of the surface F (x1, x2, x3) = 0 is called
non-singular if the gradient of F computed at the point is non-vanishing:

∇F (x1, x2, x3) =/ 0. (1.23)

A surface S whose points are all non-singular points is called regular. �

By the implicit function theorem, if P is non-singular, in a neighbourhood
of P the surface can be written as the graph of a function. For example, if
(∂F/∂x3)P =/ 0 there exists a regular function f : U → R (where U is an open
neighbourhood of the projection of P onto the (x1, x2) plane) such that

S = graph (f) = {(x1, x2, x3) ∈ R3|(x1, x2) ∈ U, x3 = f(x1, x2)}. (1.24)

In addition, from F (x1, x2, x3) = 0 it follows that

∂F

∂x1
dx1 +

∂F

∂x2
dx2 +

∂F

∂x3
dx3 = 0;

hence from F (x1, x2, f(x1, x2)) = 0 it follows that

∂f

∂x1
= −∂F/∂x1

∂F/∂x3
,

∂f

∂x2
= −∂F/∂x2

∂F/∂x3
.
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The analogous analysis can be performed if (∂F/∂x2)P =/ 0, or (∂F/∂x1)P =/ 0.
Equation (1.24) highlights the fact that the points of a regular surface are, at
least locally, in bijective and continuous correspondence with an open subset
of R2.
It is an easy observation that at a non-singular point x0 there exists the

tangent plane, whose equation is

(x− x0) · ∇F = 0.

More generally, it is possible to consider a parametric representation of the
form x : U → R3, x = x(u, v), where U is an open subset of R2:

S = x(U) = {(x1, x2, x3) ∈ R3|there exist (u, v) ∈ U, (x1, x2, x3) = x(u, v)}.
(1.25)

Note that the graph of (1.24) is a particular case of the expression (1.25),
in which the parametrisation is given by x(u, v) = (u, v, f(u, v)). It is always
possible to transform (1.24) into (1.25) by the change of variables on the open
set U of R2, x1 = x1(u, v), x2 = x2(u, v), provided the invertibility condition
det [∂(x1, x2)/∂(u, v)] =/ 0 holds.
The latter condition expresses the fact that the coordinate lines u = constant

and v = constant in the (x1, x2) plane are not tangent to each other (Fig. 1.11).
It follows that Definition 1.12 is equivalent to the following.

x3

x2

x1

v = constant

v = constant

u = constant

u = constant

Fig. 1.11
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Definition 1.13 If the surface S is given in parametric form as x = x(u, v), a
point P is called non-singular if

rank

⎛⎜⎝∂x1
∂u

∂x2
∂u

∂x3
∂u

∂x1
∂v

∂x2
∂v

∂x3
∂v

⎞⎟⎠
P

= 2. (1.26)

�

Equation (1.26) is equivalent to requiring that the vectors xu,xv are linearly
independent.

Example 1.14
The sphere of radius R > 0 is a regular surface; it is the level set of

F (x1, x2, x3) = x21 + x22 + x23 −R2.

A parametrisation of the sphere is given by

x(u, v) = R(cos v sin u, sin v sin u, cos u),

where (u, v) ∈ [0, π] × [0, 2π]. Here v is also called the longitude, and u the
colatitude, as it is equal to π/2 minus the latitude (Fig. 1.12). This parametrisation
of the sphere is regular everywhere except at the two poles (0, 0,±1). The sphere
of radius 1 is usually denoted S2. �

x3

x2

x1

P

u

v

Fig. 1.12
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Example 1.15
The ellipsoid is a regular surface; it is the level set of

F (x1, x2, x3) =
x21
a2

+
x22
b2

+
x23
c2

− 1,

where a > b > c > 0 are the semi-axes of the ellipsoid. A parametrisation is
given by

x(u, v) = (a cos v sin u, b sin v sin u, c cos u),

with (u, v) ∈ [0, π]× [0, 2π]. Note that this parametrisation is not regular at the
points (0, 0,±c); however at these points the surface is regular. �

Example 1.16
The one-sheeted hyperboloid, level set S = F−1(0) of

F (x1, x2, x3) =
x21
a2

+
x22
b2

− x23
c2

− 1,

or the two-sheeted hyperboloid with

F (x1, x2, x3) = −x21
a2

− x22
b2

+
x23
c2

− 1,

are regular surfaces. A parametric representation is given, respectively, by

x(u, v) = (a cos v cosh u, b sin v cosh u, c sinh u),

and

x(u, v) = (a cos v sinh u, b sin v sinh u, c cosh u),

where (u, v) ∈ R× [0, 2π]. �

Example 1.17
A particularly interesting class of surfaces is given by the surfaces of revolution;
these surfaces are obtained by rotating, e.g. around the x3-axis, a curve (implicitly
defined) in the (x1, x3) plane. If f(x1, x3) = 0 is the implicit representation of
the curve, the surface of revolution corresponds to the level set of the function

F (x1, x2, x3) = f(
√
x21 + x22, x3) = 0.

Among the previous examples, we have already encountered surfaces of revolution,
e.g. the ellipsoids (if two of the semi-axes are equal) or the hyperboloids (if a = b).
A parametric representation of the surfaces of revolution is given by

x(u, v) = (u cos v, u sin v, f(u)),

if the generating curve has equation x3 = f(x1). �
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Example 1.18
The elliptic paraboloid is the graph of

x3 =
x21
a2

+
x22
b2

, a > b > 0, (x1, x2) ∈ R2,

while the hyperbolic paraboloid is the graph of

x3 =
x21
a2

− x22
b2

, a > b > 0, (x1, x2) ∈ R2. �

Remark 1.7
In analogy with the definition of surfaces in R3 one can introduce (hyper)surfaces
in Rl, as:

(1) level sets of functions from (subsets of) Rl into R;
(2) graphs of functions defined in an open subset of Rl−1 and taking values in R;
(3) through a parametric representation, with l − 1 parameters x(u1, . . . , ul−1).

�

In this section we will focus primarily on studying surfaces in R3, while in
the next section we shall define the notion of a differentiable manifold, of which
surfaces and hypersurfaces are special cases.

Let F : U → R be a C∞ function, U an open subset of R3, and denote by
S the surface S = F−1(0). It is important to remark that, in general, it is not
possible to find a natural parametrisation that is globally non-singular for the
whole of a regular surface.

Example 1.19
The bidimensional torus T2 is the surface of revolution around the x3-axis
obtained from the circle in the (x1, x3) plane, given by the equation

x23 + (x1 − a)2 = b2,

thus with centre x1 = a, x3 = 0 and radius b, such that 0 < b < a. Hence its
implicit equation is

F (x1, x2, x3) = x23 + (
√
x21 + x22 − a)2 − b2 = 0.

It is easy to verify that a parametrisation of T2 is given by

x1 = cos v(a+ b cos u),

x2 = sin v(a+ b cos u),

x3 = b sin u,

where (u, v) ∈ [0, 2π] × [0, 2π] (Fig. 1.13). The torus T2 is a regular surface.
Indeed,

∇F (x1, x2, x3) =

(
2x1 − 4ax1√

x21 + x22
, 2x2 − 4ax2√

x21 + x22
, 2x3

)
=/ 0 on T2,
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x3

x2

x1 a

b
u

v

Fig. 1.13

and correspondingly

∂(x1, x2, x3)
∂(u, v)

=
( −b sinu cos v −b sinu sin v b cosu
−(a+ b cosu) sin v (a+ b cosu) cos v 0

)
has rank 2 on T2. �

Example 1.20
The sphere S2

x21 + x22 + x23 − 1 = 0

is a regular surface; the parametrisation

x(u, v) = (cos v cos u, sin v cos u, sin u)

in non-singular everywhere except at the points u = ±π/2 (corresponding to the
north pole x = (0, 0, 1) and the south pole x = (0, 0,−1) of the sphere) where
the parametrisation is singular (this is intuitively evident by observing that the
parallels degenerate to a point at the poles, and hence that the longitude is not
defined at these points). However, the parametrisation

x(u, v) = (sin u, cos v cos u, sin v cos u)

is regular at the poles, while it is singular at x = (±1, 0, 0). The stereographic
projection from one of the poles of the sphere (cf. Example 1.29) is an example
of a parametrisation that is regular over the whole sphere minus one point. There
is no global regular parametrisation of the whole sphere. �
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Example 1.21
The cone

x21
a2

+
x22
b2

− x23
c2

= 0

is not a regular surface: the origin x1 = x2 = x3 = 0 belongs to the cone but it is
a singular point. Excluding this point, the surface becomes regular (but it is no
longer connected), and x(u, v) = (au cos v, bu sin v, cu) is a global non-singular
parametrisation. �

Consider a surface S = F−1(0), and a regular point P ∈ S. At such a point it
is possible to define the tangent space TPS to the surface S at the point P .

Definition 1.14 A vector w ∈ R3 at the point P is said to be tangent to the
surface S at the point P , or w ∈ TPS (tangent space to the surface at the
point P ) if and only if there exists a curve x(t) on the surface, i.e. such that
F (x1(t), x2(t), x3(t)) = 0 for all t, passing through the point P for some time t0,
x(t0) = P , with velocity ẋ(t0) = w. �

In the expression for the tangent vector at a point x(u0, v0)

ẋ = xuu̇+ xv v̇ (1.27)

we can consider u̇, v̇ as real parameters, in the sense that, given two numbers
α, β, it is always possible to find two functions u(t), v(t) such that u(t0) = u0,
v(t0) = v0, u̇(t0) = α, v̇(t0) = β. Hence we can identify TpS with the vector
space, of dimension 2, generated by the vectors xu,xv (Fig. 1.14).

∇F

∇F

v = constant

u = constant

x
u

x
v

Fig. 1.14
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Definition 1.15 A vector field X over a surface S is a function assigning to
every point P of the surface, a vector X(P ) ∈ R3 applied at the point P . The
field X is called a tangent field if X(P ) ∈ TPS for every P ∈ S; the field is a
normal field if X(P ) ∈ (TPS)⊥ for every point P ∈ S. �

Remark 1.8
Since a vector field tangent to S is expressed by X = X1(u, v)xu +X2(u, v)xv,
the equations of its integral curves are u̇ = X1(u, v), v̇ = X2(u, v) and the curves
lie on S. �

Theorem 1.5 Let P be a non-singular point of the surface F (x0) = 0. Then
the tangent space to the surface at P coincides with the orthogonal space to the
gradient of F at P :

TPS = (∇F (P ))⊥. (1.28)

Proof
Differentiating the expression F (x(u, v)) = 0 we obtain ∇F · xu = ∇F · xv = 0.
Hence ∇F is orthogonal to every vector of TpS. Conversely, if w is ortho-
gonal to ∇F at P ∈ S, it must necessarily belong to the plane generated
by xu,xv. �

Definition 1.16 A connected surface S is said to be oriented when a unitary
normal vector field is uniquely assigned on the surface. �

Remark 1.9
The regular surfaces we have defined (as level sets S = F−1(0)) are always ori-
entable, with two possible orientations corresponding to the two unitary normal
vector fields

n1(P ) =
∇F (P )
|∇F (P )| , n2(P ) = − ∇F (P )

|∇F (P )| . (1.29)

However, it is possible in general to extend the definition of surface to also
admit non-orientable cases, such as the Möbius strip (Fig. 1.15). �

For applications in mechanics, it is very important to be able to endow
the surface with a distance or metric, inherited from the natural immersion
in three-dimensional Euclidean space. To this end, one can use the notion of
length of a curve in space, using the same definition as for curves lying on
a surface.
If S = F−1(0) is a regular surface, x = x(u, v) is a parametric representation

for it, and t → (u(t), v(t)), t ∈ (a, b) is a curve on S, the length of the curve is
given by (cf. (1.5))

l =
∫ b

a

∣∣∣∣dx(u(t), v(t))dt

∣∣∣∣ dt = ∫ b

a

√
(xuu̇+ xv v̇) · (xuu̇+ xv v̇) dt. (1.30)
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A

B

C

D

A

B

D

C

A = D

B = C

Fig. 1.15 Möbius strip.

If we define

E(u, v) = xu · xu =
(
∂x1
∂u

)2
+
(
∂x2
∂u

)2
+
(
∂x3
∂u

)2
,

F (u, v) = xu · xv =
∂x1
∂u

∂x1
∂v

+
∂x2
∂u

∂x2
∂v

+
∂x3
∂u

∂x3
∂v

,

G(u, v) = xv · xv =
(
∂x1
∂v

)2
+
(
∂x2
∂v

)2
+
(
∂x3
∂v

)2
,

(1.31)

equation (1.30) can be rewritten as

l =
∫ b

a

√
E(u(t), v(t))u̇2 + 2F (u(t), v(t))u̇v̇ +G(u(t), v(t))v̇2 dt. (1.32)

Setting

(ds)2 = dx · dx, (1.33)

we obtain for (ds)2 the expression

(ds)2 = E(u, v)(du)2 + 2F (u, v)(du)(dv) +G(u, v)(dv)2. (1.34)

Definition 1.17 The quadratic form (1.34) is called the first fundamental form
of the surface. �
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This form fixes the metric on the surface, as it makes it possible to compute
lengths.

Remark 1.10
The expression (1.34) represents a positive definite quadratic form: this means
E > 0 and EG − F 2 > 0. The area of the parallelogram whose sides are xu,xv

(linearly independent) is exactly
√
EG− F 2. �

Example 1.22
Consider the sphere S2 of radius 1, parametrised by

x = (cos v sin u, sin v sin u, cos u).

Then

xu = (cos u cos v, cos u sin v,− sin u), xv = (− sin u sin v, sin u cos v, 0),

and hence

E = 1, F = 0, G = sin2 u,

from which it follows that

(ds)2 = (du)2 + sin2 u(dv)2.

For example, the length of a parallel at colatitude u0 is given by

l =
∫ 2π

0

√
u̇2 + (sin u0)2v̇2 dt = 2π sin u0,

since the curve has parametric equations u = u0, v = t. �

Having defined the first fundamental form, it is possible to compute not only
the lengths of curves lying on the surface, but also the angle ϕ between two
intersecting curves: if their parametric representation is

u = u1(t), v = v1(t) and u = u2(t), v = v2(t) (1.35)

and the intersection point is denoted by P , corresponding to the value t = t0,
the velocity vectors of the two curves in P

w1 = u̇1(t0)xu(u1(t0), v1(t0)) + v̇1(t0)xv(u1(t0), v1(t0)),

w2 = u̇2(t0)xu(u2(t0), v2(t0)) + v̇2(t0)xv(u2(t0), v2(t0))

are both tangent to the surface at the point P . The angle between the two
vectors is given by

cos ϕ =
w1 ·w2

|w1||w2| =
Eu̇1u̇2 + F (u̇1v̇2 + v̇1u̇2) +Gv̇1v̇2√

Eu̇21 + 2Fu̇1v̇1 +Gv̇21
√
Eu̇22 + 2Fu̇2v̇2 +Gv̇22

. (1.36)
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Remark 1.11
The parametrisation of a surface is called orthogonal if F = 0:

(ds)2 = E(u, v)(du)2 +G(u, v)(dv)2.

In this case the curves x(u, v0), x(u0, v) on the surface, obtained by fixing one
of the two parameters, are mutually orthogonal. If in addition E = G = g(u, v),
and hence

(ds)2 = g(u, v)((du)2 + (dv)2),

the parametrisation is called conformal, since the angle in (1.36) between the
two curves on the surface is equal to the angle between the two curves (1.35)
in the (u, v) plane. It can be proved (cf. Dubrovin et al. 1991a,b) that given a
regular surface, there always exist orthogonal as well as conformal coordinates.

�

Moreover, the first fundamental form allows one to compute the area of the
surface. Consider the tangent parallelogram defined by the vectors xu∆u and
xv ∆ v. The total area of this parallelogram is given by

|xu∆u× xv ∆ v| = |xu × xv| |∆u∆ v| =
√
EG− F 2|∆u∆ v|.

The area of the part SD of the surface corresponding to the parameters (u, v)
varying within a bounded domain D is

area (SD) =
∫
D

√
EG− F 2 du dv. (1.37)

A very important feature of the first fundamental form of a surface is how it
behaves under coordinate transformations.

Theorem 1.6 The first fundamental form is a covariant tensor of rank 2 (cf.
Appendix 4).

Proof
Let (u′, v′) be a new parametrisation of the surface. From the identities

du =
∂u

∂u′ du
′ +

∂u

∂v′ dv
′,

dv =
∂v

∂u′ du
′ +

∂v

∂v′ dv
′

it follows immediately that

(ds)2 = (du dv)
(
E F
F G

)(
du
dv

)
= (du′dv′)JT

(
E F
F G

)
J

(
du′

dv′

)
, (1.38)

where

J =

⎛⎜⎝ ∂u

∂u′
∂u

∂v′
∂v

∂u′
∂v

∂v′

⎞⎟⎠ ,

(
E′ F ′

F ′ G′

)
= JT

(
E F
F G

)
J,

and E′, F ′, G′ are expressed in terms of the new parameters. �
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Among all the possible curves on a surface, the class of geodesics deserves
special attention. Indeed, we shall see that geodesic curves play a very important
role in mechanics.
Let S be a regular surface, and x(u, v) its parametric representation. Consider

a curve on the surface parametrised with respect to the natural parameter s:

s → (u(s), v(s)) → x(u(s), v(s)). (1.39)

The unit vector t tangent to the curve is given by

t(s) =
dx
ds

(s) = u′(s)xu(u(s), v(s)) + v′(s)xv(u(s), v(s)) ∈ Tx(u(s),v(s))S

and the normal unit vector n is given by

n(s) =
1

k(s)
d2x
ds2

=
1

k(s)
(u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv), (1.40)

where k(s) is the curvature,

xuu =
∂2x
∂u2

, xuv =
∂2x
∂u∂v

, xvv =
∂2x
∂v2

.

Definition 1.18 The curve (1.39) is called a geodesic if at every point of the
curve the unit vector n normal to the curve belongs to the space normal to the
surface, i.e. if

n(s) ∈ (Tx(u(s),v(s))S)⊥ (1.41)

for all s, and hence if and only if

n(s) · xu(u(s), v(s)) = 0,

n(s) · xv(u(s), v(s)) = 0. (1.42)

�

Remark 1.12
Given a curve with an arbitrary parametrisation, denoting by s = s(t) the time
dependence, its acceleration a is given by the expression (1.12), and the condition
for this curve to be a geodesic consists in this case of imposing the condition
that the acceleration be orthogonal to the surface.
The condition for a curve in the Euclidean space R3 to be a geodesic is satisfied

by straight lines, for which d2x/ds2 = 0. �

Example 1.23
It is easy to convince oneself that the maximal circles are geodesics on the
sphere, while on a cylinder with circular normal section, the geodesics are the
generating lines and helices (cf. Example 1.10), including the ones that degenerate
to circles. �
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From equations (1.40) and (1.42) it is easy to derive a system of ordinary
differential equations which the geodesics must satisfy:

(u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv) · xu = 0,

(u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv) · xv = 0. (1.43)

Recall that E = xu · xu, F = xu · xv and G = xv · xv, and note that

∂E

∂u
= 2xuu · xu,

∂E

∂v
= 2xuv · xu,

∂F

∂u
= xuv · xu + xuu · xv,

∂F

∂v
= xuv · xv + xvv · xu,

∂G

∂u
= 2xuv · xv,

∂G

∂v
= 2xvv · xv;

hence equations (1.43) become

Eu′′ + Fv′′ +
1
2
∂E

∂u
(u′)2 +

∂E

∂v
u′v′ +

(
∂F

∂v
− 1

2
∂G

∂u

)
(v′)2 = 0,

Fu′′ +Gv′′ +
1
2
∂G

∂v
(v′)2 +

∂G

∂u
u′v′ +

(
∂F

∂u
− 1

2
∂E

∂v

)
(u′)2 = 0.

(1.44)

Denoting the matrix representing the first fundamental form by

(gij) =
(
E F
F G

)
, (1.45)

and its inverse by

(gkl) =
1

EG− F 2

(
G −F
−F E

)
, (1.46)

we can introduce the so-called Christoffel symbols

Γkij =
1
2

2∑
l=1

gkl
(
∂glj
∂ui

+
∂gil
∂uj

− ∂gij
∂ul

)
, (1.47)

where u1 = u, u2 = v. Using Christoffel symbols, one finds that the system of
differential equations (1.44) for the geodesics can be written in the form

d2uk

ds2
+

2∑
i,j=1

Γkij
dui

ds
duj

ds
= 0, k = 1, 2. (1.48)

Example 1.24
For a cylinder with generic section x1 = f1(v), x2 = f2(v), x3 = u and (f ′

1)
2 +

(f ′
2)
2 = 1, one obtains E = G = 1, F = 0 and equations (1.44) yield u′′ = v′′ = 0,

i.e. u = as + b, v = cs + d, with a, b, c, d arbitrary constants. When c = 0 one
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obtains the generating lines; a = 0 yields the normal sections; in all other cases
v − d = c/a (u − b), and hence one finds helices. Since du/ds = a, the geodesics
intersect the generating lines at a constant angle. �

Example 1.25
The first fundamental form of a surface of revolution with the parametrisation
x = (u cos v, u sin v, f(u)) can be written as

(ds)2 = [1 + (f ′(u))2](du)2 + u2(dv)2, (1.49)

and hence the Christoffel symbols have the values

Γ111 =
f ′(u)f ′′(u)
1 + (f ′(u))2

, Γ122 = − u

1 + (f ′(u))2
, Γ212 = Γ221 =

1
u
,

while Γ112 = Γ121 = Γ211 = Γ222 = 0. The geodesic equation (1.48) on the surface is
thus equivalent to the system

d2u
ds2

+
f ′(u)f ′′(u)
1 + (f ′(u))2

(
du
ds

)2
− u

1 + (f ′(u))2

(
dv
ds

)2
= 0,

d2v
ds2

+
2
u

(
du
ds

)(
dv
ds

)
= 0.

(1.50)

The second of equations (1.50) can be rewritten as

1
u2

d
ds

[
u2

(
dv
ds

)]
= 0,

from which it follows that there exists a constant c ∈ R such that for every s

u2
dv
ds

= c, (1.51)

and hence, if c =/ 0,

ds =
1
c
u2dv.

Substituting the latter expression into the first fundamental form (1.49) one
obtains the relation

u4(dv)2 = c2[1 + (f ′(u))2](du)2 + c2u2(dv)2; (1.52)

this leads to the elimination of ds and one can hence consider v as a function
of u. The geodesics on a surface of revolution thus have the implicit form

v − v0 = ±c

∫ u

u0

√
1 + (f ′(ξ))2

ξ
√
ξ2 − c2

dξ. (1.53)

If c = 0, from equation (1.51) it follows that u2 (dv/ds) = 0, i.e. that v is
constant: the meridians are geodesic curves. On the other hand, the parallels
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(the curves corresponding to u = constant) are geodesics only if

u

1 + (f ′(u))2

(
dv
ds

)2
= 0,

d2v
ds2

= 0,

i.e. only if dv/ds is in turn constant, and if dx3/du = f ′(u) = ∞, which implies
that along the given parallel, the planes tangent to the surface envelop a cylinder
whose generator lines are parallel to the x3-axis. The relation (1.51) has an
interesting consequence. Let α be the angle between the geodesic (u(s), v(s)) at
s = s0 and the meridian v = v(s0) (Fig. 1.16). It is immediate to verify that

u(s0)
dv
ds

(s0) = sin α,

x3

(m)

v

f (u)

v
O

(p): parallel, (m): meridian, (g): geodesic

(p)

(g)

a

Fig. 1.16 Geodesics on a surface of revolution.



32 Geometric and kinematic foundations of Lagrangian mechanics 1.6

since the unit vector tangent to the parallel is simply (− sin v, cos v, 0); hence
substituting in the expression (1.51) we obtain Clairaut’s theorem:

u(s) sin α(s) = c. (1.54)

Hence the geodesic must lie in the region u(s) ≥ |c|.
In the case of a surface of revolution, with a cusp at infinity, i.e. such that

lim
u→0

f(u) = ∞ (Fig. 1.17), every geodesic, after attaining the minimum value of

u allowed by equation (1.54), reverses the motion (along the x3-axis) and comes
back into the region corresponding to values of u satisfying |u| > |c|.

Fig. 1.17 Reversal of geodesics on a surface of revolution.
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It is possible to prove that geodesics on a surface of revolution which are
neither meridians nor closed curves are dense in the region u ≥ |c|. �

1.7 Differentiable Riemannian manifolds

Let x be a point in Euclidean n-dimensional space Rn, and let f1, . . . , fm be m
regular real-valued functions defined on the same connected open subset A ⊂ Rn.
Just as the level set of a real function of three real variables identifies a surface
in Euclidean three-dimensional space, the level sets of any of the functions
fj identify a (hyper)surface in Rn. With the requirement that x lies in the
intersection (supposed non-empty) of the level sets of all the functions fj , one
identifies a submanifold of Rn. In analogy with the notion of a regular surface
introduced in the previous section, as a surface endowed with a tangent plane to
all of its points, we can introduce the notion of a regular submanifold of Rn by
imposing the condition that at each of its points there is defined a tangent plane
(and a normal space). The dimension of the submanifold is then defined as the
dimension of its tangent space. These sketchy introductory remarks justify the
following definition.

Definition 1.19 Let A be an open connected subset of Rn, n > 1, and f : A →
Rn−l, 1 ≤ l < n, a map of class Ck, k ≥ 2. The zero level set V = {x ∈ A|f(x) = 0}
of f , assumed non-empty, is called a regular submanifold of Rn of class Ck and
of dimension l if the Jacobian matrix of the map f is of maximal rank (hence if
its rank is equal to n− l) at every point of V . �

Remark 1.13
Evidently the condition that the Jacobian matrix of f = (f1, . . . , fn−l) be of
rank n − l at every point of V is equivalent to requiring that the gradient vec-
tors ∇xf1, . . . ,∇xfn−l be an (n − l)-tuple of vectors in Rn which are linearly
independent on V . �

Consider as an example the case shown in Fig. 1.18, for which n = 3, l = 1,
f = (f1, f2), where

f1(x1, x2, x3) = x3 −
√
x21 + x22, f2(x1, x2, x3) = x21 + x22 + x23 − 1.

The set V is a circle. Note that the vectors

∇f1 =

(
−x1√
x21 + x22

,
−x2√
x21 + x22

, 1

)
, ∇f2 = 2(x1, x2, x3)

are linearly independent on V .
This definition includes in particular plane regular curves (n = 2, l = 1), regular

curves in R3 (n = 3, l = 1), considered as the intersection of two non-tangential
surfaces, and regular surfaces in R3 (n = 3, l = 2).
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x3

x1

x2

∇F2

∇F1

1
2

Fig. 1.18

Definition 1.20 The tangent space TPV to a regular submanifold V at the
point P is the l-dimensional vector space of the velocities ẋ(t0) along the curves
x(t) belonging to V (hence such that f(x(t)) = 0 for every t) and passing through
P for t = t0. �

Remark 1.14
It is easy to verify that TPV coincides with the vector space generated by
the vectors which are orthogonal to the gradients ∇xf1(P ), . . . ,∇xfn−l(P ) (cf.
Theorem 1.5). The latter will be called a basis of the normal space to V in P .�

Having chosen a local parametrisation x = x(u1, . . . , ul) of V , whose existence
is guaranteed by the implicit function theorem, the tangent space at a point P
of V has as a basis the vectors xu1 , . . . ,xul , where

xui =
∂x
∂ui

(1.55)

and derivatives are computed at the point P .

Example 1.26
The sphere Sl of unit radius is the regular submanifold of Rl+1 defined by

f(x1, . . . , xl+1) = x21 + · · ·+ x2l+1 − 1 = 0.

The tangent space at one of its points P , with coordinates (x̂1, . . . , x̂l+1), is the
hyperplane of Rl+1 described by the equation

x · x̂ = 0. �
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Example 1.27
The group of real n×n matrices A with unit determinant, denoted by SL(n,R),
is a regular submanifold of Rn2

of dimension n2 − 1, defined by the equation

det(A) = 1.

Its tangent space at the point corresponding to the identity matrix can be
identified with the space of n × n matrices of zero trace. Indeed, if A(t) is any
curve in SL(n,R) passing through the identity at t = 0, and thus such that
A(0) = 1, we have that

0 =
d
dt

det A(t)|t=0 = Tr Ȧ(0).

Indeed, if we set X = Ȧ(0) we have that det A(t) = det(1 + tX) + O (t) =
1 + tTrX + O (t). �

Example 1.28
The group of real orthogonal n × n matrices A, denoted by O(n), is a regular
submanifold of Rn2

of dimension n(n− 1)/2 defined by the system of equations

AAT = 1.

Its tangent space at the point corresponding to the identity matrix can be
identified with the vector space of n×n skew-symmetric matrices (cf. Lemma 1.1).
The connected component of O(n) containing the identity matrix coincides with
the group SO(n) of orthogonal matrices of unit determinant. �

We now turn to the problem of parametrising regular submanifolds.
We have already remarked that for surfaces in R3 it is not possible in general

to give a global parametric representation. For example, the sphere S2 is a regular
submanifold of R3, but the parametrisation given by the spherical coordinates
x1 = (sin u1 cos u2, sin u1 sin u2, cos u1) is singular at the points (0, 0, 1) and
(0, 0,−1). A regular parametrisation at those points is given instead by x2 =
(cos u1, sin u1 cos u2, sin u1 sin u2), which however is singular at (1, 0, 0) and
(−1, 0, 0).
Hence there exist two regular injective maps x1, x2 defined on R = (0, π) ×

[0, 2π) such that S2 = x1(R) ∪ x2(R). Moreover, if we consider the intersection
W = x1(R) ∩ x2(R) = S2\{(0, 0, 1), (0, 0,−1), (1, 0, 0), (−1, 0, 0)}, the preimages
x−1
1 (W ) = R\{(π/2, 0), (π/2, π)} and x−1

2 (W ) = R\{(π/2, π/2), (π/2, 3π/2)} are
set in one-to-one correspondence by the map x−1

2 ◦ x1, which expresses u1, u2 as
functions of u1, u2, and by its inverse x−1

1 ◦ x2.
In summary, these are the properties of any ‘good’ parametrisation of a regular

submanifold. We can now consider the problem of parametric representation in a
more general context, by referring to a set M which is not necessarily endowed
with a metric structure, as in the case of regular submanifolds of Rn.

Definition 1.21 A differentiable manifold of dimension l and class Ck consists
of a non-empty set M and of a family of injective maps xα : Uα ⊂ Rl → M , with
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xa (Ua)

xb (Ub)

xb

xa

xa
–1(W )

xb
–1

˚ xa

xb
–1(W )

xa
–1

˚ x bUa ⊂ Rl

Ub ⊂ Rl

W
M

Fig. 1.19

Uα open and connected and α ∈ A =/ ∅ such that:

(a)
⋃

α∈A
xα(Uα) = M ;

(b) for any α and β in A, if xα(Uα) ∩ xβ(Uβ) = W =/ ∅ the sets x−1
α (W ) and

x−1
β (W ) are open subsets of Rl and the maps x−1

β ◦xα and x−1
α ◦xβ (inverses

of each other) are differentiable maps of class Ck.

The pair (Uα,xα) (or the map xα) is called a local parametrisation or a chart
of M , while a family {(Uα,xα)}α∈A with the properties listed in the definition is
called a differentiable structure on M or an atlas of M (Fig. 1.19). �

In the example of the sphere in R3, A is the set of indices {1, 2}.
The set A may have only one element if the representation of M is global.
Evidently the Euclidean space Rl endowed with the differential structure

induced by the identity map is a differentiable manifold of dimension l.

Example 1.29
Consider the l-dimensional sphere

Sl = {(x1, . . . , xl, xl+1) ∈ Rl+1|x21 + · · ·+ x2l+1 = 1}

with the atlas given by the stereographic projections π1 : Sl\{N} → Rl and
π2 : Sl\{S} → Rl from the north pole N = (0, . . . , 0, 1) and from the south pole
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S = (0, . . . , 0,−1), respectively:

π1(x1, . . . , xl, xl+1) =
(

x1
1− xl+1

, . . . ,
xl

1− xl+1

)
,

π2(x1, . . . , xl, xl+1) =
(

x1
1 + xl+1

, . . . ,
xl

1 + xl+1

)
.

It is immediate to verify that the parametrisations (Rl, π−1
1 ), (Rl, π−1

2 ) define
the structure of a differentiable manifold. �

Comparing this with the definition of a regular submanifold of Rn, we note
that the common feature of both definitions is the existence of local regular
parametrisations (i.e. parametrisations without singular points). Indeed, we have
the following.

Theorem 1.7 Every regular l-dimensional submanifold V of Rn is a differenti-
able manifold.

Proof
It follows from the implicit function theorem that to every point p of V one can
associate an open neighbourhood A ⊂ Rn, a point u of Rl, an open neighbour-
hood U of u and a differentiable, invertible map xp : U → V such that xp(u) = p
and xp(U) = V ∩A, and hence a local parametrisation of V (Fig. 1.20).
Consider now the pairs (Up,xp) as p varies in V ; clearly the conditions of

Definition 1.21 are satisfied, and thus {(Up,xp)}p∈V is an atlas for V . �

V

u

x

A

p = x(u)

x(U )

U

Fig. 1.20
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Remark 1.15
The definition of a differentiable manifold naturally yields a topological space
structure: we will say that a subset A of M is open if x−1

α (A ∩ xα(Uα)) is an
open subset of Rl for every α ∈ A. Hence a subset K of M is compact if every
covering of K with open sets A has a finite subcovering. The manifold M is
connected if for any two points P1, P2 ∈ M there exists a finite sequence of
charts {(Uj ,xj)}j=1,...,N such that P1 ∈ x1(U1), PN ∈ xN (UN ), the open sets Uj

are connected and Uj ∩ Uj+1 =/ ∅ for every j = 1, . . . , N − 1. �

Remark 1.16
With the topology induced by the differentiable structure, the manifold M is
separable (i.e. every pair of points m1, m2 in M has two open disjoint neigh-
bourhoods A1 and A2, m1 ∈ A1 and m2 ∈ A2) and the topology has a countable
base (there is no loss of generality in assuming that A is countable). �

Definition 1.22 A differentiable manifold M is orientable if it admits a dif-
ferentiable structure {(Uα,xα)}α∈A such that for every pair α, β ∈ A with
xα(Uα) ∩ xβ(Uβ) =/ ∅ the Jacobian of the change of coordinates x−1

α ◦ xβ is
positive. Otherwise the manifold is called non-orientable. �

Definition 1.23 Let M1 and M2 be two differentiable manifolds of dimension
l and m, respectively. A map g : M1 → M2 is differentiable at a point p ∈ M1
if given an arbitrary parametrisation y : V ⊂ Rm → M2 with y(V ) � g(p),
there exists a parametrisation x : U ⊂ Rl → M1 with x(U) � p, such that
g(x(U)) ⊂ y(V ) and the function

y−1 ◦ g ◦ x : U ⊂ Rl → V ⊂ Rm (1.56)

is differentiable in x−1(p) (Fig. 1.21). The map g is differentiable in an open
subset of M1 if it is differentiable at every point of the subset. �

x–1(p)

g(p)

y–1
˚ g ˚ x

y–1 ˚g ˚x
(U )

V
U

g

p
x(U )

y(V)

M1
g(M1)

M2

Fig. 1.21
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Note that by choosing M2 = R this defines the notion of a differentiable map
(in an obvious way we can also define the notion of a map of class Ck or C∞)
from M to R.
If we denote by f = (f1, . . . , fm) the map (1.56), we have vi = fi(u1, . . . , ul),

i = 1, . . . ,m, where fi are differentiable functions.

Definition 1.24 A curve on a manifold M is a differentiable map
γ : (a, b) → M . �

If (U,x) is a local parametrisation of M in a neighbourhood of a point p = x(0),
we can express a curve γ : (−ε, ε) → M using the parametrisation

(x−1 ◦ γ)(t) = (u1(t), . . . , ul(t)) ∈ U. (1.57)

In spite of the fact that M has no metric structure, we can define at every
point p of the curve the velocity vector through the l-tuple (u̇1, . . . , u̇l). It
is then natural to consider the velocity vectors corresponding to the l-tuples
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). We denote these vectors by the symbols

∂

∂u1
, . . . ,

∂

∂ul
;

the generic velocity vector is expressed in the form of a linear combination

ẋ =
l∑

i=1

u̇i
∂x
∂ui

, (1.58)

exactly as in the case of a regular l-dimensional submanifold.
It is now easy to show that for p ∈ M and v ∈ TpM , it is possible to find a

curve γ : (−ε, ε) → M such that γ(0) = p and γ̇(0) = v. Indeed, it is enough to
consider the decomposition

v =

l∑
i=1

vi
∂x
∂ui

(0)

for some local parametrisation (U,x), and to construct a map µ : (−ε, ε) → U
such that its components ui(t) have derivatives u′

i(0) = vi. The composite map
x ◦ µ hence defines the required function γ (Fig. 1.22).

Definition 1.25 The tangent space TpM to a differentiable manifold M at a
point p is the space of vectors tangent to the curves on M passing through p. �

The notion of a tangent space allows us to define the differential of a dif-
ferentiable map g between two differentiable manifolds M1,M2. Given a point
p ∈ M1, we define a linear map between TpM1 and Tg(p)M2. Consider a curve
γ : (−ε, ε) → M1, such that γ(0) = p and γ̇(0) = v, the given element of TpM1.
The map g defines a curve on M2 through β = g ◦ γ. It is natural to associate
with v ∈ TpM1 the vector w = β̇(0) ∈ Tg(p)M2.
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–« 0 «

g p M

U

p = x(0) = g(0)

x–1 x

dg

dt

(x–1
˚ γ) (t)

0

Fig. 1.22

The construction of the vector w is easy after remarking that, if the curve
γ(t) on M1 possesses the local parametrisation (u1(t), . . . , ul(t)), then the curve
β(t) on M2 has the parametrisation (v1(t), . . . , vm(t)), where vi = fi(u1. . . . , ul),
i = 1, . . . ,m (cf. (1.56)). Hence if the vector v = γ̇(0) is characterised with
respect to the basis

∂

∂u1
, . . . ,

∂

∂ul

by having components (u̇1(0), . . . , u̇l(0)), the vector w = β̇(0) with respect to the
basis

∂

∂v1
, . . . ,

∂

∂vm

has components (v̇1(0), . . . , v̇m(0)), where

v̇i(0) =
l∑

j=1

∂fi
∂uj

(u1(0), . . . , ul(0))u̇j(0).

We can thus give the following definition.

Definition 1.26 Let g : M1 → M2 be a differentiable map between the differ-
entiable manifolds M1,M2 of dimension l,m, respectively. The linear map which
with every v ∈ TpM1, defined by v = γ̇(0), associates w ∈ Tg(p)M2, defined by
w = β̇(0), with β = g ◦ γ, is the differential dgp : TpM1 → Tg(p)M2. �

We showed that the map dgp acts on the components of the vectors in TpM1 as
the row-by-column product with the Jacobian matrix ∂(f1, . . . , fm)/∂(u1, . . . , ul).
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This happens in particular when the map is the change of parametrisation on a
manifold (the Jacobian is in this case a square matrix).

Definition 1.27 Let M1 and M2 be two differentiable manifolds, both of dimen-
sion l. A map g : M1 → M2 is a diffeomorphism if it is differentiable, bijective
and its inverse g−1 is differentiable; g is a local diffeomorphism at p ∈ M1 if
there exist two neighbourhoods, A of p and B of g(p), such that g : A → B is a
diffeomorphism. �

Applying the theorem of local invertibility, it is not difficult to prove the
following.

Theorem 1.8 Let g : M1 → M2 be a differentiable map, and let p ∈ M1 be such
that dgp : TpM1 → Tg(p)M2 is an isomorphism. Then g is a local diffeomorphism.

�

Given a differentiable manifold M of dimension �, the set of its tangent spaces
TpM when p varies inside M has a natural structure as a differentiable manifold.
Indeed, if {(Uα,xα)}α∈A is an atlas for M and we indicate by (u(α)1 , . . . , u

(α)
� ) the

local coordinates of Uα, at every point of Uα the vectors e
(α)
i = ∂/∂u

(α)
i when

i = 1, . . . , � are a basis for the tangent space of M , and every tangent vector
v ∈ TpM can be written as

v =

�∑
i=1

v
(α)
i

∂

∂u
(α)
i

∣∣∣∣∣
p

.

Definition 1.28 We call the tangent bundle of M , denoted by TM , the
differentiable manifold of dimension 2�:

TM =
⋃

p∈M
{p} × TpM (1.59)

with the differentiable structure {(Uα × R�,yα)}α∈A, where yα(u(α),v(α)) =
(xα(u(α)), v(α)), with u(α) ∈ Uα being the vector of local coordinates in Ua

and v(α) is a vector in the tangent space at a point xα(u(α)). The manifold M
is called the base space of the tangent bundle. �

The map π : TM → M which associates with every point (p,v) ∈ TM the
point p itself (at which v is tangent to M : v ∈ TpM) is called the projection
onto the base. Clearly

TpM = π−1(p), (1.60)

and TpM is also called the fibre corresponding to the point p of the tangent bundle.
The notion of a tangent bundle of a manifold is important as it allows one to

extend to manifolds the notions of a vector field and a differential equation.

Definition 1.29 A (tangent) vector field on M is a map X : M → TM which
associates with every point p ∈ M a vector vp ∈ TpM in a differentiable way, i.e.
it is a differentiable map X such that π(X(p)) = p, ∀p ∈ M .
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For a given vector field, the integral curves are the curves γ : (a, b) → M
such that

γ̇(t) = X(γ(t)). (1.61)
�

It is now natural to consider the problem of integrating differential equations
on a manifold.
Recalling equation (1.58), equation (1.61) can be written as a system of first-

order differential equations: namely, if X is given in the form

X(p) =

�∑
i=1

αi(u1, . . . , u�)
∂x
∂ui

,

with p = x(u), then equation (1.61) is simply

u̇i(t) = αi(u1(t), . . . , u�(t)), i = 1, . . . , �.

Example 1.30
Let M be the unit sphere; consider the parametrisation

x = (sin u1 cos u2, sin u1 sin u2, cos u1),

with the tangent vectors

∂x
∂u1

= (cos u1 cos u2, cos u1 sin u2,− sin u1),

∂x
∂u2

= (− sin u1 sin u2, sin u1 cos u2, 0).

A vector field tangent over M takes the form

α1(u1, u2)
∂x
∂u1

+ α2(u1, u2)
∂x
∂u2

.

For example, if α1 = constant, α2 = constant the integral curves are given by
u1(t) = α1t+ u

(0)
1 , u2(t) = α2t+ u

(0)
2 . �

We now extend the fundamental notion of a metric to differentiable manifolds.

Definition 1.30 A Riemannian metric on a differentiable manifold M of dimen-
sion � is a symmetric, positive definite bilinear form ( , )p defined in the tangent
space TpM , which has differentiable dependence on p. A differentiable manifold
with a given Riemannian metric is called a Riemannian manifold. �

Example 1.31
The first fundamental form (1.34) is a Riemannian metric for any regular
surface in R3. �
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Let x : U → M be a local parametrisation in p ∈ M with local coordinates
(u1, . . . , u�). We saw that at every point q ∈ x(U), q = x(u1, . . . , u�), the vectors

ei(q) =
∂

∂ui

∣∣∣∣
q

, i = 1, . . . , �,

are a basis for TqM . If ( , )p is a Riemannian metric on M the functions

gij(u1, . . . , u�) = (ei(q), ej(q))q (1.62)

are differentiable in U for every i, j = 1, . . . , �. Evidently gij = gji and if
(u′
1, . . . , u

′
�) is a new local parametrisation, compatible with the former one,

setting g′
ij = (e′

i(q), e
′
j(q))q we have

g′
ij =

�∑
m,n=1

JmigmnJnj , (1.63)

where Jmi = ∂um/∂u′
i. Hence a Riemannian metric defines a symmetric covariant

tensor of order 2 on the manifold (cf. Appendix 4). In analogy with the case of
surfaces, we write

(ds)2 =

�∑
i,j=1

gij(u1, . . . , u�) dui duj . (1.64)

It is possible to prove that every differentiable manifold can be endowed
with a Riemannian metric. Using this metric, one can define—in analogy with
equation (1.32)—the notion of the length of a curve over M and of the arc length
parameter s.
We can also say that the metric tensor gij(u) defines the scalar product in

TpM and hence the norm of a vector in TpM . In particular, on the curve
(u1(s), . . . , ul(s)) written with respect to the natural parametrisation, the tangent
vector has unit norm.

Example 1.32
The Lobačevskij half-plane is the Riemannian manifold given by {(x1, x2) ∈
R2|x2 > 0} with the usual differentiable structures (H is an open set of R2) and
the metric

(ds)2 =
(dx1)2 + (dx2)2

x22
,

i.e. g11 = g22 = 1/x22, g12 = g21 = 0. A curve γ : (a, b) → H, γ(t) = (x1(t), x2(t))
has length

� =
∫ b

a

1
x2(t)

√
ẋ21(t) + ẋ22(t) dt.
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For example, if γ(t) = (c, t) we have

� =
∫ b

a

dt
t
= log

b

a
.

�

Definition 1.31 Let M and N be two Riemannian manifolds. A diffeomorphism
g : M → N is an isometry if

(v1,v2)p = (dgp(v1),dgp(v2))g(p) (1.65)

for every p ∈ M and v1,v2 ∈ TpM . If N = M , g is called an isometry of M . �

It is not difficult to prove that the isometries of a Riemannian manifold form
a group, denoted Isom(M).

Example 1.33
Let M = R� be endowed with the Euclidean metric. The isometry group of R�

contains translations, rotations and reflections. �

Example 1.34
Consider the sphere S� as immersed in R�+1, with the Riemannian metric induced
by the Euclidean structure of R�+1. It is not difficult to prove that Isom(S�) =
O(�+ 1), the group of (�+ 1)× (�+ 1) orthogonal matrices. �

Example 1.35
Consider the Lobačevskij plane H. Setting z = x1 + ix2 (where i =

√−1) the
mappings

w =
az + b

cz + d
, (1.66)

with a, b, c, d ∈ R, ad− bc = 1, are isometries of H. Indeed,

(ds)2 =
(dx1)2 + (dx2)2

x22
= −4 dz dz

(z − z)2
.

To prove that (1.66) is an isometry, we compute

4
dw dw

(w − w)2
= 4

dw
dz

(
dw
dz

)
dz dz(

az+b
cz+d − az+b

cz+d

)2 . (1.67)

Immediately one can verify that

dw
dz

=
1

(cz + d)2
,

(
dw
dz

)
=

1
(cz + d)2

,

and that

az + b

cz + d
− az + b

cz + d
=

z − z

(cz + d)(cz + d)
.
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Substituting these relations into (1.67) yields

4
dw dw

(w − w)2
= 4

dz dz
(cz + d)2(cz + d)2

(cz + d)2(cz + d)2

(z − z)2
= 4

dz dz
(z − z)2

. �

Among all curves on a Riemannian manifold M we now consider the particular
case of the geodesics.

Definition 1.32 Given a local parametrisation (u1, . . . , u�) of M , and denoting
by s the natural parameter along the curve, a geodesic s → (u1(s), . . . , u�(s)) is a
solution of the system of equations

d2uk
ds2

+

�∑
i,j=1

Γkij
dui
ds

duj
ds

= 0, k = 1, . . . , �, (1.68)

where the Christoffel symbols Γkij are given by

Γkij =
1
2

�∑
n=1

gkn
(
∂gni
∂uj

+
∂gnj
∂ui

− ∂gij
∂un

)
(1.69)

and (gkn) is the matrix inverse to (gij), which defined the metric (1.64). �

We shall consider in Chapter 9 the geometric interpretation of these equations,
which are obviously an extension of equations (1.47), (1.48).

Example 1.36
The Christoffel symbols corresponding to the Riemannian metric of the
Lobačevskij half-plane are

Γ112 = Γ121 = − 1
x2

, Γ211 =
1
x2

, Γ222 = − 1
x2

,

while Γ111 = Γ122 = Γ212 = Γ221 = 0. The geodesic equations are then given by the
system

d2x1
ds2

− 2
x2

dx1
ds

dx2
ds

= 0,

d2x2
ds2

+
1
x2

(
dx1
ds

)2
− 1

x2

(
dx2
ds

)2
= 0.

The first equation can be written as

x22
d
ds

[
1
x22

(
dx1
ds

)]
= 0;

it follows that there exists a constant c ∈ R such that
dx1
ds

= cx22.

If c = 0 it follows that x1 = constant, and hence vertical lines are geodesics.
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Otherwise, substituting

d
ds

= cx22
d
dx1

into the second geodesic equation yields

x2
d2x2
dx21

+
(
dx2
dx1

)2
+ 1 = 0.

The general integral of this equation is given by x2 =
√
R2 − (x1 −A)2, and

hence the geodesics corresponding to the values of c �= 0 are semicircles with the
centre on the x1-axis (i.e. on ∂H). �

Remark 1.17
Geodesics are invariant under any isometry of a Riemannian manifold. Indeed,
thanks to (1.65) the Christoffel symbols (1.69) do not change. More generally,
if g : M → N is an isometry, the geodesics on N are the images, through the
isometry g, of geodesics on M and vice versa (cf. Problem 13.29). �

1.8 Actions of groups and tori

One way of constructing a differentiable manifold M from another manifold M̃
is to consider the quotient of M̃ with respect to an equivalence relation. This
situation occurs frequently in mechanics.

Definition 1.33 A group G acts (to the left) on a differentiable manifold M̃ if
there exists a map ϕ : G× M̃ → M̃ such that:

(a) for every g ∈ G the map ϕg : M̃ → M̃ , ϕg(p) = ϕ(g, p), where p ∈ M̃ , is a
diffeomorphism;

(b) if e denotes the unit element in G, ϕe = identity;
(c) for any choice of g1, g2 ∈ G, ϕg1g2 = ϕg1ϕg2 .

The action of G on M̃ is free if for every p ∈ M̃ the unit element e ∈ G is the
only element of G such that ϕe(p) = p. The action is discontinuous if every point
p ∈ M̃ has a neighbourhood A ⊂ M̃ such that A ∩ ϕg(A) = ∅ for every g ∈ G,
g =/ e. �

The action of a group on a manifold determines an equivalence relation on the
manifold.

Definition 1.34 Two points p1, p2 ∈ M̃ are equivalent (denoted p1 ∼ p2) if and
only if there exists an element g ∈ G such that p2 = ϕg(p1). �

Two points of the manifold are equivalent if they belong to the same orbit
Gp = {ϕg(p)|g ∈ G}. The orbits of the points of M̃ under the action of the group
G are the equivalence classes [p] = Gp = {p′ ∈ M̃ |p′ ∼ p}.
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The quotient space

M̃/G = {[p]|p ∈ M̃}, (1.70)

with respect to the equivalence relation introduced, is a topological space, with
the topology induced by the requirement that the projection

π : M̃ → M̃/G, π(p) = [p] (1.71)

is continuous and open (hence the open subsets of M̃/G are the projections of
the open subsets of M̃).
It is not difficult to prove (cf. Do Carmo 1979) the following.

Theorem 1.9 Let M̃ be a differentiable manifold and let ϕ : G × M̃ → M̃ be
the free discontinuous action of a group G on M̃ . The quotient M = M̃/G is a
differentiable manifold and the projection π : M̃ → M is a local diffeomorphism.

Proof
A local parametrisation of M̃/G is obtained by considering the restrictions of
the local parametrisations x̃ : Ũ → M̃ to open neighbourhoods U ⊂ Rl of
x̃−1(p̃), where p̃ ∈ x̃(Ũ), such that x̃(Ũ) ∩ ϕg(x̃(Ũ)) = ∅ for every g ∈ G,
g =/ e. We can then define the atlas of M̃/G through the charts (U,x), where
x = π ◦ x̃ : U → M̃/G (notice that, by the choice of U , π|x̃(U) is injective). We
leave it as a problem for the reader to verify that these charts define an atlas. �

Example 1.37
The group 2πZ acts on R2 as a group of translations: ϕk(x1, x2) = (x1 +
+2πk, x2). The action is free and discontinuous, and the quotient is diffeomorphic
to the cylinder S1 ×R. �

Example 1.38
The group (2πZ)l (whose elements are the vectors of Rl of the form 2πm,
where m ∈ Zl) acts on Rl as the translation group: ϕ(x) = x + 2πm. It is
easy to verify that the action is free and discontinuous, and that the quotient
Rl/(2πZ)l is a compact and connected differentiable manifold of dimension l
called the l-dimensional torus Tl. Its elements are the equivalence classes [x] of
l-tuples of real numbers x = (x1, . . . , xl) with respect to the equivalence relation
x ∼ y ⇔ x− y ∈ (2πZ)l, and hence if and only if (xj − yj)/2π is an integer for
every j = 1, . . . , l. A geometric representation of Tl is obtained by considering
the cube of side 2π in Rl, identifying opposites sides (Fig. 1.23). �

An alternative way to construct a manifold is to start from two manifolds
M1 and M2 (of dimension l1 and l2, respectively) and consider their Cartesian
product, endowed with the product topology.

Theorem 1.10 The Cartesian product M1 × M2 is a differentiable manifold of
dimension l1 + l2 called the product manifold of M1 and M2.
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Proof
It is immediate to verify that, if {(U (1)

α ,x(1)α )}
α∈A(1) , {(U (2)

α ,x(2)α )}
α∈A(2) are

atlases of M1 and M2, then {(U (1)
α × U

(2)
β ,yαβ)}(α,β)∈A(1)×A(2) is an atlas of

M1 ×M2, where we set

yαβ(u1,u2) = (x(1)α (u1),x
(2)
β (u2))

with u1 ∈ U
(1)
α , u2 ∈ U

(2)
β . Moreover, the projections π1 : M1 × M2 → M1 and

π2 : M1 × M2 → M2, easily defined as (π1(u1,u2) = u1, π2(u1,u2) = u2), are
differentiable maps. �

Example 1.39
The torus Tl is diffeomorphic to the manifold obtained as the product of l circles

Tl � S1 × . . .× S1 (l times). (1.72)

This manifold is also called an l-dimensional torus. Indeed, considering S1×. . .×S1
as the regular submanifold of R2l defined by

S1 × . . .× S1 = {(x1, . . . , x2l) ∈ R2l|x22j−1 + x22j = 1 for all j = 1, . . . , l}, (1.73)

the differentiable map f̃ : Rl → R2l given by

f̃(t1, . . . , tl) = (cos t1, sin t1, cos t2, sin t2, . . . , cos tl, sin tl)

has as image S1×. . .×S1 and satisfies f̃(t+2πm) = f̃(t) for every t = (t1, . . . , tl) ∈
Rl and for every m ∈ Zl. Hence it induces a diffeomorphism f : Tl → S1×. . .×S1,
f([t]) = f̃(t). Note that in general, everyfunction g̃ : Rl → R, 2π-periodic with
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respect to all its arguments, induces a function g : Tl → R, and vice versa (every
function on the torus can be identified with a single 2π-periodic function of Rl).
One can also allow the periods with respect to different arguments t to be

different, as it is easy to show that the torus Tl is diffeomorphic to the quotient of
Rl with respect to the action of the translation group x → x+a·m, where m ∈ Zl

and a is a given vector in Rl whose components ai are all different from zero. �

The torus Tl inherits the Riemannian metric from passing to the quotient of
Rl on (2πZ)l:

(ds)2 = (dx1)2 + · · ·+ (dxl)2. (1.74)

The resulting manifold is called a flat torus. Geodesics on Tl are clearly the
projection of lines on Rl, and hence they take the form

s → (α1s+ β1, . . . , αls+ βl) (mod(2πZ)l), (1.75)

where α21 + · · · + α2l = 1 and s is the natural parameter. It is not difficult to
prove that a geodesic is closed if and only if there exist l rational numbers
m1/n1, . . . ,ml/nl and one real number α such that αi = (mi/ni)α for every i.

Remark 1.18
The flat torus T2 is not isometric to the ‘doughnut’, i.e. to the two-dimensional
torus immersed in R3 (cf. Example 1.9) with the metric defined by the first
fundamental form, although these two manifolds are diffeomorphic. Indeed, the
geodesics on the latter are not obtained by setting u = α1s+β1, v = α2s+β2 in
the parametrisation, because the two-dimensional torus immersed in R3 is a sur-
face of revolution and its geodesics verify Clairaut’s theorem (1.54); it is enough
to note that among all curves obtained by setting u = α1s + β1, v = α2s + β2
are also the parallels (α1 = 0), which are not geodesics. �

1.9 Constrained systems and Lagrangian coordinates

We now start the study of dynamical systems consisting of a finite number of
points, without taking into account that these points might be interacting with
other objects. The background space is the physical space, i.e. R3, where we
suppose that we have fixed a reference frame, and hence an origin O and an
orthonormal basis e1, e2, e3.
If P1, . . . , Pn are the points defining the system, to assign the configuration of

the system in the chosen reference frame means to give the Cartesian coordinates
of all the Pis. If all configurations are possible, the system is free (or uncon-
strained). If however there are limitations imposed on the allowed configurations
(called constraints) the system is said to be constrained.
For example, we can require that some or all of the points of the system

belong to a given curve or surface, which we will always assume to be regular.
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The simplest is the case of a single point P (x1, x2, x3) constrained to be on the
surface

F (x1, x2, x3) = 0 (1.76)

(simple constraint), or on the curve obtained as the intersection of two surfaces

F1(x1, x2, x3) = 0, F2(x1, x2, x3) = 0 (1.77)

(double constraint).
The analysis carried out in the previous sections shows that it is possible in

the case (1.76) to introduce a local parametrisation of the surface, of the form

x1 = x1(q1, q2), x2 = x2(q1, q2), x3 = x3(q1, q2) (1.78)

with the property (cf. (1.26)) that the Jacobian matrix has maximum rank

rank

⎛⎜⎜⎜⎜⎜⎜⎝

∂x1
∂q1

∂x1
∂q2

∂x2
∂q2

∂x2
∂q2

∂x3
∂q1

∂x3
∂q2

⎞⎟⎟⎟⎟⎟⎟⎠ = 2, (1.79)

where (q1, q2) vary in an appropriate open subset of R2. The vectors
∂x/∂q1, ∂x/∂q2 are then linearly independent and form a basis in the tangent
space, while ∇F forms a basis in the normal space (Fig. 1.24). The vectors
∂x/∂q1, ∂x/∂q2 are tangent to the curves obtained by setting q2 = constant and
q1 = constant, respectively, in equations (1.78).
One can use for the curves (1.77) the (local) parametrisation

x1 = x1(q), x2 = x2(q), x3 = x3(q), (1.80)

=F

−x
−q2

−x
−q1

q1 = const.

q2 = const.

Fig. 1.24
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=F1

=F2

F2 = 0

F1 = 0

dx
dq

Fig. 1.25

where dx/dq =/ 0, which is a basis for the tangent space, while the normal space
has basis ∇F1,∇F2 (Fig. 1.25).
The dimension of the tangent space gives the number of degrees of freedom of

the point (2 and 1, respectively). The coordinates (q1, q2) and the coordinate q
in the two cases are called Lagrangian coordinates of the point.
We now consider a system of several points P1, P2, . . . , Pn; we can then impose

constraints of the form f(P1, P2, . . . , Pn) = 0. It appears natural to describe the
system in the space R3n, by establishing a bijective correspondence between the
configurations of the system and the vectors X = ⊕i=1,...,n xi.
Thus imposing m < 3n independent constraints is equivalent to the condition

that the representative vector X belongs to a submanifold V of dimension l =
3n−m (cf. Definition 1.19), and hence that the equations

fj(X) = 0, j = 1, 2, . . . ,m, (1.81)

are satisfied, with the vectors ∇Xf1, . . . ,∇Xfm being linearly independent on V,
or equivalently, with the Jacobian matrix⎛⎜⎜⎜⎝

∂f1
∂X1

∂f1
∂X2

. . .
∂f1
∂X3n

. . . . . .
∂fm
∂X1

∂fm
∂X2

. . .
∂fm
∂X3n

⎞⎟⎟⎟⎠ (1.82)

being of rank m on V. Hence V is a submanifold of R3n of dimension l having
the same regularity as the functions fi; in particular, V is also a differentiable
manifold (Definition 1.21 and Theorem 1.7). The system has l degrees of freedom.
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A local parametrisation allows one to introduce the l Lagrangian coordinates
q1, q2, . . . , ql:

X = X(q1, . . . , ql) (1.83)

and the basis vectors of the tangent space

TXV :
∂X
∂q1

, . . . ,
∂X
∂ql

.

The basis of the normal space is given by ∇Xf1, . . . ,∇Xfm.
The manifold V is also called the configuration manifold. It is endowed in a

natural way with the Riemannian metric defined by the tensor

gij(q1, . . . , ql) =
∂X
∂qi

· ∂X
∂qj

.

Note that the advantage of this setting is that the description of a system of
many constrained points is the same as that of the system of one constrained
point; the only difference is in the dimension of the ambient space. In the next
paragraph we shall study the motion of these systems.

Example 1.40
The system of two points P1, P2 with the rigidity constraint

3∑
i=1

[x(1)i − x
(2)
i ]2 −R2 = 0

has five degrees of freedom and admits, e.g. the parametrisation

x
(1)
1 = ξ1, x

(1)
2 = ξ2, x

(1)
3 = ξ3,

x
(2)
1 = ξ1 +R cos ϕ cos θ,

x
(2)
2 = ξ2 +R sin ϕ cos θ,

x
(2)
3 = ξ3 +R sin θ. �

1.10 Holonomic systems

A further step in the construction of a mathematical model of the mechanics
of discrete systems is to introduce a temporal variable, and correspondingly the
concept of motion with respect to an observer, i.e. to a triple (O, e1, e2, e3) and
a temporal scale.2

We assume that the fundamental notions of the mechanics of a single point are
known, and we stress that when passing from a purely geometrical description
to the more complex notion of kinematics, the concept of constraint needs to

2 We will remain within the scope of the well-known axioms of classic kinematics.



1.10 Geometric and kinematic foundations of Lagrangian mechanics 53

be considerably extended. It is, for example, possible to impose constraints on
the velocity of a point, or on the minimal radius of curvature of a trajectory,
and so on.
The most natural extension of the concept of constraint from geometry to

kinematics consists of imposing the validity of the constraint equations (1.81),
which we considered in the previous section, in a certain time interval; we shall
say that the system is subject to fixed constraints in the given time interval.
More generally, we can consider a system of constraint equations of the form

fj(X, t) = 0, j = 1, . . . ,m < 3n, X ∈ R3n, t ∈ I, (1.84)

where we assume that in the given time interval I, the usual regularity and com-
patibility conditions, as well as the linear independence of the vectors ∇Xfj , are
satisfied. The configuration space can be considered to be a moving differentiable
manifold V(t).
Thus we can make use of the local representation of the manifold V(t) described

by equation (1.84) through a vector q of Lagrangian coordinates

X = X(q, t), q ∈ Rl, l = 3n−m, (1.85)

with the important property that the vectors ∂X/∂qk, k = 1, . . . , l, are linearly
independent for every t in the given interval, and they form a basis of the tangent
space TXV(t), for every fixed t.

Definition 1.35 The constraints (1.84) satisfying the properties described above
are called holonomic3 (the systems subject to such constraints are themselves
called holonomic). If ∂fj/∂t �≡ 0 for some j, the constraints are said to be
moving constraints. The constraints (or systems) that are not holonomic are
called non-holonomic. �

Example 1.41
Consider a system consisting of a single point P moving in space, and impose
the condition that the velocity of the point not be external to a certain given
cone Φ(P ) with vertex in P (if, e.g. Φ is a circular right-angle cone, this is
equivalent to a limitation imposed on the angle between v and the cone axis).
This is typically a non-holonomic constraint, as it is expressed exclusively on
the velocity of the point P and does not affect its position. To understand the
effect of this constraint, imagine moving P from a position P ′ to a position
P ′′ /∈ Φ(P ′). Clearly not all the trajectories are allowed, because the velocity
direction must constantly belong to Φ(P ). If, for example, Φ(P ) varies with P
only by translation, the point can follow a straight line connecting P ′ with a
point P ∗ such that P ′′ ∈ Φ(P ∗) and then follow the segment between P ∗ and P ′′.
A similar situation is found for the problem of parking a car (the condition

for the wheels not to slip and the minimal radius of the turn are typically
non-holonomic constraints). �

3 The etymology of the name (literally, ‘integer law’) refers to the absence of derivatives
in (1.84).
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We shall encounter another example of a non-holonomic constraint in Chapter 6
(Example 6.2).

Remark 1.19
It may happen that constraints imposed on the velocities are in fact holonomic.
The typical case is the case of a plane rigid system (see Chapter 6), bounded
by (or consisting of) a regular curve γ, constrained to roll without sliding on
another given regular curve Γ. This constraint is only apparently a kinematic
constraint (vanishing velocity at the contact point between γ and Γ). Indeed,
choosing a configuration γ0 of γ where P0 represents the contact point with Γ,
the coordinates of all the points of the system in a generic configuration of the
contact point P between γ and Γ are known functions of the length s of the arc
�

P0P on Γ. Hence the system is holonomic with a single degree of freedom and
s can be chosen as the Lagrangian coordinate. �

In the generic case, the basis of the normal space ∇Xfj , j = 1, . . . ,m, and
that of the tangent space ∂X/∂qk, k = 1, . . . , l, at every point X of the manifold
(1.84), depend on time.
An important class of holonomic system consists of the so-called rigid systems;

these are treated in Chapters 6 and 7.

1.11 Phase space

We start by observing that given a particular motion of the system {P1, . . . , Pn},
one has Ẋ = ⊕n

i=1Ṗi, and hence the vector Ẋ ∈ R3n represents the velocities
of the points of the system. Clearly this is the velocity of the representative
vector X.
There are two ways of describing the effects of the constraints (1.84) upon

the vector Ẋ, by projecting it either onto the normal space or onto the tangent
space. Suppose that a motion of the system, compatible with the constraints, is
known. By differentiating with respect to time equations (1.84) we find

Ẋ · ∇Xfj(X, t) +
∂fj
∂t

= 0, j = 1, . . . ,m, (1.86)

which provides information on the projection of Ẋ onto the normal space.
By assigning the motion through equations (1.85), choosing q = q(t) ∈ C1, by

differentiating (1.85) we obtain the representation

Ẋ =

l∑
k=1

∂X
∂qk

q̇k +
∂X
∂t

. (1.87)

Both equation (1.86) and equation (1.87) imply, e.g. that for the case of fixed
constraints, Ẋ belongs to the tangent space.
Equation (1.87) suggests the decomposition

Ẋ = V̂ +V∗, (1.88)
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where

V̂ =

l∑
k=1

∂X
∂qk

q̇k (1.89)

is called the virtual velocity of the representative point X, while the interpreta-
tion of

V∗ =
∂X
∂t

(1.90)

is that of the velocity of the point X∗ ∈ V(t) for constant values of the Lagrangian
coordinates.
Both V̂ and V∗ depend on the Lagrangian coordinate system and are clearly

transformed by a time-dependent transformation of Lagrangian coordinates. It is
interesting, however, to note the following.

Proposition 1.1 The projection of V∗ onto the normal space is independent of
the system of Lagrangian coordinates.

Proof
Let

Q = Q(q, t) (1.91)

be a Lagrangian coordinate transformation, and

q = q(Q, t) (1.92)

its inverse. Defining

X(Q, t) = X[q(Q, t), t] (1.93)

one can compute

∂X
∂t

− ∂X
∂t

=

l∑
k=1

∂X
∂qk

∂qk
∂t

, (1.94)

which yields the result. �

Again, as suggested by equations (1.86), we find that, fixing the Cartesian
coordinate system, the vector Ẋ can be intrinsically decomposed into its tangential
and normal components; the latter is due to the motion of the constraints, and
can be called the drag velocity of the constraints.

Example 1.42
Consider the point P subject to the moving constraint

x1 = R cos(ϕ+ α(t)), x2 = R sin(ϕ+ α(t)), x3 = λϕ,
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where R, λ are positive constants. A computation yields

v̂ =
∂x
∂ϕ

ϕ̇, v∗ =
∂x
∂t

,

v̂ = ϕ̇

⎛⎝−R sin(ϕ+ α)
R cos(ϕ+ α)

λ

⎞⎠ , v∗ =

⎛⎝−Rα̇ sin(ϕ+ α)
Rα̇ cos(ϕ+ α)

0

⎞⎠ .

The projection of v∗ on the space normal to the constraint is characterised by

v∗ · n = 0, v∗ · b = − λRα̇√
R2 + λ2

.

In this reference system the helix spirals around the x3-axis. However, making
the change of coordinates ϕ′ = ϕ+ α(t), one has

x′
1 = R cosϕ′, x′

2 = R sinϕ′, x′
3 = λ(ϕ′ − α(t)).

The new decomposition v = v̂′ + v∗′ of the velocity is given by

v̂′ = ϕ̇′

⎛⎝−R sinϕ′

R cosϕ′

λ

⎞⎠ , v∗′ =

⎛⎝ 0
0

−λα̇

⎞⎠ ,

and now

v∗′ · n = 0, v∗′ · b = − λRα̇√
R2 + λ2

= v∗ · b.

Note that in this example v∗ and v∗′ are orthogonal to each other. �

For a fixed time t consider a point X ∈ V(t). In a chosen system of Lagrangian
coordinates, equation (1.87) describes all the velocities Ẋ compatible with the
constraints, as long as the coefficients q̇k are considered to be variable parameters
in R. Thus the components of the vector q̇ ∈ Rl take on the role of kinetic
coordinates.

Definition 1.36 The space in which the pair (q, q̇) varies is called the phase
space of the system. This space parametrises the vector bundle TV(t) of the
configuration manifold V(t). �

At every time t the pairs (q, q̇) are in bijective correspondence with the pairs
(X, Ẋ) that are compatible with the constraints; we call these pairs the kinematic
states of the system. It is useful to recall that equation (1.87) summarises the
information on the velocity of the single points of the system:

Ṗi =

�∑
k=1

∂Pi

∂qk
q̇k +

∂Pi

∂t
. (1.95)
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1.12 Accelerations of a holonomic system

The results of the previous section yield information about the vector Ẍ for a
holonomic system.
Differentiation of equation (1.86) with respect to time, for a given motion

(assuming the fj are sufficiently regular), yields

Ẍ · ∇Xfj + Ẋ ·HjẊ+ 2
(
∂

∂t
∇Xfj

)
· Ẋ+

∂2fj
∂t2

= 0, j = 1, . . . ,m, (1.96)

where Hj is the Hessian matrix of fj . What is interesting about equations (1.96)
is summarised in the following.

Proposition 1.2 For every time the projection Ẍ onto the normal space is
determined by the pair (X, Ẋ). �

In the case of fixed constraints, equations (1.96) reduce to

Ẍ · ∇Xfj = −Ẋ ·HjẊ. (1.97)

In particular, for a point constrained to a fixed surface, given by the equation
F (x) = 0, we have

ẍ · ∇F = −ẋ ·Hẋ, (1.98)

and if x = x(s) is the natural parametrisation of the trajectory, then also

ẍ =
d2x
ds2

ṡ2 +
dx
ds

s̈ (1.99)

and hence, if N denotes the normal vector to the surface at the point x(s),

ẍ ·N =
dt
ds

·Nṡ2 = knṡ
2, (1.100)

where kn = kn ·N is the normal curvature. Setting N = ∇F/|∇F |, a comparison
between equations (1.100) and (1.98) yields an expression for kn:

|kn| =
∣∣∣∣t ·Ht
|∇F |

∣∣∣∣ . (1.101)

Example 1.43
Given any point on the sphere x21 + x22 + x23 = R2, the normal curvature of a
curve on the sphere at any one of its points is equal to 1/R. �

Reverting to equation (1.99), we note how it indicates that the acceleration of
the point belongs to the osculating plane to the trajectory, on which it has the
decomposition

ẍ = k(s)ṡ2n+ s̈t (1.102)

(n is the principal normal vector, and k(s) is the curvature of the trajectory).
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For a point in the plane constrained to belong to a curve f(x1, x2) = 0, the
same computation yielding equation (1.101) easily yields that the same formula
gives the expression for the curvature, with the only difference that in this case
one can set t = e3 × ∇f/|∇f |, and obtain

k(s) =

∣∣∣∣∣∂2f∂x21

(
∂f

∂x2

)2
− 2

∂2f

∂x1∂x2

∂f

∂x1

∂f

∂x2
+

∂2f

∂x22

(
∂f

∂x1

)2∣∣∣∣∣[(
∂f

∂x1

)2
+
(

∂f

∂x2

)2]3/2 . (1.103)

Example 1.44
For a generic point of the cylinder given by the equation F (x1, x2) = 0, varying
t = cos ϑe3 + sin ϑe3 × ∇F/|∇F | the normal curvature is obtained by using
equation (1.101); this yields |kn| = k sin2 ϑ, where k is the curvature of the
normal section, given by equation (1.103). �

1.13 Problems

1. Compute the length and the natural parametrisation of the following plane
curves:

(a) x1(t) = t, x2(t) = log t;
(b) x1(t) = t, x2(t) = t2;
(c) x1(t) = a(1 + cos t) cos t, x2 = a(1 + cos t) sin t

(hint: change to polar coordinates);
(d) x1(t) = t, x2(t) = et.

2. Compute the velocity of the following plane curve, and sketch its graph:

x1(t) = 2 cos
(
t− π

2

)
, x2(t) = sin

(
2
(
t− π

2

))
.

3. Consider the spiral of Archimedes

x1(t) = rt cos t, x2(t) = rt sin t

and compute the velocity, acceleration, natural parametrisation, unit normal and
tangent vectors, and curvature.

4. Determine the curve described by a point in uniform motion along a line
through the origin, rotating uniformly (answer: spiral of Archimedes).

5. Determine the curve described by a point in motion with velocity propor-
tional to the distance from the origin along a line, through the origin, rotating
uniformly (answer: x1(t) = cekt cos t, x2(t) = cekt sin t, a logarithmic spiral, with
c and k constant).

6. Prove that the curvature k(t) of the plane curve t → (x1(t), x2(t)) is

k(t) =
|ẋ1ẍ2 − ẍ1ẋ2|
(ẋ21 + ẋ22)3/2

.
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7. Find a global parametrisation and compute the curvature of the following
plane curves:

(a) x2 − ax21 = c, with a =/ 0;
(b) x21 − x22 = 1, x1 > 0.

8. Compute the natural parametrisation and the tangent, normal and binor-
mal unit vectors, as well as the curvature and torsion, of the following
curves:

(a) t → (rt cos t, rt sin t, bt);
(b) t → (ret cos t, ret sin t, bt);
(c) t → (t2, 1− t, t3);
(d) t → (cosh t, sinh t, t), where b ∈ R is a given constant.

9. Verify that the curve given by t → (a sin2 t, a sin t cos t, a cos t), where
a ∈ R is a given constant, lies inside a sphere, and that all its normal planes
pass through the origin. Prove that the curve is of order 4.
10. Prove that the curve t → (at + b, ct + d, t2) where a, b, c, d ∈ R are given

constants, c =/ 0, has the same osculating plane in all points. What can you
conclude? Compute the torsion.
11. Prove that the solutions of the vector differential equations (1.17) and (1.21)

with natural initial conditions, for t and dt/ds, have the following properties:
|t| = 1, |dt/ds| = k(s).
Sketch. Setting θ = |t|2, Ξ = |dt/ds|2, from equation (1.17) one obtains the
system

1
2
θ′′ − 1

2
k′

k
θ′ + k2θ − Ξ = 0,

1
2
Ξ′ −k′

k
Ξ+

1
2
k2θ′ = 0

(multiply, respectively, by t and dt/ds). With the natural initial conditions
(i.e. t(0) an arbitrary unit vector, t′(0) orthogonal to t(0) with absolute value
k(0)), this system admits the unique solution θ = 1, Ξ = k2(s). By the same
manipulation one can derive from equation (1.21) exactly the same system.
12. Find the level sets and sketch the graph of f(x1, x2) = x22 − 3x21x2.
13. Given any hypersurface in Rn, S = F−1(0), where F : U → R, U ⊂ Rn is

open, the cylinder C over S is the hypersurface in Rn+1 defined by C = G−1(0),
where G : U ×R → R, G(x1, . . . , xn, xn+1) = F (x1, . . . , xn). Draw the cylinders
on the following hypersurfaces S = F−1(0):

(a) F (x1) = x21 − 1;
(b) F (x1) = x1;
(c) F (x1, x2) = x21 + x22 − 1;
(d) F (x1, x2) = x1 − x22;
(e) F (x1, x2) = x21/4 + x22/9− 1.

Find parametric representations, and verify that these cylinders are regular
surfaces.
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14. Prove that the cylinder over a regular surface (see Problem 13) is a regular
surface.
15. Find the equation of the tangent plane in an arbitrary point of a sphere,

a cylinder, a cone and an ellipsoid.
16. Compute the first fundamental form of an ellipsoid, of a one- and a

two-sheeted hyperboloid, and of the elliptic paraboloid.
17. Determine the curves on the unit sphere which intersect the meridians at a

constant angle α, and compute their length (these curves are called loxodromes).
18. Prove that the area of a geodesic triangle A on the sphere of radius 1 is

given by

A = α+ β + γ − π,

where α, β and γ are the internal angles of the triangle (a geodesic triangle is
a triangle which has as sides geodesic arcs, in this case arcs of maximal circles).
How does the formula change if the sphere has radius r?
19. The sphere of radius 1 and centre (0, 0, 1) can be parametrised, except at

the north pole (0, 0, 2), by a stereographic projection. Find the first fundamental
form of the sphere using this parametrisation. Find the image of the meridians,
parallels, and loxodromes under the stereographic projection.
20. Prove that if a surface contains a line segment, then this segment is a

geodesic curve on the surface.
21. Prove that the curve t → (t cos α, t sin α, t2), where α ∈ R is given, is a

geodesic curve on the circular paraboloid x21 + x22 − x3 = 0.
22. Prove that the plane, cylinder and cone are isometric surfaces.
23. Prove that the geodesics on a surface whose first fundamental form is given

by (ds)2 = v((du)2 + (dv)2), v > 0, are straight lines parallel to the axis v or
else they are parabolas with axes parallel to the axis v.
24. Determine the geodesics on a surface whose first fundamental form is given

by (ds)2 = (du)2 + e2u(dv)2.
25. The unit disc D = {(ξ, η) ∈ R2|ξ2 + η2 < 1} has a metric with constant

curvature equal to −1:

(ds)2 = 4
(dξ)2 + (dη)2

(1− ξ2 − η2)2
(Poincaré disc).

Prove that the geodesics are the diameters and the arcs of circles that intersect
orthogonally the boundary of the disc ∂D = {ξ2 + η2 = 1}.
26. Consider R2 as identified with C. Setting z = x+iy and w = ξ+iη, prove

that the transformation

w = T (z) =
z − i
z + i
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from the Lobačevskij half-plane H to the Poincaré disc D is an isometry.
Determine T−1.
27. Compute the area of the disc centred at the origin and with radius r < 1

in the Poincaré disc. Compute the limit for r → 1−.
28. Prove that the geodesics on the bidimensional torus immersed in R3 (the

‘doughnut’, cf. Example 1.19) are obtained by integrating the relation

dv = C
bdr

r
√
r2 − C2

√
b2 − (r − a)2

,

where C is any integration constant, r = a+ b cos u.
29. Prove that if two Riemannian manifolds M and N are isometric, then the

geodesics of M are the image through the isometry of the geodesics of N (and
vice versa).

1.14 Additional remarks and bibliographical notes

In this chapter we have introduced some elementary notions of differential
geometry, of fundamental importance for the study of analytical mechanics.
The study of local properties of curves and surfaces was the object of intense

research by several mathematicians of the eighteenth century (Clairaut, Euler,
Monge, Serret, Frenet, among the most famous). This was motivated by the
development of the calculus of variations (cf. Chapter 9) and by the mechanics
of a constrained point. Riemannian geometry, the natural development of the
work of these mathematicians, was founded by Gauss and Riemann during the
nineteenth century (it is curious that the notion of a differentiable manifold,
while necessary for the rigorous development of their results, was introduced for
the first time by Hermann Weyl in 1913). These two mathematicians, together
with Lobačevskij, Bolyai and Beltrami, developed ‘non-Euclidean geometry’. An
excellent historical discussion of the beginnings of differential geometry is given
by Paulette Libermann (in Dieudonné 1978, Chapter 9).
Weeks’ book (1985) is an example of ‘high level popularisation’, containing

an intuitive introduction to the concept of a manifold. We recommend it for
its clarity and readability. However, we must warn the reader that this clarity
of exposition may give a misleading impression of simplicity; it is necessary to
read this book carefully, considering the proposed (often humorous) problems, in
order to develop a good geometric intuition and familiarity with the subject. We
recommend in particular the reading of the beautiful section on the Gauss–Bonnet
formula and its consequences.
For a particularly accessible introduction to the concepts developed in the first

six sections, along with a discussion of much additional material (covariant deriv-
ative, Gauss map, second fundamental form, principal and Gaussian curvatures,
etc.) which we could not include in our exposition (cf. Appendix 3 for some of it)
we recommend Thorpe’s textbook (1978). More advanced texts, for the further
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analysis of the notions of a manifold and a Riemannian metric, are Do Carmo
(1979) and Singer and Thorpe (1980). The first two volumes of Dubrovin et al.
(1991a,b) contain a very clear and profound exposition of the basic notions of
differential geometry, nowadays indispensable for the study of theoretical physics
(to which the authors devote a lot of attention in the exposition) and of dynam-
ical systems. The first volume in particular should be accessible to any student
familiar with the concepts introduced in the basic analysis and geometry courses
in the first two years of university studies. The same can be said for the book
of Arnol’d (1978b), which contains in Chapter 5 a very good introduction to
differentiable manifolds and to the study of differential equations on a manifold,
including an introduction to topological methods and to the index theorem.

1.15 Additional solved problems

Problem 1
Consider the family of plane curves ϕ(x1, x2, l) = 0 with ∇xϕ =/ 0 and ∂ϕ/∂l > 0,
l ∈ (a, b). Construct the family of curves intersecting the given curves orthogonally.

Solution
Since ϕ is strictly monotonic as a function of l, the curves belonging to the given
family do not intersect. A field of directions orthogonal to the curves is defined
in the region of the plane containing these curves. The flux lines of this field
(i.e. the orthogonal trajectories) have equation

ẋ = ∇xϕ(x, l) (1.104)

and the condition for intersection x(0) = x0 determines l. Indeed, thanks to the
hypothesis ∂ϕ/∂l > 0, we can write l0 = Λ(x0).
This is in fact the general procedure, but it is interesting to examine a few

explicit cases.

(i) ϕ(x1, x2, l) = f1(x1, l) + f2(x2, l)

with the obvious hypotheses on f1, f2. In this case, equation (1.104) becomes

ẋ1 =
∂f1
∂x1

, ẋ2 =
∂f2
∂x2

and both equations are separately integrable. Setting

Fi(xi, l) =
∫ (

∂fi
∂xi

)−1
dxi, i = 1, 2,

we can find the parametric solution

F1(x1, l0)− F1(x01, l0) = t, F2(x2, l0)− F2(x02, l0) = t,

with l0 determined by (x01, x
0
2). As an example, consider the family of parabolas

ϕ(x1, x2, l) = lx21 − x2 + l = 0,

satisfying the conditions ∇xϕ = (2lx1,−1) =/ 0 and ∂ϕ/∂l = 1 + x21 > 0.
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The equations for the orthogonal trajectories are

ẋ1 = 2lx1, ẋ2 = −1,

to be integrated subject to the conditions xi(0) = x0i , l0 = x02/(1 + x01
2).

One finds x1 = x01e
2l0t, x2 − x02 = −t.

Hence the trajectory, orthogonal to the family of parabolas, and passing through
(x01, x

0
2), can be written in the form of a graph:

x1 = x01 exp

[
2x02

1 + x01
2 (x

0
2 − x2)

]
.

(ii) ϕ(x1, x2, l) = ξ(x1, x2) + l
with ∇xξ �= 0. The parameter l does not appear in the field equations

ẋ = ∇ξ(x), (1.105)

but only in the intersection conditions.

Problem 2
Consider the cone projecting, from the point (0, 0, 1) into the (x, y) plane, the
curve of equation x = f1(σ), y = f2(σ), where σ is the arc length parameter of
the curve.

(i) Write the parametric equations, using the coordinates σ, z.
(ii) Find the first fundamental form.
(iii) In the case that f1(σ) = R cosσ, f2(σ) = R sinσ study the set of geodesics

(for z < 1).

Solution
(i) The parametric equations of the cone are

x = (1− z)f1(σ), y = (1− z)f2(σ), z = z. (1.106)

(ii) In the representation considered, the vectors forming the basis of the tangent
space are

xσ = (1− z)

⎛⎝f ′
1
f ′
2
0

⎞⎠ , xz =

⎛⎝−f1
−f2
1

⎞⎠ .

Hence we have

E =x2σ = (1− z)2, F = xσ · xz = −(1− z)(f1f ′
1 + f2f

′
2),

G =x2z = 1 + f21 + f22 .

Note that we used the fact that f ′
1
2 + f ′

2
2 = 1.
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(iii) If the cone is a right circular cone, f21 +f22 = R2 and then F = 0, G = 1+R2.
In this case it is easy to compute the Christoffel symbols. The only non-zero
ones are

Γ112 = Γ121 = − 1
1− z

, Γ211 =
1− z

1 +R2 .

If the independent variable is the arc length parameter s on the geodesic,
we obtain the equations

σ′′ − 2
1− z

σ′z′ = 0, (1.107)

z′′ +
1− z

1 +R2σ
′2 = 0. (1.108)

The first equation can be written as σ′′/σ′ = 2z′/(1− z) and by integrating
one obtains

σ′ =
c

(1− z)2
, c = constant; (1.109)

hence from equation (1.109) we can derive an equation for z only:

z′′ +
c2

1 +R2

1
(1− z)3

= 0. (1.110)

Multiplying equation (1.110) by z′ and integrating, it is easy to obtain
a first integral. This can also be obtained through a different procedure,
highlighting the geometrical meaning. Compute the unit vector τ tangent to
the geodesic

τ =

⎛⎝(1− z)f ′
1(σ)σ

′(s)− z′(s)f1(σ)
(1− z)f ′

2(σ)σ
′(s)− z′(s)f2(σ)
z′(s)

⎞⎠
and write explicitly that its absolute value is 1:

(1− z)2σ′2 + (1 +R2)z′2 = 1,

and owing to equation (1.109) this yields the first integral of (1.110):

c2

(1− z)2
+ (1 +R2)z′2 = 1. (1.111)

The two terms on the left-hand side of equation (1.111) are the squares,
respectively, of

sinϕ = τ · xσ

1− z
, cosϕ = τ · xz

(1 +R2)1/2
,

where ϕ is the angle between the geodesic and the cone generatrix. By
requiring that the curve passes through the point of coordinates (σ0, z0)



1.15 Geometric and kinematic foundations of Lagrangian mechanics 65

forming an angle ϕ0, one can determine the constant c = (1−z0) sinϕ0. The
sign of c determines the orientation. Equation (1.111) is easily integrated
and yields the solution (with z < 1)

1− z =
[
c2 +

(s− c1)2

1 +R2

]1/2
. (1.112)

The constant c1 is determined by the condition z(s0) = z0. For c = 0
(the condition of tangency to the generatrix) equation (1.109) implies σ =
constant, and hence the geodesic corresponds to the generatrix σ = σ0. As we
know, equation (1.112) implies that the parallels are not geodesics. Clairaut’s
theorem has a clear interpretation. From the relation sinϕ = c/(1 − z) it
follows that once the constant c is fixed, one must have 1− z > |c|. Hence
the only geodesics passing through the vertex are the generating straight
lines. The maximum value of z on a non-linear geodesic is

zmax = −|c|+ 1,

where the geodesic is tangent to a parallel (z′ = 0). Notice that from
equation (1.110) it follows that z′′ < 0 for c =/ 0. This implies that after
attaining the maximum height, z′ decreases. In particular it implies that no
geodesic can be closed. For z → −∞ the geodesic tends to a generatrix. To
find which one, we need to integrate equation (1.109):

σ(s)− σ(s0) =
∫ s

s0

c

c2 + (s′−c1)2
1+R2

ds′. (1.113)

Choosing s0 = 0, σ(s0) = 0, z(s0) = zmax = 1 − c (c > 0), from
equation (1.112) we find that c1 = 0 and equation (1.113) implies

σ(s) =
√
1 +R2arctan

s

c
√
1 +R2

. (1.114)

Hence for s → ±∞, σ → ±π
2

√
1 +R2. The equation

1− z =
(
c2 +

s2

1 +R2

)1/2
(1.115)

together with (1.114) describes the maximum height geodesic zmax = 1− c,
positively oriented (c > 0) with s = 0 at the highest point. The arc between
zmax and z has length s =

√
1 +R2(zmax − z)[2 − (zmax + z)]. We can now

proceed to compute dτ/ds, recalling that f1 = R cos(σ/R), f2 = R sin(σ/R):

dτ
ds

=

⎛⎜⎜⎜⎝
2z′ sin

σ

R
σ′(s)− 1− z

R
cos

σ

R
σ′2 − (1− z) sin

σ

R
σ′′ − z′′R cos

σ

R

−2z′ cos
σ

R
σ′(s)− 1− z

R
sin

σ

R
σ′2 + (1− z) cos

σ

R
σ′′ − z′′R sin

σ

R
z′′

⎞⎟⎟⎟⎠ ,
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whose absolute value gives the curvature. Exploiting equations (1.107)–
(1.110) one finds

dτ
ds

= − c2

1 +R2

1
(1− z)2

⎛⎜⎝
1
R cos σ

R
1
R sin σ

R

1

⎞⎟⎠ .

Hence

k(s) =
c2

R
√
1 +R2

1
(1− z)3

(1.116)

at the point of maximum height k(0) = 1/cR
√
1 +R2. Note that the unit

normal vector

n(s) = − 1√
1 +R2

⎛⎝cos σ
R

sin σ
R

R

⎞⎠ (1.117)

has constant component along the cone axis, as expected. Finally, we have

b = τ × n = − 1√
1 +R2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cR

1− z
cos

σ

R
− √

1 +R2

√
1− c2

(1− z)2
sin

σ

R

cR

1− z
sin

σ

R
+

√
1 +R2

√
1− c2

(1− z)2
cos

σ

R
−c

1− z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(1.118)

Hence, excluding the case of the generating straight lines (c = 0), b is not
constant and the geodesics are not plane curves (hence they are not conic
sections).

Problem 3
In the right circular cone of Problem 2 consider the two elicoidal curves obtained
by setting, respectively,

(a) z = σ/2πR, σ ∈ (0, 2πR),
(b) z = sin(σ/4R), σ ∈ (0, 2πR).

Prove that these curves are not geodesics and compute their length.

Solution
The curves are not geodesics since they pass through the vertex of the cone
(σ = 2πR). Recall that in the representation of the parameters z, σ one has
E = (1 − z)2, F = 0, G = 1 + R2; hence the formula for the length of a curve



1.15 Geometric and kinematic foundations of Lagrangian mechanics 67

expressed as z = z(σ) for σ ∈ (0, 2πR) is

l =
∫ 2πR

0
[(1− z(σ))2 + (1 +R)2z′2(σ)]1/2 dσ.

Thus in the two cases we have

(a) l =
∫ 2πR

0

[(
1− σ

2πR

)2
+

1 +R2

4π2R2

]1/2
dσ = 2πR

∫ 1

0

(
ξ2 +

1 +R2

4π2R2

)1/2
dξ,

(b) l =
∫ 2πR

0

[(
1− sin

σ

4R

)2
+

1 +R2

16R2 cos2
σ

4R

]1/2
dσ.

Setting sin(σ/4R) = x, the latter integral is transformed to

∫ 1

0

(
1− x

1 + x
+

1 +R2

16R2

)1/2
dx,

which can be easily computed.

Problem 4
On a surface of revolution (u cos v, u sin v, f(u)), u = radius, v = angle, find the
curves that intersect the meridians at a constant angle. Under what conditions
are these curves geodesics?

Solution
Let us start by answering the last question. We know that for the natural
parametrisation u = u(s), v = v(s) of a geodesic, Clairaut’s theorem (1.54) holds:
u(s) sinα(s) = c, where α(s) is the angle between the geodesic and the meridian.
Hence α = constant (=/ 0) is equivalent to u = constant, which corresponds to the
case of a cylinder with a circular section, or else α = π/2 which is the exceptional
case of a geodesic parallel. On a cylinder with circular section, the helices are
the only geodesics with the property that we are considering here (with α =/ 0).
We need to include in this class the meridians, corresponding to the case α = 0,
c = 0. Consider now the problem of finding the curves that form a given angle α
with the meridians. We seek such curves in the parametric form u = g(v). The
vector tangent to the curve sought is given by

τ = [g2 + g′2(1 + f ′2)]−1/2

⎛⎝−g sin v + g′ cos v
g cos v + g′ sin v

f ′(g)g′

⎞⎠ .

The vector tangent to the parallel is

τp =

⎛⎝− sin v
cos v
0

⎞⎠ ,
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and hence the condition we need to impose is

sinα = g[g2 + g′2(1 + f ′2)]−1/2, (1.119)

i.e. ∫ g

g0

γ−1
√
1 + f ′2(γ) dγ = (v − v0) cosα. (1.120)

Obviously, for any surface, equation (1.120) includes the parallels (cosα = 0,
u = g(v) = g0, constant).



2 DYNAMICS: GENERAL LAWS AND THE
DYNAMICS OF A POINT PARTICLE

2.1 Revision and comments on the axioms of classical mechanics

The discussion of the phenomenological aspects of classical mechanics is beyond
the scope of this book. We shall restrict ourselves to a summary of the funda-
mental concepts following Mach (1883), without any historical introduction, and
hence overlooking the work of Galileo and Newton, who laid the foundations of
mechanics; for this we refer the reader to Truesdell (1968).
Up to this point we have modelled physical bodies by a finite number of points,

without any reference to their dimensions or internal structure. By physical bodies
we mean bodies that can interact with each other; hence this interaction must be
precisely quantified. To be able to express this quantitatively, we need to select
a class of observers with respect to whom to formulate the laws governing such
an interaction.
To define a suitable class of observers, we start with the simpler case of an

isolated point particle, assuming that any other system that might interact with
the given particle is at infinity.

Definition 2.1 An inertial observer is any observer for whom, at every time
and for any kinematic state, an isolated point particle has zero acceleration. �

The existence of such inertial observers is an axiom.

Axiom I There exists an inertial observer.

To proceed further, we must make use of the basic notions of relative kinemat-
ics, which we assume known; we shall however review them in the context of
the kinematics of rigid bodies, see Chapter 6. Recall that systems whose relative
motion is a uniform translation (preserving the direction of the axes) will meas-
ure the same acceleration; moreover, a translation of the time-scale will similarly
leave the measurement of accelerations unchanged.
Axiom I is equivalent to the assumption that there exists a class of inertial

observers, which can be identified up to translation along the time-scale and/or
because they move relative to each other with a rectilinear, uniform translation.
It is easy to point out the intrinsic weakness of Definition 2.1: the concept of

an isolated point particle is in direct contrast with the possibility of performing
measurements of its acceleration, and these alone can establish if the observer is
indeed inertial. However, we shall accept the existence of inertial observers, and
let us proceed by assuming that one of them measures the accelerations of two
point particles, corresponding to various kinematic states; in addition, we assume
that the two-point system is isolated.
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It is possible to use these measurements to give a quantitative definition of
the concept of interaction.1

Axiom II Consider an isolated system comprising two point particles {P1, P2}
and let a(P1), a(P2) be the magnitudes of their accelerations, measured by an
inertial observer. The quotient m1,2 = a(P2)/a(P1) is independent of the kinematic
state of the system, and of the instant at which the measurement is taken. In
addition, the quotients m1,0 and m2,0 obtained by considering the interaction of
P1 and P2, respectively, with a third point P0 satisfy the relation

m1,2 =
m1,0

m2,0
. (2.1)

The point P0 can then be taken as a reference point particle; in order to obtain
the interaction constant m1,2 between two point particles, it is sufficient to know
the interaction constants of these points with the reference point. This allows us
to define the concept of inertial mass.

Definition 2.2 Associate with the reference point particle the unit mass m0.
The interaction constant m of a point particle P with respect to P0 is assumed to
be the measure of the inertial mass of P with respect to the unit of measure m0. �

From now on we use the notation (P,m) to indicate a point particle and its
mass.
We still need information on the direction of the interaction accelerations. This

is provided by a third axiom.

Axiom III For an inertial observer, the accelerations a(P1),a(P2) considered
in Axiom II are directed as the vector P1 − P2 and have opposite orientation.

In order to be able to study systems of higher complexity, we must make the
following further assumption on the mutual interactions within the system.

Axiom IV The acceleration of a point particle (P,m) due to the interaction
with a system of other point particles is the sum of the accelerations due to the
interaction of (P,m) with each one of the other particles, taken separately.

The reference to acceleration is a way to express the fundamental axioms (and
the definition of mass) so as to be invariant with respect to the class of inertial
observers.
If we now define the force applied to the point particle (P,m) by the equation

ma = F, (2.2)

this quantity will have the same invariance property.

1 In the context of classical mechanics, this interaction is instantaneous, and hence the
propagation time is taken to be zero.
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Equation (2.2) and Axiom III are known jointly as the ‘action and reaction
principle’.
When F is specified as a function of P , of the velocity v and of time, equation

(2.2) is the well-known fundamental equation of the dynamics of a point particle.
This equation can be integrated once initial conditions are prescribed:

P (0) = P0, v(0) = v0. (2.3)

This approach to the dynamics of a point particle must be justified; indeed, this
is evident when one considers the so-called Galilean relativity principle, one of
the most profound intuitions of classical mechanics.

2.2 The Galilean relativity principle and interaction forces

In a celebrated passage of his Dialogue on the two chief world systems (1632),
Galileo states very clearly the principle according to which two observers who are
moving relative to each other in uniform translation will give identical descriptions
of mechanical phenomena.
More precisely, we define a Galilean space to be a space of the form R×R3. The

natural coordinates (t, x1, x2, x3) parametrising this space are called the Galilean
coordinates. The space component is endowed with a Euclidean structure: two
simultaneous events (t, x1, x2, x3) and (t, y1, y2, y3) are separated by a distance√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

The Galilean group is the group of all transformations of the Galilean space
which preserve its structure. Each transformation in this group can be uniquely
written as the composition of:

(1) a rotation in the subspace R3 of the space coordinates:

x = Ay, A ∈ O(3,R)

(where O(3,R) indicates the group of 3× 3 orthogonal matrices);
(2) a translation of the origin:

(t,x) = (t′ + s,y + b), where (s,b) ∈ R×R3;

(3) a linear uniform motion with velocity v:

(t,x) = (t,y + vt).

With this notation, the Galilean relativity principle can be expressed as follows:
The trajectories of an isolated mechanical system are mapped by any Galilean
transformation into trajectories of the same system.
Let us illustrate this basic principle by means of a simple example. Consider

an isolated system of n free point particles {(P1,m1), . . . , (Pn,mn)} and specify
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the following:

(a) a time t0;
(b) 3n Cartesian coordinates to be assigned sequentially to the points in the

system;
(c) n velocity vectors for each one of the points P1, . . . , Pn.

Consider now two inertial observers, and suppose they are given the data
(a)–(c); let us imagine that they use these data to construct a kinematic state,
relative to their respective coordinate axes, and at a time t0 of the respective
time-scales. The Galilean relativity principle states that by integrating the system
of equations

miai = Fi(P1, . . . , Pn,v1, . . . ,vn, t) (2.4)

with initial time t = t0, and prescribing the above conditions, the two observers
will obtain two identical solutions Pi = Pi(t), i = 1, . . . , n.
This means that simply observing mechanical phenomena due only to the

interaction between point particles, the two observers will not be able to detect if:

(α) the respective temporal scales are not synchronised;
(β) their coordinate axes have different orientation;
(γ) they move relative to each other.2

These facts clearly have three consequences for the structure of interaction
forces:

(a) they cannot depend explicitly on time (since (α) implies that such forces are
invariant under a translation of the temporal axis);

(b) they can only depend on the differences Pi − Pj ,vi − vj ;
(c) if all the vectors Pi −Pj ,vi − vj are rotated by the same angle, then all the

vectors Fi will be subject to the same rotation.

It is therefore evident that there cannot exist privileged instants or points or
directions, where privileged means that they can be singled out purely by the
experience of a mechanical phenomenon.
The question then is how to reconcile this necessity with the well-known

equation

ma = F(P,v, t) (2.5)

and in particular, with the existence of force fields F = F(P ). Consider, as an
example, a central field, in which the presence of a centre destroys the spatial
homogeneity, and allows two inertial observers to discover that they are indeed
moving with respect to one another.

2 The inclusion in the relativity principle of electromagnetic phenomena (in particular the
invariance of the speed of light) will yield the special relativity theory of Einstein.
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To answer this question, it is convenient to consider more carefully the
dynamics of a point particle (P,m), subject to the action of other point particles
(Pi,mi), i = 1, . . . , n. The correct way to consider this problem is to integrate
the system of equations ma = F,m1a1 = F1, . . . ,mnan = Fn, taking into account
that the interaction forces F,F1, . . . ,Fn depend on the kinematic state of the
whole system.
However, when we write equation (2.5) we assume a priori the knowledge of

the motion of the point particles (Pi,mi) generating the force F. By doing this
we necessarily introduce an approximation: we neglect the influence of the point
particle (P,m) on the other points of the system.
For example, consider a system consisting of a pair of point particles

(P,m), (O,M), attracting each other with an elastic force with constant k
(Fig. 2.1). In an inertial system, the equation

mP̈ = −k(P −O) (2.6)

is to be considered jointly with

MÖ = −k(O − P ). (2.7)

As a consequence, the centre of mass P0 (defined by the requirement that
m(P −P0)+M(O−P0) = 0) must have zero acceleration. We can hence introduce

S0

SP0

P

P0

O

Fig. 2.1 The reference frame translating with the particle O is not inertial.
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an inertial system SP0 , where P0 has zero velocity. Since

P −O =
(
1 +

m

M

)
(P − P0),

we can write the equation of motion of the point particle (P,m) with respect to
SP0 as

mM

m+M

d2

dt2
(P − P0) = −k(P − P0). (2.8)

We conclude that the centre of elastic attraction of P in SP0 appears to be P0
and the mass m must be replaced by the ‘reduced mass’

mR =
mM

m+M
< m.

However, when M/m � 1 it is justified to identify P0 with O and mR with m.
Notice that to be entirely rigorous, a system SO where O has null velocity and
whose coordinate axes are in uniform linear motion with respect to the above
system SP0 is not inertial, because its points have acceleration Ö =/ 0 with respect
to any inertial system.
To write the equation of motion of P with respect to SO, we compute

(d2/dt2)(P −O) from equations (2.6), (2.7), and we find

mR
d2

dt2
(P −O) = −k(P −O). (2.9)

This is another indication of the fact that the usual equation

m
d2

dt2
(P −O) = −k(P −O)

is meaningful only if mR can be identified with m.
Equation (2.9) can be easily extended to the case of any interaction force

F(P −O, Ṗ − Ȯ); the equation of motion for (P,m), in the reference system used
to write (2.9), is

mRP̈ = F(P, Ṗ ). (2.10)

The identification of mR and m is often justified for two-body systems such
as planet–sun, or electron–proton, and so on.
We can conclude that equation (2.5) is applicable every time that the ratio

between the mass of the point P and the mass of every other point interacting
with P is much smaller than one.
We shall come back to the description that non-inertial observers give of

mechanical phenomena in Chapter 6 (Section 6.6).
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2.3 Work and conservative fields

Let (P,m) be a point particle in motion under the action of a force F(P,v, t).
During its motion, at every time t we can define the power

W (t) = F(P (t),v(t), t) · v(t) (2.11)

and the work

L(t) =
∫ t

t0

W (τ) dτ (2.12)

done by the force F in the time interval (t0, t).
Note that the derivative of the kinetic energy T = 1

2 mv2 along the path of
the motion is given by dT/dt = mv · a = W ; it is therefore easy to compute the
energy integral

T (t)− T (t0) = L(t). (2.13)

In practice, to compute the work L(t) one must know the motion (hence the
complete integral of equation (2.5)). However, when F depends only on P , i.e. if
the point is moving in a positional force field, F(P ), the work can be expressed
as a line integral in the form

Lγ =
∫
γ

F · dP =
∫
γ

3∑
i=1

Fi dxi, (2.14)

where γ is the arc of the trajectory travelled in the time interval (t0, t).
On the other hand, the integral (2.14) can be computed not only along the

trajectory of P , but along any rectifiable path. Hence we can distinguish the
dynamic notion of work, expressed by equation (2.12), from the purely geometrical
one, expressed, for positional force fields, by equation (2.14).
When the structure of the force field is such that the value of the integral

(2.14) is independent of the curve joining the endpoints, one can establish a deep
connection between geometry and dynamics: the energy integral fixes a scalar
field of the kinetic energy.
It is well known that the independence of work on the integration path is a

characteristic property of conservative fields; such fields are of the form

F = ∇U(x), (2.15)

where U(x) is the field potential. Since∫
�
AB

F · dP =
∫
�
AB

dU = U(B)− U(A),
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independent of the arc
�

AB, it follows that

T (x)− T (x0) = U(x)− U(x0). (2.16)

This is the form of the energy integral which defines the function T (x), and that
can be interpreted as the conservation of the total energy

E = T − U = T + V, (2.17)

where V = −U is identified with the potential energy. This is the reason these
fields are called conservative.
Recall that a conservative field is also irrotational:

rotF = 0. (2.18)

Conversely, in every simply connected region where it applies, equation (2.18)
guarantees the existence of a potential.
Recall also that the fact that work is independent of the integration path is

equivalent to the statement that work is zero along any closed path.

Example 2.1
The Biot–Savart field in R3 \ {x1 = x2 = 0}, given by

F (x1, x2, x3) = c
e3 × x

|e3 × x|2 = c
(−x2, x1, 0)
x21 + x22

, (2.19)

where c ∈ R, is irrotational but it is not conservative. �

Example 2.2
The force field in R3 given by

F (x1, x2, x3) = (ax1x2, ax1x2, 0), a =/ 0

is not conservative, despite the fact that the work along any path symmetric
with respect to the x3-axis is zero. �

Example 2.3
The force fields in R3 of the form

F = f(r, θ, ϕ)êr,

where (r, θ, ϕ) are spherical coordinates, are conservative if and only if ∂f/∂θ =
∂f/∂ϕ = 0, and hence if f depends only on r. Such fields are called central force
fields, and will be studied in detail in Chapter 5. �
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2.4 The dynamics of a point constrained by smooth
holonomic constraints

It is useful to consider the problem of the dynamics of a constrained point.
Indeed, this will indicate the way in which to consider the more general problem
of the dynamics of holonomic systems.
Let (P,m) be a point particle subject to a holonomic constraint; suppose a

force F = F(P,v, t), due to the interaction with objects other than the constraint,
is applied to the point. First of all, by integrating the equation ma = F with
initial conditions compatible with the constraint, one obtains in general a motion
which does not satisfy the constraint equations.
Hence it is necessary to modify the equation of motion, adding to the right-

hand side a force term φ(t), expressing the dynamic action of the constraint, and
called the constraint reaction:

mẍ(t) = F (x(t), ẋ(t), t) + φ(t). (2.20)

The force φ(t) is unknown, and it is evidently impossible to determine the two
vectors x(t) and φ(t) only from equation (2.20) and the constraint equations
(which are one or two scalar equations).
It is therefore necessary to find additional information concerning the mechanics

of the constraints. The simplest hypothesis is to assume that the constraint is
smooth, in the following sense.

Definition 2.3 A holonomic constraint acting on a point particle (P,m) is
called smooth (or idealised or frictionless) if the constraint reaction is orthogonal
to the constraint configuration, at every instant and for every kinematic state of
the point on the constraint. �

Hence a simple constraint (Section 1.10)

f(x, t) = 0 (2.21)

is smooth if and only if

φ(t) = λ(t)∇f(x(t), t), (2.22)

whereas for a double constraint

f1(x, t) = 0, f2(x, t) = 0 (2.23)

the analogous condition is

φ(t) = λ1(t)∇f1 + λ2(t)∇f2. (2.24)

Equations (2.22), (2.24) must hold for every t, with x(t) the solution of (2.20).
The coefficients λ(t), λ1(t), λ2(t) are unknown.
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Equation (2.20) is then supplemented by equations (2.21), (2.22) or with (2.23),
(2.24); notice that formally we now have the same number of equations and
unknowns.
From the point of view of energy balance, it is important to note that for a

smooth constraint the only contribution to the power of the constraint reaction
comes from the component of the velocity orthogonal to the constraint, which
must be attributed exclusively to the motion of the constraint itself. We can
therefore state the following.

Proposition 2.1 When a point particle moves along a smooth, fixed constraint,
the work done by the constraint reaction is zero. �

Corollary 2.1 For a point particle in a conservative force field, constrained by
a smooth fixed constraint, the conservation of energy (2.7) holds. �

Example 2.4: a single point particle constrained along a smooth, fixed curve
It is convenient to decompose equation (2.20) with respect to the principal
reference frame (Fig. 2.2):

ms̈ = F(s, ṡ, t) · t(s), ṡ(0) = v0, s(0) = s0, (2.25)

m
ṡ2

R(s)
= F(s, ṡ, t) · n(s) + φ(t) · n(s), (2.26)

0 = F(s, ṡ, t) · b(s) + φ(t) · b(s), (2.27)

where R(s) is the radius of curvature.
The unknowns are the function s = s(t) and the two components φ ·n, φ ·b.

Equation (2.25) is the differential equation governing the motion along the

b

t

n

f

Fig. 2.2 Decomposition of the constraint reaction.
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constraint; after integration of equation (2.25), equations (2.26) and (2.27)
determine φ.
If F is conservative we can write

T (s)− U(s) = E, (2.28)

where U(s) denotes the restriction of the potential to the constraint. Using
equations (2.26), (2.27), this yields φ as a function of s. �

We discuss the equation of motion (2.25) in the next chapter.

Example 2.5: a single point particle constrained on a smooth, fixed surface f(x) = 0
We fix a parametrisation x = x(u, v) of the surface; hence the equations of motion
are obtained by projecting equation (2.20) onto the tangent vectors xu,xv:

E(u, v)ü+ F (u, v)v̈ =
1
m
F(u, v, u̇, v̇, t) · xu − (xuuu̇

2 + 2xuvu̇v̇ + xvv v̇
2) · xu,

(2.29)

F (u, v)ü+G(u, v)v̈ =
1
m
F(u, v, u̇, v̇, t) · xv − (xuuu̇

2 + 2xuvu̇v̇ + xvv v̇
2) · xv.

(2.30)

Equations (2.29) and (2.30) yield a system which must be integrated, after
assigning initial conditions for u, v, u̇, v̇. Once the solutions u(t), v(t) have been
determined, one can compute the constraint reaction φ = λ(t)∇f(x) by writing

−ẋ ·Hẋ =
1
m
F(u, v, u̇, v̇, t) · ∇f +

1
m
λ(t)|∇f |2, (2.31)

where H(x) is the Hessian matrix of f ; this equation is obtained by multiplying
both sides of equation (2.20) by ∇f and using (1.98). �

We end this section by proving an interesting property of the motion of a
point particle on an equipotential surface.

Proposition 2.2 Let (P,m) be a point particle subject to a conservative force
and constrained on an equipotential surface. The possible trajectories of the point
are the geodesics of the surface.

Proof
Consider the generic motion of the point on the constraint; it is enough to prove
that the principal unit vector orthogonal to the trajectory is parallel to ∇U (if
the trajectory is a straight line, the problem is trivial). Suppose this is not the
case; we then have b · ∇U =/ 0, because any vector normal to the surface lies in
the plane (n,b).
However, since φ is parallel to ∇U , equation (2.27) implies that φ+∇U = 0,

which contradicts (2.26) (recall that we are considering ṡ =/ 0, 1/R =/ 0). �
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Proposition 2.3 The same conclusion holds true for the so-called spontaneous
motion on the constraint (F = 0). �

The proof is even easier in this case, as equation (2.27) implies that φ ·b = 0,
and hence that φ is parallel to n. This is equivalent to the orthogonality of n
to the surface constraint.
On the other hand, it is easy to identify equations (2.29), (2.30) with the

geodesic equations (1.25), when F · xu = F · xv = 0 (using that s̈ = 0).

2.5 Constraints with friction

When the hypothesis that the constraint is frictionless is not justifiable, it is
necessary to introduce a criterion to define the tangential component of the
constraint reaction. For this we must distinguish between the static and dynamic
cases. We only consider here fixed constraints.
In case of equilibrium we assume, on the basis of experimental observations,

that the following inequality must hold:

|φθ| ≤ fs|φN |, (2.32)

where φθ and φN represent the tangential and normal components of the reaction,
respectively, and the number fs > 0 is called the static friction coefficient. This
implies that the reaction φ must belong to the so-called static friction cone
(Fig. 2.3).
Note that in the case of a simple constraint, the static friction cone contains

the axis (which corresponds in this instance with the normal to the constraint),
while for a double constraint the axis of the cone is tangent to the constraint and
the static friction cone coincides with the region containing the normal plane.
The static equation, given by

F+ φ = 0, (2.33)

yields the following.

f

f

(a) (b)

Fig. 2.3 Static friction cone: (a) simple constraint; (b) double constraint.
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Proposition 2.4 The equilibrium positions are only those for which F belongs
to the static friction cone. �

We now consider the dynamics. The absolute value of the tangential reaction
is defined by the identity

|φθ| = fd|φN |; (2.34)

its direction is that of the velocity v, with opposite orientation.
The coefficient fd in equation (2.34) is called the coefficient of dynamic friction;

in physical situations, 0 < fd < fs. The condition imposed on φ implies that
φ · v < 0; hence mechanical energy is dissipated by friction. Equation (2.34)
defines a conical surface, the dynamic friction cone, that must contain φ.
We now reconsider the solution of the equations of motion.

Example 2.6: single particle constrained with friction on a fixed curve
The equations of motion are

ms̈ = F(s, ṡ, t) · t(s) + φ(t) · t(s), (2.35)

replacing equation (2.25), while equations (2.26), (2.27) are unchanged. We start
from the two latter ones to determine

|φN | = [(φ · n)2 + (φ · b)2]1/2 (2.36)

as a function of s, ṡ, t. We can use equation (2.34) to obtain φ · t = −|φθ|ṡ/|ṡ|,
a known function of s, ṡ, t. In principle, it is thus possible to integrate equation
(2.35), starting from prescribed initial conditions. Equations (2.26), (2.27) and
(2.36) yield the determination of the unknown φ(t). �

Example 2.7: motion of a single particle constrained with friction on a fixed surface
Consider the projection of equation ma = F + φ onto the vector normal to the
surface; by using equation (1.98) it is possible to determine the expression for φN

as a function of the particle’s position and velocity. Finally, using the conditions
defining the vector φθ we arrive at a well-determined problem for the motion of
the particle on the constraint. �

2.6 Point particle subject to unilateral constraints

We now consider the case of a point particle (P,m) subject to the constraint

f(x) ≤ 0, (2.37)

where f is a function in the usual class.
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As long as the particle is moving inside the region f(x) < 0 the constraint
exerts no force. If for some time interval the motion evolves on the surface
f(x) = 0 then the previous analysis applies.
We still need to consider the case that the particle only comes into contact

with the constraint instantaneously; in this case we need to make a physical
assumption. The contact may happen according to an idealised law of reflection,
i.e. with a simple inversion of the component of the velocity orthogonal to
the constraint (elastic shock); else it may happen with partial (or even total)
absorption of the kinetic energy.
We consider only the case of pure reflection; obviously, this provides the ‘initial’

conditions to integrate the equations of motion until the next contact between
the particle and the constraint.
It is interesting to note how, if the particle moves in a conservative field, it is

possible to incorporate the effect of the constraint in the potential. To this end,
we define the constraint as an improper function: if V (x) is the potential energy of
the field acting on the point, we set V (x) = +∞ in the region f(x) > 0. Since the
particle has a finite energy, which remains constant along the motion, this results
in creating artificially a region in space that is inaccessible to the particle. This
point of view will be useful in other contexts—in statistical mechanics, one often
considers systems of particles confined inside a container with reflecting walls.
It is possible to justify this approach by a limiting argument; for simplicity, we
illustrate this for the case that the constraint is given by

x3 ≤ 0

(since the impact is purely local, we can consider the plane tangent to the
constraint at the point of contact). For every ε > 0 we introduce in the region
0 < x3 < ε a potential energy field Vε(x3), with V ′

ε (x3) > 0 and lim
x3→ε

V (x3) = +∞.

If the point (P,m) enters this region with a velocity whose normal component is
v03 > 0, during the motion inside the region the components v1, v2 of the velocity
remain unchanged, while v3 vanishes when x3 reaches the value x∗

3; this value

x3

x3 = «

x3 = 0

Fig. 2.4 Mollifying the shock on a rigid wall.
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is uniquely defined by Vε(x∗
3) =

1
2m(v03)

2 (we set Vε(0) = 0). Subsequently, v3
changes sign and eventually the point exits the region with a velocity which is
obtained by reflection from the entry velocity. Hence the motion on exit from
the region is symmetric to the motion on entry, see Fig. 2.4. If we let ε tend
to zero, the exit point converges to the entry point and we can deduce that the
effect of an infinity potential barrier is an elastic reflection.

2.7 Additional remarks and bibliographical notes

For the historical discussion of the development of classical mechanics, besides the
cited book of Truesdell, the most important sources are: Galileo Galilei (Dialogo
sui due massimi sistemi del mondo, 1632), Isaac Newton (Principia Mathematica
Philosophiae Naturalis, 1686, 1687), Giuseppe Luigi Lagrange (Mécanique Anali-
tique, 1788), Carl Jacobi (Vorlesungen über Dynamik, 1866), and Henri Poincaré
(Les Méthodes Nouvelles de la Mécanique Céleste, 1892–1899).

2.8 Additional solved problems

Problem 1
A point particle (P,m) is at one end of a perfectly flexible and inextensible string,
of zero mass. The string is turned around a circumference of radius R. At time
t = 0, the free part of the string has length l and the point’s velocity is v0.

(i) Study the trajectory of the particle.
(ii) Assuming that the only force acting on the point is the tension of the string,

study the motion of the particle and compute the tension.
(iii) If the motion is confined to a vertical plane and the particle is subject to

gravity, find the conditions necessary for the string to remain under tension.

Solution

(i) Let ϕ be the angle describing how much the string turns around the cir-
cumference starting from the initial configuration AP0. Then the free part
of the string has length l − Rϕ (Rϕ < l). In the system in which P0 has
coordinates (R, l), the coordinates of the point particle P are (see Fig. 2.5)

x = R cosϕ− (l −Rϕ) sinϕ, y = R sinϕ+ (l −Rϕ) cosϕ,

which give the parametric equations describing the trajectory. Obviously

dx
dϕ

= −(l −Rϕ) cosϕ,
dy
dϕ

= −(l −Rϕ) sinϕ.

Hence the unit tangent vector is given by t = −(cosϕ, sinϕ) and n =
(sinϕ,− cosϕ). The relation between s and ϕ is given by s =

∫ ϕ

0 (l−Rψ) dψ,
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P0

P

t n

y

C

A

xRO

w

Fig. 2.5 The motion of a point attached to a winding string.

and hence the curvature is

k(s) =
∣∣∣∣dtds

∣∣∣∣ = dϕ
ds

=
1

l −Rϕ(s)
,

where ϕ(s) can be found by inverting s = lϕ− 1
2Rϕ

2, or Rϕ = l−√
l2 − 2sR

(the other solution Rϕ = l+
√
l2 − 2sR corresponds to the string unravelling).

(ii) The string’s tension does not do any work because it is orthogonal to the
velocity. It follows that the kinetic energy is constant, and hence ṡ = v0 and
the tension is given by τ = mkv20 = mv20/(l −Rϕ).

(iii) If the point is subject to weight, the motion depends on the initial conditions.
If the y-axis is vertical and we wish to start from a generic configuration,
the equations need to be written in a different way.
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y

x

A

O

C

P0

P0

α0
ϕ

Fig. 2.6 Selecting the initial condition in the presence of gravity.

Let α0 be the angle that OA makes with the x-axis (negative in Fig. 2.6). If ϕ
denotes as before the angle between OC and the x-axis, it is sufficient to replace
l with l + Rα0 in the parametric equations of the trajectory. The conservation
of energy is now expressed by

1
2
ṡ2 + gy =

1
2
v20 + gy0, y0 = R sinα0 + l cosα0.

The maximum value of y, when admissible, is ymax = y(0) = l + Rα0; hence if
gymax <

1
2v

2
0 + gy0 the motion does not change direction. Otherwise, the motion

is oscillatory, as long as the string’s tension remains positive.
The tension can be deduced from

mkṡ2 = mg cosϕ+ τ ⇒ τ = m

[
1

l +Rϕ0 −Rϕ
(v20 + 2gy0 − 2gy(ϕ))− g cosϕ

]
.

If τ vanishes for a certain value of ϕ, from that time on we need to solve
the unconstrained problem, until the point in the new trajectory intersects the
previous constraint.
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Problem 2
A point particle (P,m) is constrained without friction on the regular curve
x = x(s), z = z(s) lying in a vertical plane (z is assumed positive upwards).
The plane rotates around the z-axis with constant angular velocity. Find the
equations of motion of the particle, and possible equilibrium points.

Solution
The equation of motion on the constraint is s̈ = g · t+ω2xe1 · t, where e1 is the
unit vector identifying the x-axis. Note that the centrifugal acceleration appears
in the equation (see Chapter 6; the Coriolis force is orthogonal to the plane of
the curve, and hence it appears as part of the constraint reaction).
We find

s̈ = −gz′(s) + ω2xx′(s).

Multiplying this relation by ṡ and integrating, we obtain

1
2
ṡ2 + gz(s)− ω2

2
x2(s) = E =

1
2
v20 + gz0 − ω2

2
x20,

where v0 is the initial velocity and z0 = z(s0), x0 = x(s0), s0 = s(0).
The behaviour of the particle depends on the function F (s) = − 1

2ω
2x2 + gz.

The most interesting case is found when the curve has a point with horizontal
tangent and principal normal unit vector oriented upwards; we then take this
point as the origin of the axes (also s = 0).
The question is whether the particle can oscillate around this point. The

equation ṡ2 = 2(E−F (s)) implies an oscillatory motion in any interval (s1, s2) � 0
as long as E is such that there exist two simple zeros s1, s2 of F (s1) = F (s2) = E,
and F (s) < E for s ∈ (s1, s2).
Consider the case when z is the graph of the function z = λ|x|n, n > 1.

We can then study F (x) = − 1
2ω

2x2 + λg|x|n. The derivative F ′(x) = x(−ω2 +
sign(x)nλg|x|n−2) vanishes for x = 0 and for

|x| =
(

ω2

nλg

)1/(n−2)
,

where

F (|x|) = −
(

ω2

nλg

)2/(n−2)
ω2

(
1
2

− 1
n

)
.

For n > 2 and 1 < n < 2 we find the following graphs of the function F (Fig. 2.7);
for n > 2 there exist oscillatory motions around x (or −x) if E < 0 and oscillatory
motions around the origin if E > 0 (the curve E = 0 is a separatrix in the phase
plane).
For 1 < n < 2 there exist oscillatory motions around the origin only if

0 < E < F (x) =
(
mλg

ω2

)2/(2−n) 2− n

2n
ω2,
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(n > 2) (1 <n< 2)

Fig. 2.7 Graphs of the potential energy.

otherwise the kinetic energy grows indefinitely while the particle escapes to
infinity (as centrifugal acceleration prevails).
In the limiting case n = 2 there are three possibilities:

λg > ω2/2, oscillatory motion for any value of the energy E;

λg < ω2/2, the particle always escapes to infinity with velocity growing to
infinity;

λg = ω2/2, uniform motion for any initial condition.

Regarding equilibrium, we find the following cases:

n > 2 : x = 0 (unstable), x = ±x (stable);

1 < n < 2 : x = 0 (stable), x = ±x (unstable);

n = 2 : x = 0 (stable for λg > ω2/2, unstable for λg ≤ ω2/2), all points are
equilibrium points if λg = ω2/2.

Equilibrium can be attained at the points where the sum of g and ω2xe1 is
orthogonal to the constraint.

Remark 2.1
An equilibrium configuration is called stable if the system can oscillate around
it. For more details on stability, see Chapter 4. �

Problem 3
Describe the motion of a point particle subject to its own weight and constrained
on a smooth sphere.

Solution
Consider the parametrisation

x1 = R sin θ cosϕ, x2 = R sin θ sinϕ, x3 = R cos θ,
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with tangent vectors

xϕ = R sin θ(− sinϕ, cosϕ, 0),

xθ = R(cos θ cosϕ, cos θ sinϕ,− sin θ).

If we project the acceleration onto the tangent vectors, we find the equations of
motion on the constraint:

sin2 θϕ̈+ 2 sin θ cos θθ̇ϕ̇ = 0,

θ̈ − sin θ cos θϕ̇2 =
g

R
sin θ.

The first admits the first integral

ϕ̇ sin2 θ = c (2.38)

(the vertical component of the angular momentum); using this, we can rewrite
the second in the form

θ̈ − cos θ
sin3 θ

c2 =
g

R
sin θ. (2.39)

Expressing the constraint reaction as λ∇f , with f = 1
2 (x

2+ y2+ z2 −R2) = 0,
and recalling equation (1.98), we find after multiplying ma = mg + λ∇f by ∇f
and dividing by R2 that

−(sin2 θϕ̇2 + θ̇2) = −gx3
R2 +

λ

m
, with x3 = R cos θ. (2.40)

On the left-hand side we have the projection of (1/R)a onto the radius of the
sphere. It is not easy to integrate equation (2.39). We can naturally find its first
integral (multiply by θ̇ and integrate):

1
2

(
θ̇2 +

c2

sin2 θ

)
+

g

R
cos θ =

E

mR2 . (2.41)

In view of (2.38), this is the energy integral 1
2 ẋ

2 + gx3 = E. If we now combine
(2.40) with (2.38) and (2.41) we can determine the scalar field of possible reactions

λ = −2E
R2 + 3

mg

R
cos θ (2.42)

on the sphere. There are two simple cases to examine: ϕ = constant (motion
along the meridians) and θ = constant (motion along the parallels). The motion
with ϕ = ϕ0 implies c = 0 and the equation of motion (2.39) is reduced to the
equation of the pendulum (these are the only trajectories passing through the
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poles). For the motion with θ = θ0 we can deduce the value of c from equation
(2.39): c2 = −(g/R) sin3 θ tan θ, i.e.

ϕ̇2 = − g

R cos θ
.

Since sin θ > 0 necessarily tan θ < 0, and hence the only possible motion is along
the parallels, with θ0 ∈ (π/2, π) (southern hemisphere).
More generally, for c �= 0, the motion is bounded between those values of θ for

which the expression

2E
mR2 − 2g

R
cos θ − c2

sin2 θ

vanishes, values which are guaranteed to exist because the last term diverges at
the poles, and E can be chosen in such a way that θ̇2 ≥ 0.

Problem 4
Study the motion of a point mass on a smooth surface of revolution around the
vertical axis.

Solution
Consider the representation

x1 = r(θ) sin θ cosϕ, x2 = r(θ) sin θ sinϕ, x3 = r(θ) cos θ, r(θ) > 0.

The vectors in the basis of the tangent space are

xϕ = r(θ) sin θ

⎛⎝− sinϕ
cosϕ
0

⎞⎠ , xθ = r′(θ)

⎛⎝sin θ cosϕ
sin θ sinϕ
cos θ

⎞⎠+ r(θ)

⎛⎝cos θ cosϕ
cos θ sinϕ
− sin θ

⎞⎠ ,

and hence x2ϕ = r2 sin2 θ,x2θ = r′2 + r2,xϕ · xθ = 0. In addition,

xϕϕ = −r sin θ

⎛⎝cosϕ
sinϕ
0

⎞⎠ , xϕθ = (r′ sin θ + r cos θ)

⎛⎝− sinϕ
cosϕ
0

⎞⎠ ,

xθθ = (r′′ − r)

⎛⎝sin θ cosϕ
sin θ sinϕ
cos θ

⎞⎠+ 2r′

⎛⎝cos θ cosϕ
cos θ sinϕ
− sinϕ

⎞⎠ ,

which implies

xϕ · xϕϕ = 0, xϕ · xϕθ = r sin θ(r′ sin θ + r cos θ), xϕ · xθθ = 0,

xθ · xϕϕ = −r sin θ(r′ sin θ + r cos θ), xθ · xϕθ = 0,

xθ · xθθ = (r′′ + r)r′.
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In summary, the equations of motion are given by

r2 sin2 θϕ̈+ 2r sin θ(r′ sin θ + r cos θ)θ̇ϕ̇ = 0,

(r′2 + r2)θ̈ − r sin θ(r′ sin θ + r cos θ)ϕ̇2 + (r′′ + r)r′θ̇2 = g(r sin θ − r′ cos θ).

As in the spherical case, the first equation has first integral

r2(θ) sin2 θϕ̇ = c

with the same interpretation; we also find the energy integral

1
2
[r2 sin2 θϕ̇2 + (r′2 + r2)θ̇2] +mgr cos θ = E

which allows us to eliminate ϕ̇:

1
2

[
c2

r2 sin2 θ
+ (r′2 + r2)θ̇2

]
+mgr cos θ = E.

Some of the qualitative remarks valid in the spherical case can be extended to the
present case, but care must be taken as r sin θ does not necessarily tend to zero
(for instance it is constant in the cylindrical case, when it is clearly impossible
to have motion along the parallels).



3 ONE-DIMENSIONAL MOTION

3.1 Introduction

In Section 2.4 of the previous chapter, we mentioned the problem of the motion
of a point particle P of mass m along a fixed smooth curve. We now want to
consider the problem of determining the time dependence s = s(t), and hence of
integrating equation (2.25); this equation has the form

ms̈ = f(s, ṡ, t), (3.1)

to which one has to associate initial conditions s(0) = s0, ṡ(0) = v0. In two special
cases, the problem is easily solvable: when the force depends only on the position
of the particle f = f(s) or only on the velocity of the particle f = f(ṡ).
The first case is the most interesting, and we will consider it in detail in the

following sections. Recall that when the force f(s) is associated with a potential
U(s) it is possible to write down the energy integral (2.28). However, in the case
we are considering, when the trajectory of the point is prescribed, we can still
define a function of s:

U(s) =
∫ s

0
f(z)dz, (3.2)

representing the work done along the corresponding arc of the trajectory and
that yields the first integral

1
2
mṡ2 = E + U(s), (3.3)

where E is determined by the initial conditions. Equation (3.3) determines the
region where motion is possible, through the inequality U(s) ≥ −E. It is integrable
by separation of variables: for every interval where U(s) > −E we can write

dt = ± ds√
2
m [E + U(s)]

. (3.4)

If the force depends only on the velocity of the particle, f = f(ṡ), the equation of
motion is again solvable by separation of variables: since

ms̈ = f(ṡ), (3.5)
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we obtain that, where f =/ 0,

m
dṡ
f(ṡ)

= dt. (3.6)

This yields the implicit form F (ṡ) = t+constant, which in turn yields, by another
integration, the function s(t).
An example is given by motion in a medium dissipating energy by friction,

where f(ṡ)ṡ < 0, f(0) = 0, f ′ < 0. The (slow) motion inside viscous fluids belongs
to this class; in this case, it is usually assumed that f(ṡ) = −bṡ, where b is a
positive constant depending on the viscosity.
We can summarise what we have just discussed in the following.

Theorem 3.1 If in equation (3.1) f is a continuous function depending only
on the variable s, or a Lipschitz function depending only on the variable ṡ, the
initial value problem is solvable by separation of variables, and hence integrating
equation (3.4) or equation (3.6). �

Remark 3.1
It will be evident later that the theory developed here for the case of a con-
strained point particle can be generalised to the motion of holonomic systems
with one degree of freedom (one-dimensional motion). �

3.2 Analysis of motion due to a positional force

We analyse equation (3.4), where there appears the function

Φ(s) =
2
m
[E + U(s)];

we assume that this function is sufficiently regular. The motion takes place in
the intervals defined by the condition Φ(s) ≥ 0.
In the plane (s, ṡ) the equation ṡ2 = Φ(s) determines a family of curves

depending on the parameter E. If there exist isolated roots of the function Φ(s),
they separate branches ṡ =

√
Φ(s) and ṡ = −√Φ(s). Let us consider the case

that the initial conditions s(0) = s0, ṡ(0) = v0 determine the branch ṡ > 0 (i.e.
v0 > 0; the other case is analogous). There exist two possibilities: for s > s0 we
have Φ(s) > 0, or else there exist roots of Φ(s) to the right of s0; let us denote
the first of these roots by s1.
In the first case

t(s) =
∫ s

s0

dσ√
Φ(σ)

(3.7)

is a monotonic function, and hence invertible. If the integral on the right-hand
side diverges when s → +∞, then the function s(t) → ∞ for t → ∞. If, on the
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other hand, the integral is convergent, then

s(t) → +∞ for t → t∞ =
∫ +∞

s0

dσ√
Φ(σ)

.

In the other case, the solution attains the value s1 in a finite time

t1 =
∫ s1

s0

ds√
Φ(s)

,

provided this integral converges; this is the case if s1 is a simple root (i.e.
Φ′(s1) < 0). Otherwise s1 is an asymptotic value for s(t), but for all times,
s(t) < s1.
We must analyse the case that Φ(s0) = 0. If (2/m)f(s0) = Φ′(s0) =/ 0 the sign of

this expression determines the initial value of s̈ and the orientation of the motion,
and the solution is still expressed by a formula similar to (3.7). In this case, the
previous considerations still apply. If, on the other hand, Φ(s0) = Φ′(s0) = 0, and
hence if f(s0) = 0, the particle is in an equilibrium position and s(t) = s0 is the
unique solution of (3.1).

Remark 3.2
The motion can never pass through a point parametrised by a value of s which
is a multiple root of Φ; the motion can only tend to this position asymptotic-
ally, or else remain there indefinitely if this was the initial position. This fact
is a consequence of the uniqueness of the solution of the Cauchy problem for
the equation ṡ =

√
Φ(s) when

√
Φ(s) is a Lipschitz function. Suppose that a

multiple root s1 of Φ could be reached in a finite time t1. This would imply
that for t < t1 the problem ṡ =

√
Φ(s), s(t1) = s1 has a solution that is different

from the constant solution s ≡ s1. If the regions where motion can take place
are bounded, they must lie between two consecutive roots s1 and s2 of Φ. The
analysis of such motion in accessible regions lying between two simple roots of
Φ(s) is not difficult. �

Definition 3.1 A simple root ŝ of Φ is called an inversion point for the
motion. �

Theorem 3.2 The motion between two consecutive inversion points s1 and s2
is periodic with period

T (E) = 2
∫ s2

s1

ds√
Φ(s)

= 2
∫ s2

s1

ds√
2
m [E + U(s)]

. (3.8)

Proof
Without loss of generality we can assume that s1 < s0 < s2. In this interval we
can write

Φ(s) = (s− s1)(s2 − s)ψ(s),
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with ψ(s) > 0 for s ∈ [s1, s2]. Hence

ṡ2 = (s− s1)(s2 − s)ψ(s),

and the sign of the square root is determined by the initial condition. Assume
that the sign is positive; the point particle approaches s2, until it reaches it at
time t1. At this moment, the velocity is zero and the motion starts again with
the orientation of the force acting in s2, given by

dΦ
ds

∣∣∣∣
s=s2

= −(s2 − s1)ψ(s2) < 0.

Thus the orientation of the motion is inverted in s2; hence this is called an
inversion point. For t > t1, P returns to s1 where it arrives at time t2. Again,
the velocity is zero and the motion continues with the orientation of the force
acting in s1:

dΦ
ds

∣∣∣∣
s=s1

= (s2 − s1)ψ(s1) > 0.

This implies that the particle passes again through s0 at time t3 = t0 + T . The
motion is periodic: s(t) = s(t+ T ) for every t, and the period T is given by

T = t1 + (t2 − t1) + (t3 − t2) =
∫ s2

s0

−
∫ s1

s2

+
∫ s0

s1

ds√
Φ(s)

= 2
∫ s2

s1

ds√
Φ(s)

.
�

Remark 3.3
Note that the motion is possible because the Cauchy problem ṡ =

√
Φ(s), with a

simple zero of Φ (for which the function
√
Φ is not Lipschitz) as initial condition,

does not have a unique solution. �

Example 3.1
We compute the period of the oscillations of a heavy point particle (P,m)
constrained to move on a cycloid, and we show that it is independent of the
amplitude.
In the reference frame of Fig. 3.1 the constraint has parametric equations

x = R(ψ + sinψ),

z = R(1− cosψ),
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Fig. 3.1

and the length of the arc between the origin and the point P (ψ) is

s =
√
2R

∫ ψ

0

√
1 + cosϕ dϕ = 4R sin

ψ

2
.

For the oscillations to be possible we must have E+U ≥ 0 and E < 2mgR. It
then follows that |ψ| ≤ ψm, with ψm given by

cosψm = 1− α, α =
E

mgR
∈ (0, 2).

By equation (3.8) the period is

T = 4
∫ ψm

0

ds
dψ

{
2
m
[E −mgR(1− cosψ)]

}−1/2
dψ.

Writing ds/dψ =
√
2R

√
1 + cosψ and setting cosψ = η, we arrive at the

expression

T = 4

√
R

g

∫ 1

1−α

dη√
(1− η)(η − 1 + α)

= 4π

√
R

g
,

showing that the oscillations on the cycloid are isochronous. We shall see
that there are no other symmetric curves with this property (Problem 4 in
Section 3.9). �
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3.3 The simple pendulum

The simple pendulum is a very important model in mechanics. This model has
equation

ϑ̈+
g

l
sinϑ = 0, (3.8)

where ϑ is the angle measuring the deviation of the pendulum from the vertical
direction, g is the acceleration due to gravity and l is the pendulum length.
The phase space of the system is planar, but all angles ϑ are identified modulo

2π; hence we think of the pendulum phase space as the cylinder (ϑ, ϑ̇) ∈ S1×R.
Let E = T − U be the total mechanical energy

E =
1
2
ml2ϑ̇2 −mgl cosϑ. (3.9)

Let e = E/mgl be fixed by the initial conditions. Clearly e ≥ −1, and

ϑ̇2 =
2g
l
(cosϑ+ e). (3.10)

As e varies we can distinguish two kinds of motion, which differ in the topology
of their trajectories in the phase space (Fig. 3.2). The rotations correspond to
values of e > 1 and to trajectories that wind around the cylinder, and hence
that cannot be deformed continuously to a point (they are homotopically non-
trivial).1 If |e| < 1, the motion is oscillatory : the trajectories do not wind around
the cylinder and are homotopically trivial. The position of stable equilibrium
ϑ = 0 of the pendulum corresponds to the value e = −1, while to e = 1 there
correspond both the position of unstable equilibrium ϑ = π, and the trajectory
asymptotic to it (in the past and in the future), of the equation

1
2
l2ϑ̇2 − gl(cosϑ+ 1) = 0, (3.11)

called the separatrix, because it separates oscillatory motions from rotations.
By separating variables in the energy equation (3.10) it is possible to compute

the time dependence and the period of the pendulum. Setting

y = sin
ϑ

2
, (3.12)

and substituting this into equation (3.11) we find, after some easy algebraic
manipulations,

ẏ2 =
g

l
(1− y2)

(
e+ 1
2

− y2
)
. (3.13)

1 A closed curve γ : [0, 1] → M on a manifold is ‘homotopically trivial’ if there exist a
continuous function F : [0, 1] × [0, 1] → M and a point p ∈ M such that ∀s ∈ [0, 1], t → F (s, t)
is a closed curve which for s = 0 coincides with γ, while F (1, t) = p for every t ∈ [0, 1].
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Fig. 3.2 Pendulum trajectories: (a) rotations, (b) separatrix, (c) oscillations.

If the pendulum oscillates, namely for 0 < e < 1, we have (e+ 1)/2 = k2, where
k < 1. Then equation (3.14) can be written

ẏ2 =
gk2

l
(1− y2)

(
1− y2

k2

)
, (3.14)

yielding ∫ y/k

0

dξ√
(1− ξ2)(1− k2ξ2)

=
√

g

l
(t− t0), (3.15)

where we set y(t0) = 0. This equation can be integrated immediately by using
the Jacobi elliptic function (see Appendix 2):

y(t) = k sn
{√

g

l
(t− t0), k

}
. (3.16)

The value of the constant of integration t0 and of k are fixed by the initial
conditions. The motion is periodic, with period

T = 4

√
l

g
K(k), (3.17)

where K is the complete elliptic integral of the first kind. Using the series
expansion of K (see Appendix 2), we find

T = 2π

√
l

g

{
1 +

∞∑
j=1

[
(2j − 1)!!
(2j)!!

]2
k2j

}
, (3.18)

which measures the size of the deviations from isochronism.
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If the pendulum is in rotation, namely for e > 1, after setting

e+ 1
2

=
1
k2

, k < 1,

we find

y(t) = sn
{√

g

l

t− t0
k

, k

}
, (3.19)

and the period of one complete rotation is expressed by

T = 2

√
l

g
kK(k). (3.20)

Finally for e = 1, corresponding to the motion along the separatrix, it is easy
to find that the motion is given by

y(t) = tanh
{√

g

l
(t− t0)

}
. (3.21)

3.4 Phase plane and equilibrium

The equation of motion (3.1) is equivalent to the system of two first-order
equations

ẋ = y,

ẏ =
1
m
f(x, y, t),

(3.22)

where x replaces s. Suppose in addition that f is a regular function of all its
variables.

Definition 3.2 The plane (x, y) ∈ R2 is called the phase plane of equation (3.1);
the terms on the left-hand side of the system (3.23) define a vector field whose
integral curves are the phase curves of the system. The operator gt, associating
with every initial point (x0, y0) the point (x(t), y(t)) on the corresponding phase
curve, is called the flux operator of system (3.23). �

The existence and uniqueness theorem for the solutions of the Cauchy problem
for ordinary differential equations implies that one and only one phase curve
passes through any given point (x, y) in the phase plane.
If the force field is positional, then

ẋ = y,

ẏ =
1
m
f(x),

(3.23)
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the system is autonomous (i.e. the terms on the right-hand side of (3.24) do
not depend explicitly on the time variable t) and the energy is conserved. Along
every phase curve, the energy is constant; hence the phase curves belong to the
energy level, denoted by Me: for every fixed e ∈ R,

Me = {(x, y) ∈ R2|E(x, y) = my2

2
+ V (x) = e}, (3.24)

where V (x) = −U(x) is the potential energy (recall that U is defined by (3.2)).
The level sets can have several connected components, and hence may contain
more than one distinct phase curve. In addition, Me is a regular curve, if
∇E =/ (0, 0), and hence if

(my, V ′(x)) =/ (0, 0). (3.25)

The points where ∇E = (0, 0) are called critical points. Note that at a critical
point one has y = 0 and that every critical point is a stationary point of the
potential energy.

Definition 3.3 A point (x0, 0) is called an equilibrium point of the system
(3.24) if any phase curve passing through it reduces to the point itself, and hence
if x(t) ≡ x0, y(t) ≡ 0 is a solution of (3.24) with initial condition (x0, 0). �

Since an equilibrium point for (3.24) has by definition its y-coordinate equal
to zero, to identify it, it suffices to give x0.
The theorem of the existence and uniqueness of solutions of the Cauchy problem

for ordinary differential equations implies that, when the field is conservative, a
point x0 is an equilibrium point for (3.24) if and only if it is a critical point for
the energy.

Definition 3.4 An equilibrium position x0 is called Lyapunov stable if for every
neighbourhood U ⊂ R2 of (x0, 0) there exists a neighbourhood U ′ such that, for
every initial condition (x(0), y(0)) ∈ U ′, the corresponding solution (x(t), y(t))
is in U for every time t > 0 (Fig. 3.3). Any point that is not stable is called
unstable. �

In other words, the stability condition is the following: for every ε > 0 there
exists δ > 0 such that, for every initial condition (x(0), y(0)) such that |x(0)−x0| <
δ, |y(0)| < δ, we have |x(t)− x0| < ε and |y(t)| < ε for every time t > 0.

Definition 3.5 A point of stable equilibrium x0 is called asymptotically stable
if there exists a neighbourhood U of (x0, 0) such that, for every initial condition
(x(0), y(0)) ∈ U , (x(t), y(t)) → (x0, 0) for t → +∞. The maximal neighbourhood
U with this property is called the basin of attraction of x0. �

If the forces involved are positional, by the theorem of conservation of energy
it is impossible to have asymptotically stable equilibrium positions.

Proposition 3.1 Let x0 be an isolated relative minimum of V (x). Then x0 is
a Lyapunov stable equilibrium point.
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Fig. 3.3

Proof
We saw that the system preserves the energy, E(x, y). We denote by e0 =
E(x0, 0) = V (x0) the value of the energy corresponding to the equilibrium position
we are considering. Clearly x0 is also an isolated relative minimum for the
energy E. Let U be any neighbourhood of (x0, 0) and let δ > 0; consider the
sublevel set of the energy corresponding to e0 + δ, namely

{(x, y)|E(x, y) < e0 + δ}.
The connected component of this set containing the point (x0, 0) defines, for
δ sufficiently small, a neighbourhood of (x0, 0) in the phase plane. This neigh-
bourhood is contained in U and it is invariant under the flow associated with
equations (3.24). �

Remark 3.4
One could propose that the converse be also true, i.e. that if a point is Lyapunov
stable for the system of equations (3.24) then it is a relative minimum for the
potential energy. However this is false in the case that the potential energy is not
an analytic function but it is only of class C∞ (or less regular). In dimensionless
coordinates, a counterexample is given by

V (x) =

⎧⎨⎩e−1/x2
sin

1
x
, if x =/ 0,

0, if x = 0.
(3.26)

In this case x = 0 is a stable equilibrium point, but not a minimum for the
potential energy (see Problem 1 in Section 3.7). �
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Definition 3.6 A level set Me of the energy corresponding to a critical value
e = E(x0, 0) of the energy when (x0, 0) is an unstable equilibrium point, is called
a separatrix. �

A separatrix curve Me consists in general of several distinct phase curves: the
points of equilibrium x1, . . . , xn ∈ Me and the connected components γ1, . . . , γk
of Me\{(x1, 0), . . . , (xn, 0)}; see Fig. 3.2 for the example of the pendulum. From
Remark 3.2 it follows that the motion along each phase curve γi tends asymp-
totically to one of the equilibrium points, an endpoint for the curve under
consideration.

Example 3.2
Consider the case corresponding to the elastic force f(x) = −kx. The only point
of equilibrium is x=0, and the level sets Me of the energy E= 1

2my2 + 1
2kx

2,
with e > 0 are ellipses centred at the origin. This system does not admit any
separatrix. �

Example 3.3
Consider a one-dimensional system subject to a conservative force with the
potential energy V (x) whose graph is shown in Fig. 3.4b.
The corresponding phase curves are shown in Fig. 3.4a. The separatrix curves

are the level sets Me4 and Me3 . �

In a neighbourhood of any equilibrium point it is possible to approximate
equations (3.24) by a system of linear equations. Indeed, if ξ = x− x0 is a new
coordinate measuring the displacement from the equilibrium position, setting
η = y, equations (3.24) can be written as

ξ̇ = η,

η̇ = − 1
m
V ′(x0 + ξ).

(3.27)

Considering the Taylor expansion of the potential energy, this yields

η̇ = − 1
m

(
V ′′(x0)ξ +

1
2
V ′′′(x0)ξ2 + . . .

)
,

where the dots stand for terms of order higher than two in ξ. Note that the term
V ′(x0) is missing; it vanishes because of the hypothesis that x0 is an equilibrium
position. The linear equations are obtained by considering the term V ′′(x0)ξ and
neglecting all others. The linearised motion is then governed by the equation

mξ̈ + V ξ = 0, (3.28)

where V = V ′′(x0). Equation (3.29) describes a harmonic oscillator if V > 0,
so that the equilibrium position of the system is stable. In this case we call
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Fig. 3.4

(3.29) the equation of small oscillations around the stable equilibrium position.

If ω =
√

|V |/m, the solutions of (3.29) are given by

ξ(t) =

⎧⎪⎨⎪⎩
ξ(0) cos(ωt) +

η(0)
ω

sin(ωt), if V > 0,

ξ(0)cosh(ωt) +
η(0)
ω

sinh(ωt), if V < 0.
(3.29)
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The corresponding phase trajectories t �→ (ξ(t), η(t)) are ellipses and branches
of hyperbolas, respectively. In the latter case, equation (3.29) is only valid in a
sufficiently small time interval.
If V > 0 it is easy to verify that the periods of the solutions of (3.24)—

with initial conditions (x(0), y(0)) close to (x0, 0)—tend to T = 2π/ω when
(x(0), y(0)) → (x0, 0).
In the case that V > 0 it is possible to study the behaviour of the period

T (E) near E = 0 (see Problem 4, Section 3.9).

Example 3.4
Consider the motion of a point particle with mass m under the action of gravity,
and constrained to move along a prescribed curve in a vertical plane. If the
natural parametrisation of the curve is given by s → (x(s), y(s)) the energy of
the point is

E(s, ṡ) =
1
2
mṡ2 +mgy(s), (3.30)

where g denotes the acceleration due to gravity. The equilibrium positions cor-
respond to the critical points y′(s) = 0, and a position s of relative minimum of
y with y′′(s) > 0, is Lyapunov stable. Denoting by σ = s− s the distance along
the curve of the equilibrium position, the energy corresponding to the linearised
equation can be written as

E(σ, σ̇) =
1
2
(mσ̇2 +mgy′′(s)σ2). (3.31)

This implies the equation of motion

σ̈ + [gy′′(s)]σ = 0, (3.32)

corresponding to a harmonic oscillator of frequency ω2 = gy′′(s). Note that the
curvature at the equilibrium position is k(s) = y′′(s), and hence that

k(s) =
ω2

g
. (3.33)

Namely, the frequency of the harmonic oscillations around the equilibrium position
is proportional to the square root of the curvature. �

3.5 Damped oscillations, forced oscillations. Resonance

Consider the one-dimensional motion of a point particle with mass m under the
action of an elastic force and of a linear dissipative force: F (x, ẋ) = −kx − αẋ,
where α and k are two positive constants. In this case the energy

E(x, ẋ) =
m

2
ẋ2 +

k

2
x2
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is strictly decreasing in time, unless the point is not in motion; indeed, from
the equation of motion it follows that dE/dt = −αẋ2, and consequently the
point of equilibrium (0,0) in the phase plane is asymptotically stable. Its basin
of attraction is the whole of R2.
Setting ω2 = k/m, β = α/2m, the equation of motion can be written as

ẍ+ 2βẋ+ ω2x = 0. (3.34)

To find the solutions of equation (3.35), substitute x(t) = eλt into (3.35); λ must
be a root of the characteristic polynomial

λ2 + 2βλ+ ω2 = 0. (3.35)

If ∆ = β2 − ω2 =/ 0, the two roots are λ± = −β ± √
∆ and the solutions are

x(t) = A1e−(β+
√

β2−ω2)t +A2e−(β−
√

β2−ω2)t, (3.36)

where A1 and A2 are determined by the initial conditions x(0) = x0, ẋ(0) = v0.
It is immediate to verify that if β > ω the motion has at most one inversion

point and x(t) → 0 for t → ∞ (Fig. 3.5a). If ω > β, λ± = −β ± i
√
ω2 − β2 and

equation (3.37) can be rewritten as

x(t) = Be−βt cos(
√
ω2 − β2t+ C), (3.37)

where the constants B,C depend on A1, A2 and the initial conditions through
the relations

x0 = B cosC = A1 +A2,

v0 = −βB cosC −
√
ω2 − β2B sinC (3.38)

= −(β + i
√
ω2 − β2)A1 − (β − i

√
ω2 − β2)A2.

Once again x(t) → 0 for t → ∞, but the function x(t)eβt is now periodic, of
period 2π/

√
ω2 − β2 (Fig. 3.5b).

Finally, if ∆ = 0 the solution is critically damped:

x(t) = e−βt(A1 +A2t). (3.39)

If in addition to the elastic and dissipative forces the point particle is under
the action of an external periodic force F (t) = F (t+ T ), the equation of motion
becomes

ẍ+ 2βẋ+ ω2x =
F (t)
m

. (3.40)

Suppose that F (t) = F0 cos(Ω t + γ), where Ω = 2π/T . The general solution of
the non-homogeneous linear equation (3.41) is given by the sum of the general
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solution of equation (3.35) and of one particular solution of equation (3.41). To
determine the latter, observe that (3.41) is the real part of

z̈ + 2βż + ω2z =
F0
m
ei(Ω t+γ). (3.41)

This equation admits the particular solution zp(t) = beiΩ t, where b ∈ C can be
determined by requiring that zp(t) solves equation (3.42):

b =
F0
m
eiγ(ω2 − Ω2+2iβ Ω)−1. (3.42)
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Setting b = BeiC , with B and C real, we find the particular solution xp(t) =
zp(t):

xp(t) = B cos(Ω t+ C), (3.43)

where

B =
F0
m

1√
(ω2 − Ω2)2 + 4β2 Ω2

,

C = γ + arctan
2β Ω
Ω2−ω2

.

(3.44)

We showed that the general solution of equation (3.35) is damped; hence, if the
time t is sufficiently large, relative to the damping constant 1/β, the solution
x(t) of (3.41) is approximately equal to xp(t). This is a periodic function of time,
with period equal to the period of the forcing term, and amplitude B. The latter
depends on the frequency Ω (Fig. 3.6). When ω2 > 2β2, for

Ω = ωR =
√
ω2 − 2β2, (3.45)

the so-called resonance frequency, B, takes the maximum value

Bmax =
F

m

1

2β
√
ω2 − β2

;

otherwise, B(Ω) is decreasing. Note that in the case of weak dissipation, namely
if β � ω, we obtain ωR = ω + O((β/ω)2), and B(ωR) → +∞ for β → 0.

B

b = 0

b1
b2

b3

Vv

0 < b1 < b2 < √2v < b3

Fig. 3.6
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In the general case, the function F (t) can be expanded in Fourier series (see
Appendix 7):

F (t) =
∞∑
n=0

F̂n cos(nΩ t+ γn). (3.46)

From the linearity of equation (3.41) it follows that the corresponding particular
solution xp(t) is also given by the Fourier series

xp(t) =
∞∑
n=0

Bn cos(nΩ t+ Cn), (3.47)

where Bn and Cn can be found by replacing γ by γn and Ω by Ωn in
equation (3.45).

3.6 Beats

A particular phenomenon known as beats is due to the superposition of harmonic
oscillations of frequencies that while different, are close together. More precisely,
if ω1, ω2 are such frequencies (ω1 > ω2), then (ω1 − ω2)/ω1 � 1. This can happen
in various circumstances, but the most important cases occur in acoustics: it
can easily be heard by playing the same note on two different instruments, not
perfectly tuned to the same pitch. Mathematically, it reduces to the study of
sums of the following kind:

x(t) = A1 cos(ω1t+ α1) +A2 cos(ω2t+ α2), (3.48)

where we can assume A1 = A2 = A, and isolating the excessive amplitude in one
of the two vibrations, which henceforth does not contribute to the occurrence of
this particular phenomenon. Under this assumption, equation (3.49) is equivalent
to

x(t) = 2A cos(ωt+ α) cos(εt+ β), (3.49)

where

ω =
ω1 + ω2

2
, ε =

ω1 − ω2
2

, α =
α1 + α2

2
, β =

α1 − α2
2

.

The term cos(ωt+ α) produces an oscillation with a frequency very close to the
frequencies of the single component motions. The amplitude of this oscillation
is modulated in a periodic motion by the factor cos(εt + β), whose frequency
is much smaller than the previous one. To be able to physically perceive the
phenomenon of beats, the base and modulating frequency must be very different.
In this case, in a time interval τ much larger than the period 2π/ε there can be
found many oscillations of pulse ω and nearly-constant amplitude; one has the
impression of a sound of frequency ω with amplitude slowly varying in time.
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3.7 Problems

0. Draw the graph of the function T (e) showing the period of the pendulum
when e = E/mgl varies in [−1,+∞].

1. Prove that x = 0 is a point of stable equilibrium for the potential (3.27).

Solution
Write the energy (in dimensionless coordinates) in the form

E =
1
2
y2 + V (x).

Clearly V (x) ≤ E. We now distinguish between the cases where E > 0 or E ≤ 0
(Fig. 3.7).
If E > 0, we can define xE > 0 such that, if x(0) is initially in the interval
(−xE , xE), then x(t) must remain in the same interval. Since in the same interval
we must have V (x) > −E, it follows that |y| < 2

√
E. Hence the trajectory is

confined inside a rectangle; this rectangle is interior to any neighbourhood of the
origin if E is chosen sufficiently small.

V (x)

E > 0

xE

x�E

x

x �E

E < 0

e–1/x2

Fig. 3.7
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If E ≤ 0, we can choose x(0) between two consecutive roots x′
E , x

′′
E of

the equation V (x) = E. Once again x(0) ∈ (x′
E , x

′′
E) ⇒ x(t) ∈ (x′

E , x
′′
E),

and the interval (x′
E , x

′′
E) can be chosen as near to the origin as desired by

appropriately selecting |E|. In this interval we have V (x) > −e−1/x2
M , where

xM = max(|x′
E |, |x′′

E |). It follows that 1
2y

2 < E + e−1/x2
M and therefore the

trajectory can be confined in an arbitrarily small neighbourhood.
2. A point in a horizontal plane is constrained without friction to the curve

y = a cos (2π(x/λ)), with a, λ positive constants. The point is attracted to the
origin by an elastic force. Discuss the dependence of the equilibrium of the point
on the parameters a, λ.

3. Study the motion of a point particle subject to gravity on a cylindrical
smooth helix in the following cases:

(a) the helix has a vertical axis;
(b) the helix has a horizontal axis. Find also the constraint reaction.

4. For a point constrained on a helix as in the previous problem, substitute
the gravity force with an elastic force with centre on the axis of the helix. Study
the equilibrium of the system.

5. Study the motion of a point particle constrained on a conic section, subject
to an attractive elastic force with centre in a focus of the curve.

6. A cylinder of radius R and height h contains a gas subject to the fol-
lowing law: pressure × volume = constant. An airtight disc slides without
friction inside the cylinder. The system is in equilibrium when the disc is
in the middle position. Study the motion of the disc if its initial position
at time t = 0 is not the equilibrium position, and the initial velocity is
zero.

7. A point particle is constrained to move along a line with friction propor-
tional to vp ( v = absolute value of the velocity, p > 0 real). Suppose that no
other force acts on the point. Find for which values of p the point comes to a
stop in finite time, and what is the stopping time as a function of the initial
velocity.

8. A point particle of unit mass is constrained to move along the x-axis,
under the action of a conservative force field, with potential

V (x) =
x2

2
+

x3

3
.

Determine the equilibrium positions and discuss their stability. Find the
equation of the separatrix in the phase plane and draw the phase curves corres-
ponding to the energy values 0, 1

8 ,
1
6 ,

1
5 ,

1
2 . Compute to first order the variation

of the frequency of the motion as a function of amplitude for orbits close to the
position of stable equilibrium.
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9. A point particle of mass m is moving along the x-axis under the action of
a conservative force field with potential

V (x) = V0

(x
d

)2n
,

where V0 and d are positive real constants, and n is an integer, n ≥ 1. Prove that
the period of the motion, corresponding to a fixed value E > 0 of the system
energy, is

T = 2d

√
2m
E

(
E

V0

)1/2n ∫ 1

0

dy√
1− y2n

.

10. A point particle of mass m is moving along the x-axis under the action
of a conservative force field with potential V (x) = V0 tan2 (x/d), where V0 and d
are positive real constants. Prove that the period T of the motions corresponding
to a fixed value E > 0 of the system energy is

T =
2πmd√

2m(E + V0)
.

11. A point particle of unit mass is moving along the x-axis under the action
of a conservative force with potential

V (x) =

⎧⎪⎨⎪⎩
(x+ 1)2, if x ≤ −1,
0, if −1 < x < 1,
(x− 1)2, if x ≥ 1.

Draw the phase curves corresponding to the values E = 0, 12 , 1. Prove that the
period T of the motion corresponding to a fixed value E > 0 of the system
energy is

T = 2π

(
1√
2
+

1
π

√
2
E

)
.

12. A point particle of unit mass is moving along the x-axis under the action
of a conservative force field with potential V (x) periodic of period 2π in x and
such that

V (x) =
V0
π

|x| if x ∈ [−π, π],

where V0 is a fixed constant. Draw the phase curves of the system corresponding
to the values E = V0/2, V0, 2V0 of the energy. (Be careful! The potential energy
is a function which is continuous but not of class C1, therefore . . .) Compute
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the period of the motion as a function of the energy corresponding to oscillatory
motions.
13. A point particle of mass m is moving along the x-axis under the action of

a conservative force field with potential

V (x) = − V0

cosh2(x/d)
,

where V0 and d are positive real constants. Determine the equilibrium position,
discuss its stability and linearise the equation of motion around it. Draw the
phase curves of the system corresponding to the energy values E = −V0,−V0/2,
0, V0. Compute the explicit value of T for E = −V0/2.
14. A point particle of mass m is moving along the x-axis under the action

of a conservative force field with potential V (x) = V0(e−2x/d − 2e−x/d), where V0
and d are two real positive constants. Prove that the motion is bounded only
for the values of E in the interval [−V0, 0), and that in this case the period T
is given by

T = 2πd
√

m

−2E .

15. A point particle of unit mass is moving along the x-axis under the action
of a conservative force field with potential

V (x) =

⎧⎪⎨⎪⎩
(x+ 1)2, for x < − 1

2 ,

−x2 + 1
2 , for |x| ≤ 1

2 ,

(x− 1)2, for x > 1
2 .

Write the equation of the separatrix, draw the phase curves corresponding to
values of E = 0, 15 ,

1
4 ,

1
2 , 1,

3
2 (hint: the potential energy is of class C1 but not

C2, therefore . . .) and compute the period T of the motion as a function of the
energy.
16. A point particle of unit mass is moving along the x-axis according to the

following equation of motion:

ẍ = −Ω2(t)x,

where

Ω(t) =

{
ω + ε, if 0 < t < π,

ω − ε, if π ≤ t < 2π,
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Here ω > 0 is a fixed constant, 0 < ε � ω and Ω(t) = Ω(t + 2π) for every t.
Prove that, if (xn, ẋn) denotes the position and the velocity of the particle at
time t = 2πn, then (

xn
ẋn

)
= An

(
x0
ẋ0

)
,

where A = A+A− is a 2× 2 real matrix and

A± =

⎛⎝ cos(ω ± ε)
1

ω ± ε
sin(ω ± ε)

−(ω ± ε) sin(ω ± ε) cos(ω ± ε)

⎞⎠ .

Prove that if ω and ε satisfy the inequality

|ω − k| < ε2

k2
+ O(ε2),

or ∣∣∣∣ω − k − 1
2

∣∣∣∣ < ε

π
(
k + 1

2

) + O(ε),

where k is any integer, k ≥ 1; it follows that |TrA| > 2. Deduce that the
matrix A has two real distinct eigenvalues λ1 = 1/λ2 and prove that in this case
the equilibrium position x0 = ẋ0 = 0 is unstable. This instability phenomenon,
due to a periodic variation in the frequency of a harmonic motion synchronised
with the period of the motion, is called parametric resonance. See the books by
Arnol’d (1978a, §25) and Landau and Lifschitz (1976, §27) for a more detailed
discussion and applications (such as the swing).

3.8 Additional remarks and bibliographical notes

Whittaker’s book (1936, Chapter IV) contains a good discussion of the simple
pendulum. More specifically, one can find there the derivation of the double
periodicity of the elliptic functions, using the following general result (§34):

in a mechanical system subject only to fixed holonomic constraints and positional
forces, the solutions of the equations of motion are still real if the time t is replaced
by

√−1t and the initial velocities (v1, . . . , vn) are replaced by (−
√−1v1, . . . , −

√−1vn).
The expressions obtained represent the motion of the same system, with the same
initial conditions, but with forces acting in the opposite orientation.

Struik (1988, Chapter 1) gives a very detailed description of curves, which one
can use as a starting-point for a deeper understanding of the topics considered
in this chapter.
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3.9 Additional solved problems

Problem 1
A point particle of unit mass is moving along a line under the action of a
conservative force field with potential energy

V (x) =
x4

α+ λx2
,

where α, λ are two given real parameters, not both zero (all variables are
dimensionless).

(a) Determine for which values of α and of λ the origin x = 0 is a position of
stable equilibrium. Linearise the equations around this point and determine
the frequency of small oscillations.

(b) Consider the motion, with initial conditions x(0) = 0, ẋ(0) = 1. For which
values of α and λ is the motion periodic? For which values of α, λ does the
particle go to infinity in finite time?

(c) Determine all the periodic motions and the integral of the period.
(d) Draw the phase portrait of the system in the case α > 0, λ < 0.

Solution
(a) It is immediate to verify that V ′(0) = 0, for every choice of α and λ. In

addition, if α = 0 (λ = 0, respectively) the origin is stable if and only if
λ > 0 (α > 0, respectively); in this case, it is also an absolute minimum
of the potential energy. If αλ =/ 0 we need to distinguish the case αλ > 0,
when the potential energy V is defined on the entire line R, and the case
αλ < 0 when the two lines x = ±√−α/λ are vertical asymptotes of V .
In both cases, x = 0 is stable if and only if α > 0. Notice, however, that
V (x) = x4/α+ O(x6) if α =/ 0 and V (x) = x2/λ if α = 0. This implies that,
if α =/ 0, the linearised equation is simply ẍ = 0 (the system is not linearly
stable), while if α = 0 one has ẍ + (2/λ)x = 0 and the frequency of small
oscillations is

√
2/λ.

(b) To ensure that the motion corresponding to the initial condition x(0) =
0, ẋ(0) = 1, is periodic it is necessary for it to take place between two
inversion points x+ = −x− > 0, that are solutions of V (x±) = E = 1

2 . This
is possible in the following cases: α > 0 for any λ; α = 0 and λ > 0;α < 0,
λ > 0 and |α| < 1

8λ
2.

To ensure that the motion corresponding to the initial condition x(0) =
0, ẋ(0) = 1 reaches infinity in finite time, T∞, we must have λ = 0, α < 0;
indeed, in this case we obtain the integral

T∞ =
∫ +∞

0

dx√
1− 2x4/α

< +∞.
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(c) For arbitrary initial conditions, the motions are periodic of period T in the
following cases.

• For α = 0, λ > 0
In this case the period does not depend on the initial conditions (x(0), ẋ(0))
and is given by T = 2π

√
λ/2.

In all other cases, setting E = 1
2 ẋ(0)

2 + V (x(0)), we have the following
situations.

• For λ = 0, α > 0
All motions are periodic, E ≥ 0, x+ = (αE)1/4 = −x−,

T = 4
∫ (αE)1/4

0

dx√
2[E − x4

α ]
.

• For λ > 0, α > 0
All motions are periodic, E ≥ 0,

x+ =

[
λE

2

(
1 +

√
1 +

4α
λ2E

)]1/2
= −x−, T = 4

∫ x+

0

dx√
2[E − x4

α+λx2 ]
.

• For λ > 0, α < 0
Only motions corresponding to E ≥ −4α/λ2 > 0 are periodic, and take
place in the interval (−x−,−x+), or (x−, x+), where x− and x+ are the
positive roots of V (x±) = E:

x+ =

[
λE

2

(
1 +

√
1 +

4α
λ2E

)]1/2
, x− =

[
λE

2

(
1−

√
1 +

4α
λ2E

)]1/2
,

the period is given by

T = 2
∫ x+

x−

dx√
2[E − x4

α+λx2 ]
.

• Finally, for λ < 0, α > 0
Only motions corresponding to E > 0 and the initial condition x(0) ∈(
−√−α/λ,

√−α/λ
)
are periodic. The inversion points are

x+ =

[
−λE

2

(√
1 +

4α
λ2E

− 1

)]1/2
= −x−

and the period is given by

T = 4
∫ x+

0

dx√
2[E − x4

α+λx2 ]
.

(d) The phase portrait in the case α > 0, λ < 0 is shown in Fig. 3.8.
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Problem 2
A point particle of unit mass is moving along a straight line under the action
of a field created by two repulsive forces, inversely proportional by the same
constant µ to the square of the distance from the respective centre of force.
These centres of force are at a distance 2c from each other. Draw the phase
portrait and compute the period of the oscillations of bounded motions.

Solution
The potential energy is V (x) = µ(|x+c|−1+|x−c|−1) (where the origin x = 0 is the
middle point between the two centres of force). There are two vertical asymptotes
of V (x) at x = −c and x = +c and a relative minimum at x = 0 : V (0) = 2µ/c.
The phase portrait is shown in Fig. 3.9. The periodic motions are the motions
with x(0) ∈ (−c, c), E ≥ 2µ/c. The points of inversion of the motion, x±, are the
roots of µ/|x± + c| + µ/|x± − c| = E. Clearly −c < x− = −x+ ≤ 0 ≤ x+ < c.
Setting k = x+/c, one readily finds that k =

√
1− (2µ/cE). Hence the period is

given by

T = 4
∫ kc

0

dx√
2[E − V (x)]

=
4

k
√
2E

∫ kc

0

√
1− x2c−2

1− x2k−2c−2 dx

= 2
√
c3(1− k2)µ−1E(k),

where E(k) is the complete elliptic integral of the second kind (see Appendix 2).

Problem 3
A point particle of unit mass is moving along a straight line under the action
of a conservative force field with potential energy V (x). Suppose that V is a
polynomial of degree 4, lim

x→±∞V (x) = +∞ and that there exist values of the

energy E for which V (x) − E has four simple zeros −∞ < e1 < e2 < e3 <
e4 < +∞. Prove that in this case the periods of the oscillatory motions between
(e1, e2) and (e3, e4) are equal.

Solution
Under these assumptions, the periods of the motions are

T12 =
√
2
∫ e2

e1

dx√
(x− e1)(x− e2)(x− e3)(x− e4)

,

T34 =
√
2
∫ e4

e3

dx√
(x− e1)(x− e2)(x− e3)(x− e4)

,

respectively. Since the four points (e1, e2, e3, e4) and (e3, e4, e1, e2) have the
same cross-ratio (see Sernesi 1989, p. 325) ((e1− e2)/(e2− e3)) · ((e3− e4)/
(e4− e1)), there exists a rational transformation ξ= g ·x=(Ax+B)/(Cx+D),
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where A,B,C,D ∈ R, AD − BC = 1, which maps the quadruple (e1, e2, e3, e4)
to (e3, e4, e1, e2). This transformation is easily obtained using the equality of the
cross-ratios:

e1 − e2
e2 − e3

· e3 − x

x− e1
=

e3 − e4
e4 − e1

· e1 − ξ

ξ − e3
.

This yields

ξ =
αx+ β

γx+ δ
with α = e1 −Ge3, β = Ge23 − e21, γ = 1−G, δ = Ge3 − e1,

G =
e4 − e1
e2 − e3

· e1 − e2
e3 − e4

,

and hence the desired transformation can be obtained by normalising the

determinant αδ − βγ = −G(e3 − e1)2 of the matrix
(
α β
γ δ

)
:

A =
e1 −Ge3√−G(e3 − e1)

, B =
Ge23 − e21√−G(e3 − e1)

,

C =
1−G√−G(e3 − e1)

, D =
Ge3 − e1√−G(e3 − e1)

.

The substitution

x = g−1 · ξ = Dξ −B

A− Cξ

yields

dx =
dξ

(A− Cξ)2
,

x− ei = g−1 · ξ − ei =
(Cei +D)ξ − (Aei +B)

A− Cξ
=

ξ − g · ei
(A− Cξ)(Cei +D)−1

,

and hence

dx√
(x− e1)(x− e2)(x− e3)(x− e4)

=
dξ

(A− Cξ)2
√

(ξ − g · e1)(ξ − g · e2)(ξ − g · e3)(ξ − g · e4)
(A− Cξ)4[(Ce1 +D)(Ce2 +D)(Ce3 +D)(Ce4 +D)]−1

=

√
(Ce1 +D)(Ce2 +D)(Ce3 +D)(Ce4 +D)√

(ξ − e3)(ξ − e4)(ξ − e1)(ξ − e2)
dξ,
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where we have used the fact that gei = ei+2 for i = 1, 2 and gei = ei−2 for
i = 3, 4. Computing the product (Ce1 +D) · · · (Ce4 +D), we find:

(Ce1 +D) · · · (Ce4 +D) =
(1−G)e1 +Ge3 − e1√−G(e3 − e1)

· · · (1−G)e4 +Ge3 − e1√−G(e3 − e1)

=
1

G2(e3 − e1)4
G(e3 − e1)[e2 − e1 +G(e3 − e2)]

× (e3 − e1)[e4 − e1 +G(e3 − e4)].

Finally, since

e2 − e1 +G(e3 − e2) = e2 − e1 +
e4 − e1
e3 − e4

(e2 − e1) = (e2 − e1)
e3 − e1
e3 − e4

,

e4 − e1 +G(e3 − e4) = e4 − e1 +
e1 − e2
e2 − e3

(e4 − e1) = (e4 − e1)
e3 − e1
e3 − e2

,

we arrive at

(Ce1 +D)(Ce2 +D)(Ce3 +D)(Ce4 +D) =
1

G(e3 − e1)2
e2 − e1
e3 − e4

e4 − e1
e3 − e2

(e3 − e1)2

= 1

and the substitution

x =
Aξ +B

Cξ +D

transforms the integral∫ e2

e1

dx√
(x− e1)(x− e2)(x− e3)(x− e4)

into ∫ e4

e3

dξ√
(ξ − e3)(ξ − e4)(ξ − e1)(ξ − e2)

,

yielding T12 = T34. It is possible to prove in an analogous way that if V is a poly-
nomial of degree 3 and V (x)−E has three simple roots −∞ < e1 < e2 < e3 < +∞,
the period of oscillation in the interval [e1, e2] is equal to twice the (finite) time
needed for the point with energy E to travel the distance [e3,+∞):

T3 =
∫ e2

e1

dx√
(x− e1)(x− e2)(x− e3)

=
∫ +∞

e3

dx√
(x− e1)(x− e2)(x− e3)

.
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The basic idea is to construct the rational transformation of the projective line
mapping the quadruple (e1, e2, e3,∞) to (e3,∞, e1, e2):

e1 − e2
e2 − e3

· e3 − x

x− e1
= −e1 − ξ

ξ − e3
.

These relations have a more general interpretation in the theory of elliptic curves
and their periods. This is the natural geometric formulation highlighting the
properties of elliptic integrals (see e.g. McKean and Moll 1999). Indeed, both
T12 and T3 can be reduced to a complete elliptic integral of the first kind by
the transformation that maps the quadruples (e1, e2, e3, e4) and (e1, e2, e3,∞) to
(1,−1, 1/k,−1/k), with k determined by the equality of the cross-ratios.

Problem 4
Consider the motion with potential energy V ∈ C∞ such that V (0) = 0, V ′(0) =
0, V ′′(0) > 0. The motion around x = 0 is periodic, with period T (E) given by
(3.8) with s1, s2 roots of V (x) = E, for E ∈ (0, E0), for an appropriate E0.

(i) What are the conditions on V that ensure that T (E) is constant?
(ii) Study in the general case the behaviour of T (E) for E → 0.
(iii) Using the result of (i) consider the problem of finding a (smooth) curve

z = f(x), f ∈ C∞, f(0) = 0, f ′(0) = 0, f ′′(0) > 0, f(−x) = f(x), such that the
motion on it due to gravity is isochronous.

Solution
(i) To answer this we follow Gallavotti (1980, §2.10).

Start from the case that V (−x) = V (x), when equation (3.8) becomes

T (E) = 4
√

m

2

∫ x(E)

0

dx√
E − V (x)

. (3.50)

Introduce the inverse function of V in the interval (0, x(E)): x = ξ(V ) and
use it as a change of variable in (3.51), observing that (0, x(E)) → (0, E):

T (E) = 4
√

m

2

∫ E

0

ξ′(V )√
E − V

dV. (3.51)

It is well known (and easily verified) that Abel’s integral equation

φ(t) =
∫ t

0

ψ(r)dr√
t− r

(3.52)

(φ known, φ(0) = 0, ψ unknown) has the unique solution

ψ(t) =
1
π

∫ t

0

φ′(r)√
t− r

dr. (3.53)
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Comparing this with equation (3.52) we conclude

1
π
φ′ = 4

√
m

2
ξ′

and T (E) satisfies the equation

4π
√

m

2
ξ(V ) =

∫ V

0

T (z)√
V − z

dz. (3.54)

Hence, if we want T (z) = T0, we find that

2π
√

m

2
ξ(V ) =

√
V T0, (3.55)

or

V =
m

2
ω2x2, ω =

2π
T0

. (3.56)

It follows that the only symmetric potential that generates isochronous
motions is the elastic potential.
Considering a generic potential, we need to introduce the right inverse func-
tion ξ+(V )> 0 and the left inverse function ξ−(V ) < 0. In equation (3.55),
2ξ(V ) is replaced by ξ+(V )−ξ−(V ); a similar modification appears in (3.56),
characterising those perturbations of the elastic potential that preserve
isochronicity.

(ii) Consider the fourth-order expansion of V :

V (x) � mω2x2

2
(1 + c1x+ c2x

2), (3.57)

assuming that c �= 0. The expansion of ξ±(V ) to order V 2 is

ξ±(V ) � ±
√

2V
mω

+ k±V + k′
±V

3/2 + k′′
±V

2, (3.58)

where the coefficients need to be determined.
Substituting (3.59) into (3.58) and imposing an identity to order V 3/2, we
find

k± = − c1
mω2

, k′
± = ± 1√

2m3ω3

(
5
2
c21 − 2c2

)
, k′′

± =
6c1c2 − 4c31

m2ω4
. (3.59)

In the light of the result of (i) (see (3.55) with 2ξ replaced by ξ+ − ξ−) the
linear term in V in the expansion of ξ does not contribute to the difference
ξ+ − ξ−. Hence the first correction of ξ+ − ξ− is of order V 3/2:

ξ+ − ξ− = 2

√
2V
mω2

+

√
2

m3ω6

(
5
2
c21 − 2c2

)
V 3/2. (3.60)
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Replacing in equation (3.55) ξ(V ) by 1
2 (ξ+ − ξ−)/2, and writing T (z) =

T0 + T1(z) with T0 = 2π/ω yields for T1(z) Abel’s equation

2π
(
5
2
c21 − 2c2

)
V 3/2

mω3
=
∫ V

0

T1(z)√
V − z

dz, (3.61)

with solution

T1(E) = 3
(
5
2
c21 − 2c2

)
1

mω3

∫ E

0

√
V

E − V
dV =

3
2
π

E

mω3

(
5
2
c21 − 2c2

)
.

(3.62)

We conclude that T (E) can be differentiated for E = 0, with

T ′(0) =
3π

2mω3

(
5
2
c21 − 2c2

)
. (3.63)

(iii) We already know one solution: the cycloid (Example 3.1).
We want here to start the problem from the equation

1
2
ṡ2 + gf(x(s)) = E, (3.64)

where s =
∫ x

0

√
1 + f ′2(ξ) dξ. Recalling (i), we impose on the function f the

condition

gf(x) =
1
2
ω2s2, (3.65)

which produces a harmonic motion of period 2π/ω; it follows that s =
A sinωt. To construct the curve corresponding to (3.66) it is convenient to
set ωt = γ/2 and remark that(

dx
dγ

)2
=
(
ds
dγ

)2
−
(
dz
dγ

)2
,

where

z(γ) =
ω2

2g
A2 sin2

γ

2
.

Also set A = αg/ω2, which yields(
dx
dγ

)2
= α2

( g

2ω2
)2

cos2
γ

2

(
1− α2 sin2

γ

2

)
. (3.66)



3.9 One-dimensional motion 123

Let us consider first the case that α = 1 (note that 0 < α ≤ 1), when clearly

dx
dγ

=
g

2ω2
cos2

γ

2
= R(1 + cos γ), R =

g

4ω2
; (3.67)

together with the condition x(0) = 0 this yields

x = R(γ + sin γ). (3.68)

Since A = g/ω2 we find, for z(γ),

z = R(1− cos γ), (3.69)

the cycloid. The choice α = 1 corresponds to the value of the energy allowing
the motion to reach the highest possible points (z = 2R) of the cycloid.
For α < 1 consider the cycloid

x = R(ψ + sinψ), z = R(1− cosψ) (3.70)

and let us verify if the arc defined by (3.67) and by z(γ) = α2R(1− cos γ)
lies on it.
Write the relation between γ and ψ, expressed by z(ψ) = z(γ), namely

α2(1− cos γ) = 1− cosψ

and compute

dx
dγ

=
dx
dψ

dψ
dγ

.

It is evident that

dψ
dγ

= α2
sin γ
sinψ

and that (3.71) yields

dx
dγ

= R(1 + cosψ)α2
sin γ
sinψ

.

Expressing the right-hand side as a function of γ we find that (dx/dγ)2

coincides with (3.67).
Hence we have proved that the cycloid is the only symmetric curve producing
isochronous oscillations under the gravity field.
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4 THE DYNAMICS OF DISCRETE SYSTEMS.
LAGRANGIAN FORMALISM

4.1 Cardinal equations

The mathematical modelling of the dynamics of a constrained system of point
particles (P1,m1), . . . , (Pn,mn) is based on the equations of motions for the single
points:

miai = Ri, i = 1, . . . , n, (4.1)

where Ri denotes the sum of all forces acting on the point (Pi,mi). In addition
to equations (4.1), one has to consider the constraint equations.
The forces acting on a single particle can be classified in two different ways:

either distinguishing between internal forces and external forces, or using instead
the distinction between constraint reactions and the so-called active forces which
we used in the study of the dynamics of a single point particle. These two
different classifications yield two different mathematical schemes describing the
dynamics of systems.
In this section we consider the former possibility, distinguishing between internal

forces, i.e. the forces due to the interaction of the points of the system among
themselves, and external forces, due to the interaction between the points of the
system and points outside the system.1 We note two important facts:

(a) internal forces are in equilibrium;
(b) the (unknown) constraint reactions may appear among the external as well

as among the internal forces.

As a consequence of (a) we obtain the cardinal equations of dynamics:

Q̇ = R(e), (4.2)

L̇(O) + v(O)×Q =M(e)(O), (4.3)

using the standard notation for the linear momentum Q =
∑n

i=1mivi and the
angular momentum L(O) =

∑n

i=1mi(Pi − O) × vi (the first can be derived by
adding each side of equations (4.1), while the second is obtained by taking
the vector product of the two sides of (4.1) with Pi − O, with O an arbitrary
point, and then adding). Here R(e) and M(e) are the resultant and the resultant
moment, respectively, of the external force system.

1 To non-inertial observers the so-called apparent forces will also seem external (see
Section 6.6 or Chapter 6).
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Define the centre of mass P0 by

m(P0 −O) =
n∑

i=1
mi(Pi −O) (4.4)

(m =
∑n

i=1 mi, O an arbitrary point). Since

Q = mṖ0, (4.5)

equation (4.2) can be interpreted as the equation of motion of the centre of mass
(i.e. of the point particle (P0,m)):

mP̈0 = R(e).

Equation (4.3) can be reduced to the form

L̇(O) =M(e)(O) (4.6)

if v(O)×Q = 0, and hence in particular when O is fixed or coincides with the
centre of mass.
The cardinal equations are valid for any system. On the other hand, in general

they contain too many unknowns to yield the solution of the problem.
The most fruitful application of such equations is the dynamics of rigid bodies

(see Chapters 6 and 7). This is because all reactions due to rigid constraints
are internal and hence do not appear in the cardinal equations. In the relevant
chapters we will discuss the use of such equations. Here, we only consider the
energy balance of the system, which has the form

dT
dt

= W, (4.7)

where

T =
1
2

n∑
i=1

miv
2
i , W =

n∑
i=1

Ri · vi.

Equation (4.7) can be deduced by differentiating T with respect to time and
from equations (4.1). In correspondence with the two proposed subdivisions of
the forces Ri we can isolate the following contributions to the power W :

W = W (e) +W (i) (4.8)

(W (e) is the power of the external forces, W (i) is the power of the internal
forces), or else

W = W (a) +W (r) (4.9)

(W (a) is the power of the active forces, W (r) is the power of the constraint
reactions).
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Remark 4.1
Equation (4.7) is not in general a consequence of the cardinal equations (4.2)
and (4.3). Indeed, in view of equation (4.8) we can state that it is independent
of the cardinal equations whenever W (i) =/ 0. It follows that when the internal
forces perform non-vanishing work, the cardinal equations cannot contain all the
information on the dynamics of the system. �

Equation (4.9) suggests that we can expect a considerable simplification of the
problem when the constraint reactions have vanishing resulting power. We will
examine this case in detail in the next section.

4.2 Holonomic systems with smooth constraints

Holonomic systems have been introduced in Chapter 1 (Section 1.10). In analogy
with the theory discussed in Chapter 2 (Section 2.4) on the dynamics of the
constrained point, we say that a holonomic system has smooth constraints if the
only contribution of the constraint reactions to the resulting power W (r) is due
to the possible motion of the constraints.
Let

Φ =
⊕

i=1,...,n

φi (4.10)

be the vector representing all constraint reactions. Then the power W (r) is
expressed as

W (r) = Φ ·Ẋ (4.11)

and in view of the decomposition (1.88) for the velocity Ẋ of a representative
point, we can write

W (r) = Ŵ (r) +W (r)∗, (4.12)

with

Ŵ (r) = Φ ·V̂, W (r)∗ = Φ ·V∗. (4.13)

We call the quantity Ŵ (r) the virtual power of the system of constraint reactions.
We can now give the precise definition of a holonomic system with smooth
constraints.

Definition 4.1 A holonomic system has smooth constraints if the virtual power
of the constraint reaction is zero at every time and for any kinematic state of the
system. �

Equivalently we can say that a holonomic system has smooth constraints if
and only if Φ is orthogonal to the configuration space:

Φ ∈ (TXV(t))⊥ (4.14)
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at every time and for any kinematic state. The latter definition is analogous to
that of the orthogonality property for a smooth constraint in the context of the
dynamics of a point particle (Definition 2.3).
The characterisation of the vector Φ yields the possibility of a unique

decomposition in terms of the basis of the orthogonal space:

Φ =
3n−�∑
j=1

λj(t)∇Xfj(X, t), (4.15)

where λj(t) are (unknown) multipliers.
The property (4.14) yields a system of differential equations characterising

the motion of any holonomic system with smooth constraints, from which all
constraint reactions can be eliminated. To find this system, consider the vector
representing the active forces

F(a) =
⊕

i=1,...,n
Fa

i (4.16)

and the vector representing the momenta

Q =
⊕

i=1,...,n
mivi. (4.17)

Then from equations (4.1) it follows that

Q̇ = F(a) + Φ. (4.18)

Imposing the property (4.14), the two vectors Q̇ and F(a) must have the same
projection onto the tangent space (TXV(t)).
Since the vectors (∂X/∂qk)k=1,...,� are a basis for the tangent space (TXV(t)) in

a fixed system of Lagrangian coordinates (q1, . . . , q�), the projection onto (TXV(t))
of a vector Z = (Z1, . . . ,Zn) ∈ R3n is uniquely determined by the components

ZΘ,k = Z · ∂X
∂qk

=
n∑

i=1
Zi · ∂Pi

∂qk
.

It follows that

F
(a)
Θ,k

=
n∑

i=1
F(a)i · ∂Pi

∂qk
, k = 1, . . . , �, (4.19)

and the equation of motion can be written as

(Q̇)Θ,k = F
(a)
Θ,k

, k = 1, . . . , �. (4.20)

4.3 Lagrange’s equations

The kinematic term (i.e. the left-hand side) in (4.20) has an interesting connection
with the kinetic energy T . To show this connection, we first deduce the expression
for T through the Lagrangian coordinates of the phase space.
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By the definition of T and equations (1.95) we easily find

T =
1
2

�∑
h,k=1

ahk q̇hq̇k +
�∑

k=1
bk q̇k + c, (4.21)

where

ahk(q, t) =
n∑

i=1
mi

∂Pi

∂qh
· ∂Pi

∂qk
= akh(q, t), (4.22)

bk(q, t) =
n∑

i=1
mi

∂Pi

∂qk
· ∂Pi

∂t
, (4.23)

c(q, t) =
1
2

n∑
i=1

mi

(
∂Pi

∂t

)2
. (4.24)

In the case of fixed constraints, it is possible to choose a Lagrangian coordinate
system with respect to which time does not explicitly appear in the expression
for X = X(q), and hence in the equations Pi = Pi(q). For holonomic systems
with fixed constraints we henceforth assume that such a coordinate system has
been chosen.
In this system all terms in equations (4.21) which are not quadratic vanish.

Proposition 4.1 For a holonomic system with fixed constraints, the kinetic
energy is a homogeneous quadratic form in the components of the vector q̇. �

In the general case, note that

T =
1
2

Q ·V (4.25)

(the vector Q is defined by (4.17)) and that the quadratic term in
equations (4.25), i.e.

T̂ =
1
2

�∑
h,k=1

ahk q̇hq̇k, (4.26)

is the kinetic energy due to the virtual component of the velocity.
The expression (4.26) possesses a fundamental property.

Theorem 4.1 T̂ is a positive definite quadratic form. �

Note that the matrix (ahk)h,k=1,...,� is the Hessian of T with respect to the
variables q̇k:

ahk =
∂2T

∂q̇h∂q̇k
. (4.27)

Denoting it by HT we can write (4.26) as

T̂ =
1
2
q̇ ·HT q̇. (4.28)
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As a consequence of Theorem 4.1 we have the following.

Corollary 4.1 The matrix HT is positive definite. �

Proof of Theorem 4.1
Given a holonomic system, and a Lagrangian coordinate system, the coefficients
ahk, bk, c are uniquely determined. We need to show that

T̂ > 0, ∀q̇ =/ 0. (4.29)

To this end we express (4.26) in terms of the virtual velocities of the single point
particles:

T̂ =
1
2

n∑
i=1

miv̂
2
i (4.30)

and observe that q̇ =/ 0 ⇔ V̂ =/ 0, and hence not all v̂i can be zero. �

We have already remarked how the components of the vector q̇, for every fixed
q and t, can be viewed as parameters, playing the role of kinetic coordinates.
We consider the derivatives of T with respect to such parameters:

pk =
∂T

∂q̇k
, k = 1, . . . , �, (4.31)

and hence

pk =
�∑

h=1
ahk q̇h + bk, k = 1, . . . , �. (4.32)

The system (4.32) is linear in pk, q̇k and, because of Theorem 4.1, it is invertible.
It is easy to recognise that the pk are the Lagrangian components of the

vector Q:

pk = Q · ∂X
∂qk

, k = 1, . . . , �. (4.33)

For this reason, these are called the kinetic momenta conjugate to the
corresponding qk. The variables pk have great importance in mechanics.

Remark 4.2
Let us set

p̂k =
�∑

h=1
ahk q̇k.

It is useful to note that T̂ = 1
2 p̂ · q̇. In the case of fixed constraints, this implies

T =
1
2
p · q̇. (4.34)

�
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Let us return to our original aim of expressing the left-hand side of
equation (4.20) as a function of T . Differentiate both sides of (4.33) with respect
to time:

ṗk = (Q̇)Θ,k + Q · ∂Ẋ
∂qk

(4.35)

and note that

Q · ∂Ẋ
∂qk

=
∑
i
mivi · ∂vi

∂qk
=

∂T

∂qk
, (4.36)

which finally yields

(Q̇)Θ,k =
d
dt

∂T

∂q̇k
− ∂T

∂qk
. (4.37)

Equations (4.20) can be written in the form

d
dt

∂T

∂q̇k
− ∂T

∂qk
= FΘ,k, k = 1, . . . , � (4.38)

and are known as Lagrange’s equations. The functions FΘ,k are defined by (4.19).
Equations (4.38) are sufficient to find the solution of the motion problem.

Theorem 4.2 The Lagrange equations (4.38) admit a unique solution satisfying
the initial conditions

q(0) = q0, q̇(0) = w0. (4.39)

Proof
Equations (4.38) are second-order equations, linear with respect to q̈k. Indeed,
denoting by q̇ and q̈ the � × 1 column vectors with components q̇k and q̈k
respectively, the system (4.38) can be written as

HT q̈+ ḢT q̇+ ḃ−
(
1
2
q̇T∇qHTq̇+∇qbT q̇+∇qc

)
= FΘ, (4.40)

where b and FΘ denote, respectively, the column vectors with components bk
and FΘ,k, and c is given by (4.24). Note that the kth component of the column
vector 1

2 q̇
T∇qHTq, is given by 1

2

∑�
i,j=1(∂aij/∂qk)q̇iq̇j .

Hence Corollary 4.1 yields that the system is solvable with respect to the
unknowns q̈k, i.e. it admits the normal form

q̈k = χk(q, q̇, t), k = 1, . . . , �, (4.41)
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where the functions χk are easily found. Indeed, χk is the kth component of the
column vector

χ = H−1
T

(
FΘ +

1
2
q̇T∇qHT q̇+∇qbT q̇+∇qc− ḢT q̇− ḃ

)
. (4.42)

The functions χk contain FΘ,k, given functions of q, q̇, t; we assume that
these functions are regular. The conclusion of the theorem now follows from
the existence and uniqueness theorem for the Cauchy problem for a system of
ordinary differential equations (cf. Appendix 1, Theorem A1.1): it is sufficient to
set x = (q, q̇) ∈ R2�, x(0) = (q0,w0) and to write equation (3.21) as ẋ = v(x, t)
with v(x, t) = (x�+1, . . . , x2�, χ1(x, t), . . . , χ�(x, t)). �

Remark 4.3
Equations (4.38) imply that the vector F(a) acts on the motion only through its
projection onto the tangent space. �

Remark 4.4
Consider a point particle of mass m constrained to move on a fixed smooth
regular surface S ⊆ R3 with no active forces. If x = x(q1, q2) is a local para-
metrisation of S, it follows that the kinetic energy of the particle can be
written as

T =
m

2
[E(q1, q2)q̇21 + 2F (q1, q2)q̇1q̇2 +G(q1, q2)q̇22 ], (4.43)

where E, F , G are the entries of the first fundamental form of the surface (1.34).
Since there are no active forces, FΘ 1 = FΘ 2 = 0 and Lagrange’s equations (4.38)
take the form

Eq̈1 + F q̈2 +
1
2

[(
∂E

∂q1

)
q̇21 + 2

∂E

∂q2
q̇1q̇2 +

(
2
∂F

∂q2
− ∂G

∂q1

)
q̇22

]
= 0,

F q̈1 +Gq̈2 +
1
2

[(
2
∂F

∂q1
− ∂E

∂q2

)
q̇21 + 2

∂G

∂q1
q̇1q̇2 +

∂G

∂q2
q̇22

]
= 0.

(4.44)

These can be recognised as the geodesic equations of the surface (1.46).
Once again we find that the trajectories of a point particle constrained on a

fixed smooth regular surface, with no other forces acting on it, are the geodesics
of the surface (Proposition 2.2). Note in addition that this implies that the point
acceleration is orthogonal to the surface. �

Example 4.1
Consider a point particle constrained to move on a surface of rotation without
any active force. If x = (u cos v, u sin v, f(u)) is a local parametrisation, the
kinetic energy of the point is given by

T =
m

2

{ [
1 + (f ′(u))2

]
u̇2 + u2v̇2

}
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and Lagrange’s equations are the geodesic’s equations discussed and solved in
Example 1.25. �

A similar conclusion can be reached when considering a holonomic system with
fixed smooth constraints, without external forces. In this case the space V of all
possible configurations becomes a Riemannian manifold when endowed with the
metric

(ds)2 =
�∑

i,j=1
aij(q1, . . . , q�) dqi dqj , (4.45)

where aij are given by equation (4.22); Theorem 4.1 ensures that equation (4.45)
defines a Riemannian metric (see Definition 1.30).
For this system, Lagrange’s equations become

�∑
j=1

aij q̈j +
1
2

�∑
j,k=1

(
∂aij
∂qk

+
∂aik
∂qj

− ∂ajk
∂qi

)
q̇j q̇k = 0, (4.46)

where i = 1, . . . , �. Multiplying by ahi and summing over i (where ahi are
the components of the inverse matrix of A = (aij)), since

∑�
i=1 ahiaij = δhj ,

equations (4.46) become

q̈h +
�∑

j,k=1
Γhj,k q̇j q̇k = 0, h = 1, 2, . . . , �, (4.47)

where Γhj,k are the Christoffel symbols (1.69) associated with the metric (4.45).
Equations (4.47) are the geodesic equations (1.68), (note that ṡ2 = 2T is
constant). We have proved the following.

Theorem 4.3 The space of configurations of a holonomic system with fixed
constraints, endowed with the metric (4.45) induced by the kinetic energy, is a
Riemannian manifold. If there are no active forces (and the constraints are smooth)
the trajectories of the systems are precisely the geodesics of the Riemannian
manifold. �

Systems of this kind are also called natural Lagrangian systems (see Arnol’d
et al. 1988).

Example 4.2
Write down Lagrange’s equations for a system of two point particles (P1,m1),
(P2,m2) with P1 constrained to move on a circle of radius R and centre O, P2
constrained to move along the line OP1, in the presence of the following forces
acting in the plane of the circle:

F1, applied to P1, of constant norm and tangent to the circle;
F2, applied to P2, of constant norm, parallel to F1 but with opposite orientation.
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F1

F2j

w

P1

O

P2

Fig. 4.1

All constraints are smooth.
The system has two degrees of freedom, and we can take as Lagrangian

coordinates the angle ϕ between the radius OP1 and a fixed axis, and the
abscissa ξ of P2 onto the radius OP1 (Fig. 4.1).
The kinetic energy is

T =
1
2
m1R

2ϕ̇2 +
1
2
m2(ξ2ϕ̇2 + ξ̇2). (4.48)

We need to compute the Lagrangian components Fϕ, Fξ:

Fϕ = F1 · ∂P1
∂ϕ

+ F2 · ∂P2
∂ϕ

, Fξ = F1 · ∂P1
∂ξ

+ F2 · ∂P2
∂ξ

. (4.49)

Setting er = (P1 −O)/|P1 −O|, eϕ = F1/|F1|, we find

∂P1
∂ϕ

= Reϕ,
∂P2
∂ϕ

= ξeϕ,
∂P1
∂ξ

= 0,
∂P2
∂ξ

= er. (4.50)

Hence

Fϕ = RF1 − ξF2, Fξ = 0. (4.51)

Substituting into equations (4.38), we obtain the desired equations

(m1R
2 +m2ξ

2)ϕ̈+ 2m2ξξ̇ψ̇ = RF1 − ξF2, (4.52)

ξ̈ − ξϕ̇2 = 0. (4.53)

We easily recognise that equation (4.52) is the second cardinal equation written
with reference to the point O. Equation (4.53) can instead be interpreted as the
equation of motion for P2 in the reference frame rotating with the line OP1, in
which P2 is subject to the centrifugal acceleration field ξϕ̇2.
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We note finally that the equations do not change if F1 and F2 are given
functions of ξ. �

Example 4.3
Two point particles P1, P2 of equal mass m move in a plane in which they are
subject to the Biot–Savart field (2.19), with the constant C equal in magnitude
for the points but with opposite signs. The two points are constrained to preserve
a constant distance �. Write down the Lagrange equations.
The system has three degrees of freedom. We can choose polar coordinates

(r, ϕ) for the point P1 and determine the position of P2 as a function of the
angle ψ between the vectors (P1 −O) and (P2 − P1) (Fig. 4.2).
The Cartesian coordinates of the two points P1, P2 are given by

x1 = r cos ϕ, y1 = r sin ϕ,
x2 = r cos ϕ+ � cos(ϕ− ψ), y2 = r sin ϕ+ � sin(ϕ− ψ). (4.54)

Hence

v21 = ṙ2 + r2ϕ̇2, (4.55)

v22 = ṙ2 + r2ϕ̇2 + �2(ϕ̇− ψ̇)2 + 2� [ṙ sin ψ + rϕ̇ cos ψ](ϕ̇− ψ̇), (4.56)
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and in addition

∂P1
∂ϕ

= (−r sin ϕ, r cos ϕ),
∂P1
∂ψ

= 0,

∂P1
∂r

=
∂P2
∂r

= (cos ϕ, sin ϕ),

∂P2
∂ϕ

= (−r sin ϕ− � sin(ϕ− ψ), r cos ϕ+ � cos(ϕ− ψ)),

∂P2
∂ψ

= (� sin(ϕ− ψ),−� cos(ϕ− ψ)).

(4.57)

We still need to determine the Lagrangian components Fr, Fϕ, Fψ. As in Fig. 4.2
we have

Fr = F1 · ∂P1
∂r

+ F2 · ∂P2
∂r

= F2 cos
(
α+

π

2

)
= −F2 sin α,

Fϕ = F1 · ∂P1
∂ϕ

+ F2 · ∂P2
∂ϕ

= F1r − F2h,

Fψ = F2 · ∂P2
∂ψ

= F2� cos(π − γ) = −F2� cos γ,

(4.58)

where

h2 = r2 + �2 + 2�r cos ψ (4.59)

and

sin α

�
=

sin γ

r
=

sin ψ

h
. (4.60)

Since T = 1
2 m(v21 + v22), we can write down Lagrange’s equations. This is left as

an exercise. �

4.4 Determination of constraint reactions. Constraints with friction

The solution of the initial value problem for the Lagrange system of equations
yields the vector q = q(t). Once this vector is known, we can determine the
motion of the representative vector X = X(t). Hence the kinematic terms in
equations (4.18) and the vector F(X(t), Ẋ(t), t) are known. From this it is easy
to find Φ = Φ(t) and then φi = φi(t).
As an example, using expression (4.15), where the multipliers λj(t) are now

known, we can write

φi =
3n−�∑
j=1

λj(t)∇Pifj(X(t), t), (4.61)
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where ∇Pifj(X, t) denotes the standard gradient vector, obtained by considering
only the coordinates of the point Pi.

Example 4.4
Consider again the system studied in Example 4.2. Suppose the integrals ϕ = ϕ(t)
and ξ = ξ(t) of the equations of motion are known; find the constraint reactions
φ1 and φ2 on the two points of the system.
In this particular case, the problem is simple; indeed, once the accelerations

a1, a2 are known, it is enough to write φi = miai − Fi. However, it is useful to
illustrate the general procedure. We start by computing the unit base vectors of
the normal space, writing the constraint equation in the form (see Fig. 4.1)

2f1 = x21 + y21 −R2 = 0, f2 = y1x2 − x1y2 = 0,

and hence ∇f1 = (x1, y1, 0, 0), ∇f2 = (−y2, x2, y1,−x1).
In addition,

Q̇ = (m1ẍ1,m1ÿ1,m2ẍ2,m2ÿ2) and F(a) =
(−F1 y1

R
,
F1 x1
R

,
F2 y1
R

,
−F2 x1

R

)
,

implying that the vector Φ ∈ R4 of the constraint reactions can be found by
using equation (4.15), and determining the multipliers λ1, λ2 starting from

(Q̇ − F(a)) · ∇f1 = λ1|∇f1|2,
(Q̇ − F(a)) · ∇f2 = λ2|∇f2|2.

In the present case, we have ∇f1 ·∇f2 = 0. Using the coordinates ξ, ϕ of Fig. 4.1
one can easily obtain the equations

λ1 = m1ϕ̇
2,

λ2 =
1

ξ2 +R2

[
Rξ(m1 −m2 cos2 ϕ)ϕ̈− 2m2R

2ξ̇ sin2 ϕϕ̇− F1ξ − F2R
]
.

For the case of constraints with friction it is necessary to formulate the hypo-
thesis linking the constraint reactions φ

(a)
i , due to friction, to the velocities vi

(strictly speaking, to the virtual velocities v̂i) and then include them among the
active forces. Using linear links such as2

φ
(a)
i = −µi v̂i, (4.62)

withµi ≥ 0, onemust add the following term to the right-hand side of equation (4.38):

Φ(a)Θ,k
= −

n∑
i=1

�∑
h=1

µi
∂Pi

∂qh
· ∂Pi

∂qk
q̇h. (4.63)

2 The system of coordinates plays an important role. Consider as an example the case of
a rotating sphere. Mathematically, the constraint is fixed, as we can represent it by |x| = R,
but in order to take friction into account, the virtual velocity must be computed relative to
the constraint, and hence in a coordinate system based on the sphere.
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These Lagrangian components of the friction forces can be deduced from a kind
of kinetic variables potential :

fD = −1
2

n∑
i=1

�∑
h,k=1

µi
∂Pi

∂qh
· ∂Pi

qk
q̇hq̇k (4.64)

in the sense that

Φ(a)Θ,k
=

∂fD
∂q̇k

. (4.65)

The function fD is called the Rayleigh dissipation function; it is equal to half
the power dissipated due to the friction

WD = −
n∑

i=1
µiv̂2i . (4.66)

4.5 Conservative systems. Lagrangian function

Definition 4.2 The system of active forces (F(a)i , Pi), i = 1, . . . , n, is conser-
vative if there exists a regular function U , called the potential of the system, such
that its representative vector F(a) is given by

F(a) = ∇XU(X). (4.67)

�

To determine if a system of forces is conservative, and to determine its potential,
it is necessary to consider the subdivision into internal and external forces.
If each of the external forces is a conservative field with potential given by

U
(e)
i (Pi), the overall potential of the external forces is given by

U (e)(X) =
n∑

i=1
U
(e)
i (Pi). (4.68)

As an example, for the gravity field we find U = −mgzG (m =
∑

i mi, zG is
the height of the centre of mass, assuming the z-axis is vertical and oriented
upwards).
The internal forces are given by interaction pairs. As an example, the interaction

between the points Pi and Pj is expressed by the pair (Fij , Pi), (−Fij , Pj), where

Fij = fij(Pi − Pj)
(Pi − Pj)
|Pi − Pj | . (4.69)

The conservative interaction pairs are characterised as the conservative central
force fields (Example 2.3).

Proposition 4.2 The interaction pair (Fij , Pi), (−Fij , Pj), where Fij is given
by (4.69), is conservative if and only if fij depends only on rij = |Pi − Pj |.
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Its potential is given by

U
(i)
ij (rij) =

∫
fij(rij) drij . (4.70)

Proof
The proof is a simple extension of Example 2.3. �

Well-known examples of interaction potentials are the elastic potential U(r) =
− 1
2kr

2 and the gravitational potential U = k/r.
The overall potential of the internal forces is the sum of the potentials of the

interaction pairs:

U (i)(X) =
∑

1≤i<j≤n
U
(i)
ij (rij). (4.71)

The potential of the system is given by U = U (e) + U (i).

Remark 4.5
The projection of F(a) onto the tangent space has the structure of a gradient.
This means that the Lagrangian components F

(a)
Θ,k

are given by

F
(a)
Θ,k

=
∂U

∂qk
, k = 1, . . . , �, (4.72)

where

U(q, t) = U [X(q, t)]. (4.73)

The time dependence is introduced only through the constraints’ motion (recall
that for holonomic systems with fixed constraints the Lagrangian coordinates are
by convention such as to yield representations of the form X = X(q)). �

When the forces are conservative, equations (4.38) can be written more
concisely, by introducing the Lagrangian function

L(q, q̇, t) = T + U, (4.74)

where U(q, t) is the function given by (4.73).

Remark 4.6
Recall the Lagrangian expression for T , and what we have just mentioned regard-
ing the potential. These facts imply that ∂L/∂t =/ 0 only if the constraints are in
motion. �

Consider now equations (4.72) and note that all the derivatives ∂U/∂q̇k vanish.
We deduce that Lagrange’s equations can be written in the form

d
dt

∂L

∂q̇k
− ∂L

∂qk
= 0, k = 1, . . . , �. (4.75)
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Remark 4.7
If a Lagrangian coordinate qk does not appear explicitly in the Lagrangian L (in
this case we say the coordinate is cyclic), from equation (4.75) it follows that
there exists the first integral pk = ∂L/∂q̇k = constant. �

Example 4.5
Write equations (4.75) for a system of two point particles (P1,m1), (P2,m2)
constrained in a vertical plane as in Fig. 4.3 (smooth constraints).
Let ϕ be as shown in the figure and x2 the x-coordinate of P2; we take these

as the Lagrangian coordinates. Then we have

L(ϕ, x2, ϕ̇, ẋ2) =
1
2
m1R

2ϕ̇2 +
1
2
m2ẋ

2
2 −m1gR(1− cos ϕ)

− k

2
(x22 + 2R2 − 2Rx2 sin ϕ− 2R2 cos ϕ).

(4.76)

It follows that the required equations are

ϕ̈+
g

R
sin ϕ− k

m1

(x2
R

cos ϕ− sin ϕ
)
= 0, (4.77)

ẍ2 +
k

m2
(x2 −R sin ϕ) = 0. (4.78)

�

It is possible that some of the forces are conservative and some are not. In
this case, writing

F(a) = ∇XU(X) +G(X, Ẋ, t), (4.79)

y

O

R

P1

P2 x
m1g

w

Fig. 4.3
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where G cannot be derived from any potential, we can define L = T +U , which
yields a mixed form of Lagrange’s equations:

d
dt

∂L

∂q̇k
− ∂L

∂qk
= GΘ,k. (4.80)

Remark 4.8
It can be verified immediately that Lagrange’s equations (4.75) corresponding
to the Lagrangians L(q, q̇, t), L′ = cL, L′′ = L + dF/dt, with c a constant and
F (q, t) an arbitrary C2 function, have the same solutions. To clarify this point,
we write explicitly

dF
dt

= q̇ · ∇qF (q, t) +
∂F

∂t
. �

4.6 The equilibrium of holonomic systems with smooth constraints

The equilibrium configurations of a holonomic system with fixed, smooth con-
straints are given by the constant solutions of equations (4.38). Therefore the
equilibrium equations are

F
(a)
Θ,k

(q) = 0, k = 1, . . . , � (4.81)

(in this case, it is natural to consider that forces and constraints are time-
independent).
In the case of conservative fields, using equations (4.73), the equilibrium

equations can be written as

∂U

∂qk
= 0, k = 1, . . . , � (4.82)

and express the fact that at equilibrium the restriction of the potential U(X) to
the manifold X = X(q) is stationary.
Clearly the problem (4.82) can be formulated in R3n as the problem of finding

the stationary points of the potential on the configuration manifold, i.e.

∇X

(
U(X) +

m∑
j=1

λjfj(X)

)
= 0, (4.83)

fj(X) = 0, j = 1, . . . ,m. (4.84)

The Lagrange multipliers λj are the same as those that give the constraint
reactions

Φ =
m∑
j=1

λj∇Xfj(X), (4.85)
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since it must be that, at equilibrium,

F(a) + Φ = 0. (4.86)

Remark 4.9
When the forces are only due to the presence of mass, the equilibrium con-
figurations are exactly the configurations for which the height of the centre of
mass is extremal. �

Example 4.6
Study the equilibrium of the system considered in Example 4.2.
It is easy to check that of the two equilibrium equations (4.51), Fϕ = 0, Fξ = 0,

the latter is an identity while the former admits the unique solution ξ = RF1/F2.
For this value of ξ there exist infinitely many equilibrium configurations, obtained
by varying ϕ.
If F1 and F2 are functions of ξ the equation ξ = RF1/F2 admits either one,

many, or no solution. �

Example 4.7
Study the equilibrium of the system considered in Example 4.3.
It is easy to show that there are no equilibrium configurations. Indeed, because

of equations (4.58) we should have in particular sin α = cos γ = 0, which is
incompatible with equations (4.60), valid for all the possible configurations of the
system. �

Example 4.8
Study the equilibrium of the system considered in Example 4.5.
The equilibrium equations are

∂U

∂ϕ
= 0,

∂U

∂x2
= 0,

yielding (set to zero the kinematic terms in (4.77), (4.78)):
m1g

kR
sin ϕ− x2

R
cos ϕ+ sin ϕ = 0, (4.87)

x2 −R sin ϕ = 0. (4.88)

If x2 is eliminated one obtains

sin ϕ
[m1g

kR
− cos ϕ+ 1

]
= 0 ⇔ sin ϕ = 0. (4.89)

Hence the only solutions are ϕ = 0, x2 = 0 and ϕ = π, x2 = 0. �

4.7 Generalised potentials. Lagrangian of an electric charge
in an electromagnetic field

There are situations when it is possible to define a Lagrangian even if the system
of forces depends on velocity. Indeed, note how equations (4.38) imply that, if
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there exists a function U(q, q̇, t) such that

F
(a)
Θ,k

=
∂U

∂qk
− d

dt

(
∂U

∂q̇k

)
, k = 1, . . . , �, (4.90)

the usual definition of the Lagrangian L = T + U still permits us to write the
Lagrange equations in the form (4.75).
The function U(q, q̇, t) is called a generalised potential.
An important example when it is possible to define a generalised potential is

the case of a force applied to a charge e in an electromagnetic field (E,B) (the
Lorentz force):

F = e

{
E+

1
c
v ×B

}
. (4.91)

We seek the generalised potential for equation (4.91), starting from Maxwell’s
equations

divB = 0, (4.92)

curl E+
1
c

∂B
∂t

= 0. (4.93)

From the first it follows that it is possible to express the field B as

B = curl A, (4.94)

where A(x, t) is the so-called vector potential, defined up to an irrotational field
(which we assume to be independent of time).
Because of equation (4.94), equation (4.93) takes the form

curl
(
E+

1
c

∂A
∂t

)
= 0. (4.95)

As a consequence of (4.95) there exists a scalar function ϕ (the usual electrostatic
potential when B is independent of time) such that

E+
1
c

∂A
∂t

= −∇ϕ. (4.96)

Substituting equations (4.94) and (4.96) into (4.91) we obtain

F = e

{
−∇ϕ− 1

c

∂A
∂t

+
1
c
v × curl A

}
. (4.97)

We now make a second transformation. Note that

(v × curl A)i = v · ∂A
∂xi

− v · ∇Ai, i = 1, 2, 3, (4.98)
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and that

v · ∂A
∂xi

=
∂

∂xi
(v ·A), (4.99)

where, as for equation (4.90), we consider ẋ1, ẋ2, ẋ3 as independent variables.
Since finally

v · ∇Ai =
dAi

dt
− ∂Ai

∂t
, (4.100)

we can write

v × curl A = ∇(v ·A)− dA
dt

+
∂A
∂t

, (4.101)

and we arrive at the following expression for F:

F = e

{
−∇ϕ+

1
c
∇(v ·A)− 1

c

dA
dt

}
. (4.102)

Note that F can be expressed in the form3

F = −∇V +
d
dt

∇vV, (4.103)

with

V = e

{
ϕ− 1

c
v ·A

}
(4.104)

and ∇v =
∑

i (∂/∂ẋi) ei.
We have finally obtained the Lagrangian of the charge e in the electromagnetic

field (E,B):

L = T − e

{
ϕ− 1

c
v ·A

}
. (4.105)

4.8 Motion of a charge in a constant electric or magnetic field

For completeness, we examine the motion of a charge e (positive or negative)
of mass m in a constant electric field E superimposed on a field with constant
induction B.
Consider the equation

ma = e

(
E+

1
c
v ×B

)
. (4.106)

3 According to definition (4.90) the generalised potential is U = −V . However it is customary
to use the potential energy instead of the potential.
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x3

x1

x2

B

E

v0

Fig. 4.4

Choose the reference system in such a way that the origin coincides with the
initial position of the charge P (0), the axis x3 has the same direction and
orientation as B, and the axis x2 is orthogonal to both E and B, so that E1 ≥ 0
(Fig. 4.4).
If v(0) = v0, we need to study the following problem:

ẍ1 = E1 + ẋ2ω, x1(0) = 0, ẋ1(0) = v01 , (4.107)

ẍ2 = −ẋ1ω, x2(0) = 0, ẋ1(0) = v02 , (4.108)

ẍ3 = E3, x3(0) = 0, ẋ3(0) = v03 , (4.109)

where we set

e

m
Ei = Ei,

eB

mc
= ω. (4.110)

If B = 0 the motion is in a uniform electric field, and the generic trajectory
is a parabola. Suppose B =/ 0 and integrate once; this yields

ẋ1 = E1t+ ωx2 + v01 , (4.111)

ẋ2 = −ωx1 + v02 , (4.112)

ẋ3 = E3t+ v03 . (4.113)
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Equation (4.112) can be used in (4.107) to obtain an equation for the only
variable x1:

ẍ1 + ω2x1 = E1 + ωv02 . (4.114)

Set

C =
E1

ω
= c

E1
B

. (4.115)

Then the integral of equation (4.114) is given by

x1(t) = −D cos(ωt+ α) +
1
ω
(C + v02), (4.116)

and after imposing the initial conditions, we find

D cos α =
1
ω
(C + v02), (4.117)

D sin α =
1
ω
v01 , (4.118)

from which D and α are easily computed.
Equation (4.111) now yields

x2(t) = D sin(ωt+ α)− Ct− 1
ω
v01 . (4.119)

Therefore the projection of the point onto the plane normal to the magnetic field
moves in a circular trajectory, with radius

D =
1
ω

[
(v01)

2 + (C + v02)
2
]1/2

(4.120)

and frequency ω, around the centre(
1
ω
(C + v02),−Ct− 1

ω
v01

)
.

The latter moves uniformly according to E×B with velocity C defined by (4.115).
The projection motion is circular and uniform if E1 = 0 (implying C = 0). In this
case equation (4.120) defines the Larmor radius.
The motion in the x3-coordinate is due exclusively to the electric field:

x3(t) =
1
2

E3t
2 + v03t. (4.121)

Note that in correspondence with the zeros of ẋ1, given by ωtn+α = (2n+1)π/2,
one finds ẋ2(tn) = ±ωD−C, and hence if ωD > C, the motion in the x2-direction
is periodically inverted and the projection of the trajectory onto the plane x3 = 0
self-intersects (if ωD = C, it forms cusps).
As an exercise, let E3 = 0, v03 = 0 and prove that for ω → 0 equations (4.116),

(4.119) reproduce the motion in a uniform force field.
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4.9 Symmetries and conservation laws. Noether’s theorem

The invariant properties of a system with respect to the action of a group
(with one or more parameters) are called symmetries. In a Lagrangian system,
to such symmetries there correspond conservation laws, which are first integrals
of the motion of the system. We shall see as an example that conservation
of momenta corresponds to the invariance of the Lagrangian with respect to
coordinate translations, conservation of the angular momentum corresponds to
the invariance of the Lagrangian with respect to rotations, and so on. The rigorous
mathematical formulation of this relation between symmetries and conservation
laws is the content of Noether’s theorem.
Consider a Lagrangian system with l degrees of freedom; for simplicity, we

assume the system to be independent of the time t. Let L(q, q̇) be its Lagrangian.

Definition 4.3 An invertible coordinate transformation q = f(Q) is admis-
sible for a given system if and only if the Lagrangian is invariant under the
transformation, and hence if

L(q, q̇) = L(Q, Q̇). (4.122)
�

Example 4.9
If a Lagrangian has a cyclic coordinate (see Remark 4.7), it follows that it is
invariant under translations in this coordinate. �

Example 4.10
Rotations around the origin

q1 = Q1 cos α+Q2 sin α,

q2 = −Q1 sin α+Q2 cos α

are admissible for the Lagrangian

L (q1, q2, q̇1, q̇2) =
m

2
(
q̇21 + q̇22

)− V

(√
q21 + q22

)
corresponding to the plane motion of a point particle of mass m in a central
force field. �

Definition 4.4 A one-parameter s ∈ R family of invertible transformations
q = f(Q, s) is called a one-parameter group of transformations if it satisfies the
following properties:

(a) f(Q, 0) = Q, for every Q;
(b) for every s1, s2 ∈ R, f(f(Q, s1), s2) = f(Q, s1 + s2).

If for every s ∈ R the transformation q = f(Q, s) is admissible, then the group
is called admissible. �

Note that (a), (b) imply that if q = f(Q, s), then Q = f(q,−s).
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Theorem 4.4 (Noether) If a Lagrangian L(q, q̇) admits a one-parameter group
of transformations q = f(Q, s), the Lagrange equations associated with L admit
the first integral I(q, q̇) given by

I(q, q̇) =
l∑

i=1

∂L

∂q̇i

∂fi
∂s

(q, 0). (4.123)

Proof
The invariance property of the Lagrangian implies that if q(t) is a solution of
Lagrange’s equations (4.75), then Q(t, σ) = f(q(t), σ) is also a solution, ∀σ ∈ R.
This means that

d
dt

∇Q̇L(Q, Q̇) = ∇QL(Q, Q̇), ∀σ ∈ R, (4.124)

where Q̇ = (∂/∂t)Q(t, σ). In addition, the definition of an admissible transform-
ation yields

0 =
∂

∂σ
L(Q, Q̇) = ∇QL · ∂Q

∂σ
+∇Q̇L · ∂Q̇

∂σ
, (4.125)

and using equation (4.125) and multiplying equation (4.124) by ∂Q/∂σ we find

d
dt

(
∇Q̇L · ∂Q

∂σ

)
= 0. (4.126)

For σ = 0 this is exactly the invariance of I(q, q̇) along the motion. �

Example 4.11
If the Lagrangian L(q, q̇) admits the translations qk = Qk + s as transforma-
tion group, the coordinate qk is cyclic and I(q, q̇) = pk is a constant of the
motion. �

Example 4.12
If a Lagrangian L(q, q̇), where q ∈ R3, admits the rotations around the axis q1:

q1 = Q1, q2 = Q2 cos s+Q3 sin s, q3 = −Q2 sin s+Q3 cos s

as transformation group, the function

I(q, q̇) =
∂L

∂q̇2
q3 − ∂L

∂q̇3
q2 = p2q3 − p3q2

is a constant of the motion, coinciding with the component of the angular
momentum along the axis q1. �
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Example 4.13
The Lagrangian of a point particle constrained to move on a surface of revolution
around the z-axis, with no active forces acting on it, is equal to (see Example 4.1)

L(u, v, u̇, v̇) =
m

2

{ [
1 + (f ′(u))2

]
u̇2 + u2v̇2

}
.

The coordinate v is cyclic, and therefore the conjugate kinetic momentum

pv = mu2v̇

is a constant of the motion. Note that pv is equal to the component L3 of the
angular momentum pv = m(x1ẋ2 − x2ẋ1). �

Remark 4.10
There are transformations which, although not admissible, leave the equations
of motion invariant. In this case there are no associated first integrals, but the
study of the equations can help to establish interesting properties of the motion,
without explicitly solving them. �

Example 4.14
Consider a Lagrangian system

L(q, q̇) =
l∑

i=1
m

q̇2i
2

− V (q), (4.127)

where V is a homogeneous function of q1, . . . , ql of degree d:

V (αq1, . . . , αql) = αdV (q1, . . . , ql).

For every α > 0 the transformation of q, q̇ and time t:

q = αQ, t = βτ,
dq
dt

=
α

β

dQ
dτ

,

where β = α1−d/2, transforms the Lagrangian (4.127) as follows:

L̃

(
Q,

dQ
dτ

)
=

α2

β2

l∑
i=1

1
2
m

(
dQi

dτ

)2
− αdV (Q) = αdL

(
Q,

dQ
dτ

)
. (4.128)

Since these two functions are proportional, the equations of motion are invariant.
Hence, if q(t,q0, q̇0) is a solution of Lagrange’s equations associated with (4.127),
Q(τ,Q0, Q̇0) is also a solution, and therefore

Q
(
α(d/2)−1t,

1
α
q0, α−d/2q̇0

)
=

1
α
q(t,q0, q̇0)

is a solution and the two trajectories are called similar.
If d = 2 one again finds that the period of motion is independent of the

amplitude for harmonic oscillators. For the case that d = −1, corresponding to a
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Newtonian potential, and considering for simplicity circular orbits, we find that if
T is the period and l is the orbit length, the ratio l3/2/T is constant for similar
trajectories (as stated by the third law of Kepler). �

Example 4.15
Among the transformations that modify the Lagrangian but not the equations
of motion are the gauge transformations for the vector and scalar potentials
A, ϕ of the electromagnetic field (4.94), (4.96). Let f(x, t) be an arbitrary
regular function, and set

A′ = A+∇f,

ϕ′ = ϕ− 1
c

∂f

∂t
.

(4.129)

Then the definitions of the fields B, E through equations (4.94) and (4.96) are
invariant. What changes is the Lagrangian (4.105), which is transformed into

L′ = T − e

{
ϕ′ − 1

c
v ·A′

}
− e

c

df
dt

. (4.130)

As we remarked (see Remark 4.8), this generates the same motions as the former
Lagrangian.

4.10 Equilibrium, stability and small oscillations

Consider an autonomous system of differential equations of first order in Rn:

ẋ = w(x), (4.131)

where w is a regular vector field defined on Rn. Lagrange’s equations (4.40) can
be written in the form (4.131), where x represents the vector (q, q̇) in the phase
space. Indeed, after setting the equations in normal form (4.41), q̈ = χ(q, q̇), it
is enough to introduce in the phase space the field w = (q̇, χ(q, q̇)) to obtain
equation (4.131).

Definition 4.5 A point x0 is an equilibrium point if the constant function
x(t) = x0 is a solution of the system of differential equations (4.131). �

Proposition 4.3 A point x0 is an equilibrium point if and only if the vector
field w at the point is zero: w(x0) = 0.

Proof
It is trivial that at an equilibrium point, the vector field w is zero: from the
definition of an equilibrium point it follows that w(x0) = ẋ(t) = 0. Conversely,
if w(x0) = 0 then x(t) = x0 is a solution of the system for all t. �

The definition of stability of equilibrium is analogous to the definition given
in Chapter 3 for a single point.
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Definition 4.6 An equilibrium position x0 is (Lyapunov) stable if for every
neighbourhood U of the equilibrium point there exists a neighbourhood U ′ such
that, for any initial condition x(0) in U ′, the corresponding solution x(t) is in
U for every t > 0. If this stability condition does not hold, then the equilibrium
is called unstable. �

Remark 4.11
Using spherical neighbourhoods, we can equivalently define stability as follows:
for every ε > 0 there exists a number δ > 0 such that, for any initial condition
x(0) such that |x(0)− x0| < δ, |x(t)− x0| < ε for every t > 0.
Instability can be characterised by the condition that there exists an ε > 0 such

that for any fixed δ > 0 there exists an initial condition x(0) in |x(0)− x0| < δ
for which |x(t)− x0| > ε for some t > 0.
It is evident from the definitions that we are referring to stability in the future,

but it is possible to consider the analogous concept in the past by inverting the
direction of time. �

Example 4.16
Consider a system of linear equations in Rn

ẋ = Ax,

where A is a real diagonalisable n×n matrix, with constant coefficients. Suppose
that the eigenvalues λ1, . . . , λn of A are all distinct and non-zero. Then the
general integral of the equation is given by

x(t) =
n∑

j=1
cjeλjtuj ,

where u1, . . . ,un are the eigenvectors of A. The constants cj (complex in general)
are fixed by the initial conditions. Obviously x = 0 is an equilibrium position,
and it is easy to verify that it is stable if the real parts of all the eigenvalues
are non-positive: Re λj ≤ 0, j = 1, . . . , n (simply use the linear transformation
that diagonalises the matrix A). �

The analysis of the equilibrium stability for systems with one degree of freedom
is carried out in Chapter 3 (Section 3.4). We now consider the corresponding
problem for autonomous Lagrangian systems with several degrees of freedom.
As we saw (Section 4.6), if V (q) is the potential energy, the equilibrium

equations are

∂V

∂qi
= 0, i = 1, . . . , l. (4.132)

Let q be a solution of equations (4.132). We now prove the following stability
criterion, for the case of smooth constraints.

Theorem 4.5 (Dirichlet) If q is an isolated minimum of the potential energy,
the corresponding configuration is one of stable equilibrium.
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Proof
The hypotheses imply that q solves equations (4.132), and hence that it is an
equilibrium configuration. In addition, there exists a neighbourhood A ⊂ Rl of
q in which V (q) > V (q), ∀ q =/ q.
We can choose V (q) = 0. Consider now any neighbourhood B ⊂ R2l of (q, 0)

in the phase space, and for any ε > 0, define the energy sublevel set

Ωε = {(q, q̇)|T (q, q̇) + V (q) < ε}.

Recall that T (q, q̇) ≥ a0|q̇2| for some constant a0 > 0 (Theorem 4.1). Con-
sequently Ωε ⊂ Ω′

ε = {(q, q̇) | a0|q̇2| + V (q) < ε} ⊂ Mε ∩ Nε where Mε =
{(q, q̇) | |q̇| < (ε/a0)1/2}, Nε = {(q, q̇) | V (q) < ε}. Since by hypothesis, the
diameter of Mε ∩ Nε tends to zero when ε → 0, we can find ε so small that
Ωε ⊂ Ω′

ε ⊂ B ∩ (A ×Rl). On the other hand, because of conservation of energy,
every trajectory originating in Ωε must remain in Ωε. This yields the stability
condition (Definition 4.6). �

Corollary 4.2 For any holonomic system with fixed smooth constraints,
for which the active forces are only due to gravity, the stable equilibrium config-
urations occur in correspondence with isolated minima of the height of the centre
of mass. �

Example 4.17
We refer to Fig. 3.5. The isolated minima of x2, x4 of V (x) correspond to positions
of stable equilibrium. Consider for example the point (x2, 0) in the phase space,
and consider a generic neighbourhood U . Define emax ∈ (e2, e3) in such a way
that the trajectory with energy emax is entirely lying in U . The region determined
by this trajectory contains all trajectories with energy in the interval (e2, emax),
and hence the definition of stability holds. �

We now consider the motion near configurations of stable equilibrium. Rewrite
the Lagrangian of the system as

L(Q, Q̇) =
1
2

l∑
i,j=1

aij(Q)Q̇iQ̇j − V (Q), (4.133)

where there appear the vectors Q = q−q, Q̇ = q̇, with q an isolated minimum of
V (q). As we have seen, it is always possible to choose the initial conditions in such
a way that the trajectory in the phase space remains in a fixed neighbourhood of
(q, 0). Select now a neighbourhood so small that inside it one can neglect terms
of degree greater than two in the expansion of the function L(Q, Q̇). Hence
replace equations (4.133) with the quadratic approximation

L(Q, Q̇) =
1
2

(
l∑

i,j=1
aijQ̇iQ̇j −

l∑
i,j=1

V ijQiQj

)
, (4.134)



4.10 The dynamics of discrete systems. Lagrangian formalism 153

where we set

aij = aij(q),

V ij =
∂2V

∂Qi∂Qj
(q).

(4.135)

Denoting by A and V the symmetric matrices of the coefficients aij and V ij ,
respectively, the Lagrangian (4.133) can be written in matrix notation as

L(Q, Q̇) =
1
2
(Q̇TAQ̇−QTVQ), (4.136)

and the associated Lagrange equations are linear:

AQ̈+ VQ = 0. (4.137)

Assuming that the matrix V is also positive definite, we can prove the following.

Theorem 4.6 If A, V are symmetric and positive definite, there exists a linear
transformation in Rl which decouples equations (4.137) into l harmonic oscil-
lations, called normal modes of the system and whose frequencies are called
fundamental frequencies of the system.

Proof
We follow the standard procedure to find the general integral of a system of
linear ordinary differential equations with constant coefficients. Hence we seek a
solution of (4.137) of the form

Q = weiλt, (4.138)

where w is a vector in Rl to be determined and λ ∈ C. Substituting (4.138)
into (4.137) we find

eiλt(V − λ2A)w = 0

and we must therefore study the generalised eigenvalue problem

det(µA− V ) = 0. (4.139)

Accounting for multiplicity, this system has l solutions µ1, . . . , µl corresponding
to the eigenvectors w1, . . . ,wl. We prove that in this case the l roots µ1, . . . , µl

are positive. The method consists of reducing (4.137) to diagonal form, by a
sequence of linear transformations. The choice of each such transformation must
obey the criterion of symmetry conservation of the matrices of coefficients.
Since A is a symmetric, positive definite matrix, there exists a unique symmet-

ric, positive definite matrix whose square is equal to A, which we denote by A
1/2
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(the square root of A). Indeed, since A is symmetric, there exists an orthogonal
matrix S which diagonalises A:

SAS−1 = SAST =

⎛⎜⎜⎜⎝
α1 0 . . . 0
0 α2 . . . 0
...

...
. . .

...
0 0 . . . αl

⎞⎟⎟⎟⎠ , (4.140)

where α1, . . . , αl are precisely the eigenvalues of A. Since A is positive definite,
the eigenvalues are all positive, and we can define

A
1/2

= ST

⎛⎜⎜⎜⎝
√
α1 0 . . . 0
0

√
α2 . . . 0

...
...

. . .
...

0 0 . . .
√
αl

⎞⎟⎟⎟⎠S. (4.141)

It is easily verified that A
1/2

is symmetric and positive definite and that (A
1/2

)2 =
A. Moreover,

A
−1/2

= ST

⎛⎜⎜⎜⎝
1/

√
α1 0 . . . 0

0 1/
√
α2 . . . 0

...
...

. . .
...

0 0 . . . 1/
√
αl

⎞⎟⎟⎟⎠S

is also symmetric. Through the change of variables

Y = A
1/2

Q (4.142)

equation (4.137) becomes

Ÿ +A
−1/2

V A
−1/2

Y = 0, (4.143)

and hence (4.139) is equivalent to

det(A
−1/2

V A
−1/2 − µ) = 0. (4.144)

Evidently A
−1/2

V A
−1/2

is symmetric and positive definite; it follows that its
eigenvalues µ1, . . . , µl are real and positive. We conclude (see Example 4.16) that
the configuration q is of stable equilibrium for the linearised system. Setting

C = A
−1/2

V A
−1/2

, (4.145)
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if W is an orthogonal matrix, diagonalising C, so that

WTCW =

⎛⎜⎜⎜⎝
µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µl

⎞⎟⎟⎟⎠ , (4.146)

and if we define

Y = WX, (4.147)

equation (4.143) becomes

Ẍ+

⎛⎜⎜⎜⎝
µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µl

⎞⎟⎟⎟⎠X = 0. (4.148)

This equation represents l independent harmonic oscillations with frequency ωi =√
µi, i = 1, . . . , l (normal modes). The linear transformation yielding the normal

modes is hence given by

X = WT A
1/2

Q. (4.149)

�

Remark 4.12
Recall that if C is a real symmetric � × � matrix with eigenvalues (µ1, . . . , µ�),
the orthogonal matrix W diagonalising C can be constructed as follows: � ortho-
normal column vectors w(1), . . . ,w(�) such that (C − µj)w(j) = 0 can be easily
determined. The matrix W = (w(1), . . . ,w(�)) is orthogonal and

WTCW =

⎛⎜⎜⎜⎝
µ1 0 . . . 0
0 µ2 . . . 0
...

...
. . .

...
0 0 . . . µl

⎞⎟⎟⎟⎠,

As an example, if C =
(
2 1
1 2

)
, µ1 = 3, µ2 = 1,

w(1) =
(
1/

√
2

1/
√
2

)
, w(2) =

(
1/

√
2

−1/√2

)
, W =

(
1/

√
2 1/

√
2

1/
√
2 −1/√2

)
. �

Example 4.18
Consider a point particle of mass m moving under the action of its weight on a
surface of parametric equations

x = (x(q1, q2), y(q1, q2), z(q1, q2)).
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The Lagrangian of the system is given by

L(q1, q2, q̇1, q̇2) =
1
2
m
(
E(q1, q2)q̇21 + 2F (q1, q2)q̇1q̇2 +G(q1, q2)q̇22

)
−mgz(q1, q2),

where E, F and G are the coefficients of the first fundamental form of the
surface. A point (q1, q2) is an equilibrium point for the system only if it is a
critical point of z = z(q1, q2). The Lagrangian of the linearised equations is

L =
1
2

(
m
(
EQ̇2

1 + 2FQ̇1Q̇2 +GQ̇2
2

)
− 1

2
mg

(
z11Q

2
1 + 2z12Q1Q2 + z22Q

2
2
))

,

where Q = q−q, E, F , G are the coefficients of first fundamental form evaluated
at q, and

z11 =
∂2z

∂q21
(q1, q2) , z12 =

∂2z

∂q1∂q2
(q1, q2) , z22 =

∂2z

∂q22
(q1, q2) .

The fundamental frequencies of the system, ω1 and ω2, are the solutions of the
eigenvalue problem with characteristic polynomial

det
(
ω2

(
E F
F G

)
− g

(
z11 z12
z12 z12

))
= 0.

On the other hand, denoting by e, f and g the coefficients of the second
fundamental form of the surface (see Appendix 3) evaluated at (q1, q2), one
verifies that

e = z11, f = z12, g = z22.

For example,

e = z11

(
∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1

)/
(EG− F

2
),

but in (q1, q2) we have

∂z

∂q1
=

∂z

∂q2
= 0,

and therefore

EG− F
2
=

[(
∂x

∂q1

)2
+
(
∂y

∂q1

)2][(
∂x

∂q2

)2
+
(
∂y

∂q2

)2]

−
[(

∂x

∂q1

)(
∂x

∂q2

)
+
(
∂y

∂q1

)(
∂y

∂q2

)]2
=

∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1
,

implying e = z11.
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The principal curvatures k1 and k2 of the surface (Appendix 3) at the equilib-
rium point are the solutions of the eigenvalue problem of the first fundamental
form with respect to the second, i.e. the roots of the characteristic polynomial

det
(
k

(
E F
F G

)
−
(
e f

f g

))
= det

(
k

(
E F
F G

)
−
(
z11 z12
z12 z22

))
= 0.

It follows that the principal curvatures are directly proportional to the square of
the fundamental frequencies of the linearised equations

k1 =
ω21
g
, k2 =

ω22
g
. (4.150)

�

We now compute the fundamental frequencies for the case that l = 2, and that
the matrix A is diagonal:

A =
(
α1 0
0 α2

)
, α1, α2 > 0, (4.151)

and of course V is symmetric and positive definite. The Lagrangian of the
linearised motion is then given by

L2(Q, Q̇) =
1
2

(
α1Q̇

2
1 + α2Q̇

2
2 − V 11Q

2
1 − 2V 12Q1Q2 − V 22Q

2
2

)
, (4.152)

and the matrix (4.145) is

C =

⎛⎜⎜⎜⎝
V 11

α1

V 12√
α1α2

V 12√
α1α2

V 22

α2

⎞⎟⎟⎟⎠ .

The eigenvalue equation is

µ2 −
(
V 11

α1
+

V 22

α2

)
µ+

V 11V 22 − V
2
12

α1α2
= 0.

We find the two frequencies

ω± =

⎧⎨⎩1
2

(
V 11

α1
+

V 22

α2

)
± 1

2

[(
V 11

α1
− V 22

α2

)2
+ 4

V
2
12

α1α2

]1/2⎫⎬⎭
1/2

. (4.153)

Obviously if V 12 = 0 (hence if the original system is in diagonal form) we find

ω+ =
√
V 11/α1, ω− =

√
V 22/α2.
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Example 4.19
A cylindrical container of height h is closed at the boundary and is divided into
three sections by two pistons of mass m, which can slide without friction. Each
section contains the same amount of gas, for which we suppose the law Pv =
constant is applicable. Write the Lagrange equations describing the motion of
the two pistons, find the stable equilibrium configuration and study the small
oscillations of the system around it.

Let x1, x2 indicate the distance of the pistons from one of the two bases. Then
(x1 < x2), on the first piston there acts the force

F1 =
c

x1
− c

x2 − x1
, c > 0 constant,

and on the second piston the force

F2 =
c

x2 − x1
− c

h− x2
.

Use the dimensionless variables fi = hFi/c, ξi = xi/h, i = 1, 2, and write

f1 =
1
ξ1

− 1
ξ2 − ξ1

, f2 =
1

ξ2 − ξ1
− 1

1− ξ2
.

This is a conservative system of forces, with potential V (ξ1, ξ2) = − log[ξ1(ξ2 −
ξ1)(1 − ξ2)]. Recall that V is expressed in dimensionless variables while the
corresponding physical quantity is V̂ = cV . The Lagrangian in the original
variables is L = 1

2m(ẋ21 + ẋ22) − cV and can be replaced by the dimensionless
Lagrangian

L̂ =
1
2

[(
dξ1
dτ

)2
+
(
dξ2
dτ

)2]
− V (ξ1, ξ2),

by introducing the change of time-scale τ = t/t0, with t20 = mh2/c. The equations
of motion become

d2ξ1
dτ2

=
1
ξ1

− 1
ξ2 − ξ1

,
d2ξ2
dτ2

=
1

ξ2 − ξ1
− 1

1− ξ2
.

It is easily verified that the only equilibrium configuration is given by ξ1 = 1
3,

ξ2 = 2
3. The Hessian matrix of V (ξ1, ξ2) is⎛⎜⎜⎝

1
ξ21

+
1

(ξ2 − ξ1)2
− 1
(ξ2 − ξ1)2

− 1
(ξ2 − ξ1)2

1
(1− ξ2)2

⎞⎟⎟⎠ .



4.11 The dynamics of discrete systems. Lagrangian formalism 159

At the equilibrium, this becomes

V = 9
(

2 −1
−1 1

)
,

which is positive definite, with eigenvalues given as solutions of λ2 − 27λ+ 81 =
0, namely λ1 = 9

2 (3 − √
5), λ2 = 9

2 (3 +
√
5). Hence the equilibrium is stable.

The Hessian matrix of the kinetic energy is the identity matrix. Therefore the
equations describing small oscillations are

d2

dτ2
Q+ VQ = 0, with Q =

(
ξ1
ξ2

)
,

and
√
λ1,

√
λ2 give the dimensionless frequencies directly (we obtain ωi =

√
λi/t0,

i = 1, 2). The normal modes are obtained by setting X = WTQ, where W is
such that

WTVW =
(
λ1 0
0 λ2

)
.

We easily find that

W =
1

51/4

⎛⎜⎜⎜⎜⎝
(

2√
5− 1

)1/2 (
2√
5 + 1

)1/2
−
(√

5− 1
2

)1/2 (√
5 + 1
2

)1/2

⎞⎟⎟⎟⎟⎠ .

By writing Q = WX we can describe the small motions of the pistons as
combinations of the harmonic motions X1, X2.

4.11 Lyapunov functions

In the previous section we have introduced the concept of stability of equilibrium
points, for the system of differential equations (4.131). In particular, we have
analysed the stability of the equilibrium of holonomic systems, with smooth fixed
constraints, and subject to conservative forces. We now discuss some extensions
and one additional criterion for stability. We start by observing that the conditions
guaranteeing the stability of the equilibrium in the case of conservative forces
must still hold if we introduce dissipative forces.

Theorem 4.7 Theorem 4.4 is still valid if in addition to forces with potential
energy V (q) there exist dissipative forces.
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Proof
The proof of Theorem 4.4 is based only on the fact that the trajectories originating
within the set Ωε remain there for all subsequent times. This is true if energy is
conserved, but also if energy is dissipated. �

Dissipation helps stability, and in addition it may have the effect of bringing
the system back to the equilibrium configuration, starting from a small enough
perturbation, either in finite time or asymptotically for t → +∞. This is the case
of asymptotic stability (see Definition 3.5).

Definition 4.7 A point x0 of stable equilibrium for the system (4.131) is asymp-
totically stable if there exists a δ > 0 such that for every x(0) in the neighbourhood
|x(0)− x0| < δ one has |x(t)− x0| → 0 for t → +∞. �

Example 4.20
For the harmonic damped motion (3.35) the point x = 0 is a point of equilibrium,
and it is asymptotically stable (see (3.38)). �

Recall the case of the linear system ẋ = Ax (Example 4.14); in this case we
can deduce that x = 0 is an equilibrium point which is asymptotically stable if all
eigenvalues λj of the matrix A have negative real part: Re λj < 0, j = 1, . . . , n.
The Dirichlet stability criterion (Theorem 4.4) is a special case of a well-known
method for analysing stability, based on the so-called Lyapunov function. We
consider again the system (4.131) and an equilibrium point x0; with reference to
these we give the following definition.

Definition 4.8 Let Ω be a neighbourhood of x0, and let Λ ∈ C1(Ω) be a function
with an isolated minimum at x0 (assume Λ(x0) = 0). If for the field w(x) of
system (10.1) we have that

w(x) · ∇Λ(x) ≤ 0, ∀ x ∈ Ω, (4.154)

then Λ is a Lyapunov function for the system. �

Note that the meaning of (4.154) is that

d
dt
Λ(x(t)) ≤ 0

along the solutions x(t) of the system (4.131).
Clearly for any holonomic system the total energy is a Lyapunov function in

the phase space, in a neighbourhood of a local isolated minimum of the potential
energy.
The following theorem has a proof analogous to the proof of Theorem 4.4.

Theorem 4.8 If x0 is such that there exists a Lyapunov function for the system
(4.131) then it is a stable equilibrium point. �

A more specific case is the following.



4.11 The dynamics of discrete systems. Lagrangian formalism 161

Theorem 4.9 If

w(x) · Λ(x) < 0, x =/ x0, x ∈ Ω, (4.155)

then x0 is asymptotically stable.

Proof
Consider the sets

Aε = {x ∈ Ω | Λ(x) ≤ ε}.

Then Aε′ ⊂ Aε if ε′ < ε and moreover diam Aε → 0 for ε → 0. Since along
the trajectories of (4.131) Λ̇ < 0, any trajectory originating in Ω must cross
the boundary ∂Aε with ε decreasing. If the point tends to ∂Aε∗ for some ε∗ > 0,
we would have Λ̇ ≤ −α for some α > 0 and ∀ t > 0, which cannot hold; indeed,
this would yield Λ → −∞, contradicting the hypothesis that Λ(x0) = 0 is a
minimum. �

Example 4.21
For the damped harmonic oscillator (3.35), or equivalently for the system

ẋ = w, ẇ = −(2βw + ω2x), β > 0, (4.156)

Λ(x,w) = 1
2 (w

2+ω2x2) has an isolated minimum at the equilibrium point and Λ̇ =
−2βw2 < 0 away from the origin. We can therefore apply Theorem 4.8. �

Lyapunov’s method can be invoked to establish instability.

Theorem 4.10 Let x0 be an equilibrium point for the system (4.131). Suppose
that there exist a neighbourhood Ω of x0 and a function Λ∗ ∈ C1(Ω) (Λ∗(x0) = 0)
such that

w(x) · ∇Λ∗(x) > 0, x =/ x0, x ∈ Ω, (4.157)

and that x0 is an accumulation point for the positivity set of Λ∗. Then x0 is
unstable.

Proof
Consider a ball Bδ(x0) of centre x0 and radius δ such that Bδ ⊂ Ω and let
x(0) ∈ Bδ(x0) be such that Λ∗(x(0)) > 0. Due to (4.157) the trajectory remains
in the set M0, where Λ∗(x) > Λ∗(x(0)). In the intersection of this set with
Bδ(x0) the scalar product w · ∇Λ∗ has a positive infimum, while in this set Λ∗

is bounded. It follows that x(t) must leave Bδ in a finite time. �

Example 4.22
Consider the system

ẋ = w, ẇ = ω2x (4.158)
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for which (0, 0) is the (only) equilibrium point. Consider the function Λ∗ = xw.
In the plane (x, ω) this function is positive in the first and third quadrant and

w
∂ Λ∗

∂x
+ ω2x

∂ Λ∗

∂w
= w2 + ω2x2 > 0

away from the origin. Instability follows. �

Another useful result on instability, whose assumptions are less restrictive than
those of Theorem 4.9 is the following.

Theorem 4.11 (Četaev) Suppose that there exists an open connected set Ω1
(possibly unbounded) with x0 ∈ ∂ Ω1, and a function Λ∗ ∈ C1(Ω1), such that
Λ∗ > 0 in Ω1 and Λ∗(x0) = 0, for which (4.157) holds inside Ω1. Then x0 is
unstable.

Proof
This is just an extension of the previous theorem. With x(0) ∈ Ω1, the trajectory
cannot reach the boundary of Ω1 (as Λ∗ is increasing) and cannot stay indefinitely
inside Bδ(x0) ∩M0. �

Example 4.23
The origin is the only point of equilibrium for the system

ẋ = w, ẇ = ω2|x|. (4.159)

The function Λ∗ = xw is such that Λ̇
∗ = ω2x|x| + w2 and it satisfies the

hypotheses of Theorem 4.10, with Ω1 taken equal to the first quadrant (note
that the hypotheses of Theorem 4.9 are not satisfied). �

4.12 Problems

1. Two point particles with mass, (P1,m1), (P2,m2), are constrained on two
vertical lines r1, r2, at a distance d. The two points attract each other with an
elastic force of constant k and both are attracted by a fixed point O, placed
at an equal distance from the two lines, with an elastic force of equal constant.
Write down Lagrange’s equations and show that the motion can be decomposed
into two harmonic oscillations around the equilibrium configuration. Determine
also the constraint reactions.

2. In a horizontal plane, two point particles (P1,m1), (P2,m2) attract each
other with an elastic force of constant k and are constrained on a smooth circle of
centre O and radius R. They are also attracted by two points O1, O2, respectively,
with an elastic force of equal constant. The latter points are at a distance 2R
from O and such that the radii O1−O and O2−O form a right angle. Find the
equilibrium configurations of the system and study the small oscillations around
the stable equilibrium configuration.
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3. Find the normal modes when the number of degrees of freedom of the
system is equal to two, and the matrix V is diagonal.

4. In a horizontal plane two point particles (P1,m1), (P2,m2) are attracted
respectively by two fixed points O1, O2 in the plane with elastic forces of equal
constant. The two particles are subject to the rigidity constraint |P1 − P2| =
|O1 −O2|. Find the normal modes of the system.

5. Determine the fundamental frequencies and the normal modes of oscillation
of a system of � equal point particles constrained to move on a line and sequen-
tially linked by springs with an elastic constant equal to k. The first particle
is elastically attracted by the origin with a constant k and the last particle is
elastically attracted by a fixed point at a distance a > 0 from the origin with a
constant k.

Solution
Let qi be the coordinate of the ith particle. Then the equilibrium positions are
qi = ai/(�+ 1), i = 1, . . . , �, the fundamental frequencies are

ωi = 2

√
k

m
sin

(
π

2
i

�+ 1

)
and the normal modes are

qi =
ai

�+ 1
+

�∑
j=1

√
2

�+ 1
sin

(
jiπ

�
+ 1

)
Xi.

6. Consider l equal point particles P1, P2, . . . , Pl (l > 2) on a circle of radius R
and centre O. All particles move without friction and the point Pi is attracted
by its neighbouring points Pi−1, Pi+1 with an elastic force (set P0 = Pl). Write
down the potential of the system and prove that the configurations in which
neighbouring rays form equal angles are equilibrium configurations. Study its
stability (up to rotations). Compute the fundamental frequencies for l = 3. What
is the general procedure?

7. A point particle of mass m is constrained to move along a curve of equation
ζ = Aξ2n, where A > 0 and n ≥ 1 is an integer. The curve rotates in three-
dimensional Euclidean space with angular velocity ω around the z-axis and at
time t = 0 belongs to the vertical (x, z) plane. Prove that, if ξ is chosen as the
generalised coordinate, the Lagrangian of the system is equal to

L =
m

2

(
1 + 4n2A2ξ4n−2

)
ξ̇2 −mgAξ2n − m

2
ω2ξ2.

Prove that if n = 1 the only equilibrium position of the system is ξ = 0; the
equilibrium is stable if ω2 < 2gA, and unstable otherwise. If n > 1 then

ξ = ±
(

ω2

2ngA

)1/(2n−2)

are positions of stable equilibrium, while ξ = 0 is unstable. Compute the
frequencies of the small oscillations around the stable equilibrium positions.
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8. A point particle of mass m is constrained to move on an ellipsoid of
equation

ξ2

a2
+

η2 + ζ2

b2
= 1,

where a > b > 0. The ellipsoid rotates in space around the y-axis with angular
velocity ω. At the instant t = 0 the principal axes ξ, η and ζ coincide with the
axes x, y and z. Prove that, after setting

ξ = a cos θ, η = b sin θ sin ϕ, ζ = b sin θ cos ϕ,

the kinetic energy of the point is T = T2 + T1 + T0, where

T2 =
m

2

[
(a2 sin2 θ + b2 cos2 θ)θ̇2 + b2 sin2 θϕ̇2

]
,

T1 = abmω[cos ϕθ̇ − sin θ cos θ sin ϕϕ̇],

T0 =
m

2

[
a2ω2 cos2 θ + b2ω2 sin2 θ cos2 ϕ

]
.

9. Two point particles of mass m constrained to the vertical axis mutually
interact with an elastic force of constant k. The first point is also elastically
attracted to the point z = 0 by a spring of constant k. Let z1 and z2 be the
coordinates of the two points. Prove that the Lagrangian of the system is

L =
m

2

(
ż21 + ż22

)
− k

2

[
z21 + (z21 − z22)

]
−mgz1 −mgz2.

Determine the equilibrium positions, discuss their stability and compute the
fundamental frequencies of the small oscillations around the equilibrium positions,
and the normal modes.
10. A point particle of mass m and electric charge e is in motion in space

under the action of a central field with potential energy V and of a magnetic field
B = (0, 0, B). Prove that if the initial velocity is v = (v1, v2, 0) the motion takes
place in the (x, y) plane. Write the Lagrangian in the plane polar coordinates
(r, ϕ), and prove that the coordinate ϕ is cyclic. Use this fact to reduce the
problem to one-dimensional motion and find the trajectories in the case V (r) =
1
2ω

2r2.
11. A point particle P of mass m is constrained to move along the parabola

y = a + bx2, with a, b being given positive constants. A point Q of mass m
is constrained to move along the line y = (tanα)x. P and Q interact with an
attractive elastic force of constant k. Write the expression for the Lagrangian
and find the equilibrium positions depending on the parameter α. Study the
stability and compute the frequency of the small oscillations around the stable
equilibrium position.
12. A point particle of mass m moves on a torus of equation

x2 + y2 + z2 − 2a
√
y2 + z2 + a2 − b2 = 0,
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where 0 < b < a, under the action of the force due to its weight F = (0, 0,−mg).
Write down the Lagrangian, find the equilibrium positions and study their sta-
bility. Compute the principal curvature of the torus at the points (0, 0,−a− b),
(0, 0,−a+ b), (0, 0, a− b), (0, 0, a+ b).
13. A point particle of unit mass is constrained to move on the sphere x2 +

y2 + z2 = 1 under the action of the force field F = (−ax, ay,−bz), where a,
b are given constants. Write down the Lagrangian and reduce the problem to
one-dimensional motion.

4.13 Additional remarks and bibliographical notes

The theory of stability is much more extensive than that presented in Section 4.10.
The concept of stability is very important when studying all phenomena modelled
by systems of differential equations of the same kind as system (4.131). It is not
surprising then that the literature on the subject is very extensive, and that
research in this field is still very active. The beginning of the theory is in a
memoir, published in 1892, by A. Lyapunov (in Russian).
The book of La Salle and Lefschetz (1961) is a particularly simple and concise

read. In addition, we note a recent book of Amann (1990), containing a vast
bibliography.
Finally, we recall that Definition 4.1 of a holonomic system with smooth

constraints is traditionally given by introducing the so-called virtual (infinitesimal)
displacements instead of the virtual velocities, and hence the definition is known
as the virtual work principle.

4.14 Additional solved problems

Problem 1
Consider a rigid plane plate, bounded and with a smooth boundary, lying in a
vertical plane. The boundary γ (or a part of it) of the plate rolls without sliding
on a horizontal line, with respect to which the plate lies in the upper half-plane
(the ascending orientation on the vertical is assumed as the positive orientation).
In an equilibrium configuration the centre of mass G is on the vertical of the
contact point O (Fig. 4.5).

(i) Prove that the stability condition for the equilibrium is that the height h of
the centre of mass is less than the curvature radius k−1

0 of γ at O.
(ii) Compute the period of small oscillations under the above hypotheses.

Solution
(i) With reference to Fig. 4.5, let us compute the height of the centre of mass

in the configuration when the contact point on the supporting line is moved
from O to C. Equivalently we can compute it in the frame of reference t,n,
the tangent and principal normal unit vectors to γ at C.
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G

O x

Fig. 4.5

If the parametric equations of γ are x = f(s), y = g(s), we are in the
conditions ensuring that at the origin O

f(0) = 0, f ′(0)= 1, f ′′(0) = 0,

g(0) = 0, g′(0)= 0, g′′(0) = k(0) = k0.

In addition along all of the curve, by the orthogonality of n and t, f ′′ = −kg′,
g′′ = kf ′. The coordinates ξ0, η0 of O in the system (C, t,n) are obtained
from C −O = fe1 + ge2 = −(ξ0t+ η0n), from which it follows that

ξ0 = −(ff ′ + gg′), η0 = fg′ − gf ′.

The coordinates of G can be found from

G−O = he2 = (ξG − ξ0)t+ (ηG − η0)n.

We require the height

ηG = η0 + hf ′ = fg′ − gf ′ + hf ′.

By differentiation we find

η′
G = fg′′ − gf ′′ + hf ′′ = k(ff ′ + gg′ − hg′)

(which vanishes at s = 0), and

η′′
G = k′(ff ′ + gg′ − hg′) + k[1 + k(g − h)f ′ − kfg′],

which yields

η′′
G(0) = k0 − k20h.
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The stability condition is η′′
G(0) > 0, and hence h < k−1

0 , proving (i). In the
case that hk0 = 1 we can compute η′′′

G and find η′′′
G (0) = −k′(0), and hence

for stability we must have that k′(0) = 0. Computing ηIVG (0) = −k′′(0) we
find the stability condition k′′(0) < 0, etc.

(ii) The potential energy is

V (s) = mĝηG(s)

(m is the mass of the plate, ĝ is the acceleration due to gravity). The
kinetic energy is T = 1

2I(s)ϕ̇
2, where I(s) denotes the moment of inertia

with respect to the rotation axis. Let ϕ be the angle that the vector G−O
makes with the vertical direction. We then find cosϕ = f ′(s), sinϕ = g′(s).
By differentiating the latter with respect to time we obtain ϕ̇ = (g′′/f ′)ṡ. For
I(s) we have I(s) = m(G−C)2+ IG, where IG is the moment of inertia with
respect to the axis normal to the plate for G. Since ξG = −(ff ′ + gg′) + hg′

this yields (G−C)2 = ξ2G + η2G = f2 + (h− g)2 (see also Fig. 4.5). Therefore,
the Lagrangian is

L(s, ṡ) =
1
2

{
m[f2 + (h− g)2] + IG

}
k2ṡ2.

Its quadratic approximation is

L(s, ṡ) =
1
2

(
mh2 + IG

)
k20 ṡ

2 − 1
2
mĝ

(
k0 − k20h

)
s2,

producing harmonic motion s̈+ ω2s = 0 of frequency

ω =
[
ĝ(1− k0h)
k0(h2 + δ2G)

]1/2
, δ2G = IG/m (k0h < 1).

In the degenerate case ηG(s) = constant (circular profile of radius h = R
with G at the centre) we find f2 + (h − g)2 = R2, g′′/f ′ = 1/R2 and for
the motion ṡ = constant. In the case k0h = 1, k′′

0 < 0 the coefficient of
ṡ2 is approximated by 1

2 (mh2 + IG)k20 to O(s3), and hence the fourth-order
approximation of the Lagrangian is

L(s, ṡ) =
1
2

(
mh2 + IG

)
k20 ṡ

2 +
1
4!
mĝk′′

0 s
4,

and the energy integral

1
2

(
mh2 + IG

)
k20 ṡ

2 +
1
4!
mĝ|k′′

0 |s4 = E

yields the solution in the form

A

∫ s(t)

0

ds√
E −B2s4

= t, A2 =
1
2

(
mh2 + IG

)
k20, B2 =

1
4!
mĝ|k′′

0 |
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if s(0) = 0, ṡ(0) =
√
E/A, from which we can compute the period

θ = 4A
∫ (E/B2)1/4

0

ds√
E −B2s4

.

Apply these results to the following homogeneous systems: an arc of a circle,
of an ellipse, and of a cycloid; a half-disc; a disc with a regular circular, but
not concentric, hole; and the set bounded by an arc of a parabola and a
segment orthogonal to the axis.

Problem 2
A point particle (P,m) is constrained to move on the smooth paraboloid z =
c(x2 + y2), c > 0, under the action of gravity.

(i) Write down the Lagrangian.
(ii) Prove that the component Lz of the angular momentum is a first integral

of the motion.
(iii) Find the value of Lz for which the circle z = z0 > 0 is a trajectory and find

the corresponding motion.
(iv) Discuss the stability of circular motions and study the linear perturbations

around them.

Solution
(i) The Lagrangian is

L =
1
2
m
[
ẋ2 + ẏ2 + 4c2(xẋ+ yẏ)2

]
−mgc(x2 + y2).

It is convenient to express it in polar coordinates (r, ϕ):

L =
1
2
m
(
ṙ2 + r2ϕ̇2 + 4c2r2ṙ2

)
−mgcr2.

(ii) Lz = xẏ − yẋ is a first integral because the quantities

ẋ2 + ẏ2, 2(xẋ+ yẏ) =
d
dt
r2, x2 + y2 = r2

are invariant under the action of the group of rotations around the z-
axis, which is an admissible one-parameter group of symmetries for the
Lagrangian.
On the other hand, writing the Lagrange equations in polar coordinates, we
obtain:

(1 + 2c2r2)r̈ + 2gcr − rϕ̇2 = 0,

d
dt
(r2ϕ̇) = 0.
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The second equation expresses the conservation of Lz = r2ϕ̇. Hence the first
equation can be written as

(1 + 2c2r2) r̈ + 2gcr − L2z
r3

= 0.

(iii) From the last equation, imposing the condition that r2 = z0/c, we find that
the required value of Lz is

L∗
z = z0

√
2g
c
.

(iv) Let us first study the perturbations keeping the value Lz = L∗
z
4 fixed.

Writing

r = r0 + ρ

(
r0 =

√
z0
c

)
,

1
r3

� 1
r30

(
1− 3

ρ

r0

)
,

the equation for first-order perturbations is

(1 + 2c2r20)ρ̈+ 2gcρ+ 3
L∗
z
2

r40
ρ = 0.

Therefore the perturbations are harmonic oscillations with frequency

ω = (8gc)1/2 (1 + 2c2r20)
−1/2 .

Allowing also perturbations of Lz = L∗
z(1 + ε) with ε � 1, to first order we

find

(1 + 2c2r20)ρ̈+ (8gc+ 12gcε)ρ = 0.

This equation naturally describes the same oscillations as before, but with
respect to the equilibrium orbit corresponding to the perturbed value of Lz.

Problem 3
A homogeneous circle of mass M and radius R rolls without friction in a vertical
plane along a horizontal line. A rod of mass m and length � < 2R is constrained
in such a way that its ends can slide with no friction on the circle. The centre O
of the circle is attracted by a fixed point C, at a distance R from the horizontal
line, with an elastic force. The system is subject to gravity.

(i) Write down Lagrange’s equations.
(ii) Study the equilibrium configurations.
(iii) Study the small oscillations around the configuration of stable equilibrium.

4 After reading Chapter 10, prove that Lz is an integral independent of the Hamiltonian.
Therefore Lz and the total energy E can be chosen independently.
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Solution
(i) For the circle consider the angular coordinate ϕ which a radius forms with

the vertical, in such a way that ϕ = 0 if O = C. For the rod, take the
angular coordinate ψ identified by the angle between the vertical and the
normal to the rod. Denote by h =

√
R2 − �2/4 the distance between O and

the centre of mass G of the rod. The coordinates of O are (Rϕ,R), the
coordinates of G are

xG = Rϕ+ h sinψ, yG = R − h cosψ.

The kinetic energy of the system is

T =
1
2

· 2MR2ϕ̇2 +
1
2
1
12

m�2ψ̇2 +
1
2
m
(
R2ϕ̇2 + h2ψ̇2 + 2Rh cosψϕ̇ψ̇

)
.

The potential energy is

V =
1
2
kR2ϕ2 +mg(R − h cosψ).

Note that the Hessian matrix of T is

HT =

⎛⎝(m+ 2M)R2 mRh cosψ

mRh cosψ m

(
�2

12
+ h2

)⎞⎠ .

Verify that this matrix is positive definite (since (m + 2M)R2 > 0, it is
enough to verify that det(HT ) > 0). Lagrange’s equations are

(2M +m)R2ϕ̈+mRh cosψψ̈ −mRh sinψψ̇2 + kR2ϕ = 0,

mRh cosψϕ̈+
(
R2

12
+ h2

)
sin ψ̈ −mRh sinψϕ̇ψ̇ +mgh sinψ = 0.

(ii) It can be easily verified that the equilibrium equations are

ϕ = 0, sinψ = 0.

For ϕ = 0, ψ = 0 the Hessian matrix of V is

HV (0, 0) =
(
kR2 0
0 mgh

)
(stable equilibrium), while for ϕ = 0, ψ = π

HV (0, 0) =
(
kR2 0
0 −mgh

)
(unstable equilibrium).
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(iii) The equations of motion linearised around ϕ = 0, ψ = 0 are⎛⎝(2M +m)R2 mRh

mRh m

(
�2

12
+ h2

)⎞⎠(
ϕ̈

ψ̈

)
+
(
kR2 0
0 mgh

)(
ϕ

ψ

)
= 0.

In the second term there appears a diagonal matrix. After writing the system
in the form

H0
T ẍ+H0

V x = 0,

it is convenient to proceed as in Section 4.10 (but interchanging the
procedures applied to the two matrices). Consider

(H0
V )

1/2 =
(√

kR 0
0

√
mgh

)
and its inverse

(H0
V )

−1/2 =
(
1/

√
kR 0
0 1/

√
mgh

)
,

and define y = (H0
V )

1/2x. Then the system is transformed to

(H0
V )

−1/2H0
T (H

0
V )

−1/2ÿ + y = 0.

Now let S be the orthogonal transformation which diagonalises the matrix
C = (H0

V )
−1/2H0

T (H
0
V )

−1/2 and set y = SZ. The system is now transformed
to (

λ2 0
0 λ1

)
Z̈+ Z = 0,

where λ1, λ2 are the eigenvalues of the matrix C. The frequencies of the
normal modes are 1/

√
λ1, 1/

√
λ2.

We can solve the problem in general by considering

A =
(
a11 a12
a12 a22

)
in place of H0

T (where a12 �= 0), and

B =
(
γ1 0
0 γ2

)
instead of H0

V . The matrix C has the form

C =

⎛⎜⎝
a11
γ1

a12√
γ1γ2

a12√
γ1γ2

a22
γ2

⎞⎟⎠
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and its eigenvalues are

λi =
1
2

⎧⎨⎩a11
γ1

+
a22
γ2

+ (−1)i−1
[(

a11
γ1

+
a22
γ2

)2
− 4

det(A)
γ1γ2

]1/2⎫⎬⎭ , i = 1, 2.

The orthonormal eigenvectors of C,
(
αi

βi

)
, i = 1, 2, can be found by solving

the systems (i = 1, 2)

a11
γ1

αi +
a12√
γ1γ2

βi = λiαi,

α2i + β2i = 1.

Setting

µi =
√
γ1γ2

a12

(
λi − a11

γ1

)

=
1

2a12

⎧⎨⎩ξa22 − 1
ξ
a11 + (−1)i−1

[(
ξa22 +

1
ξ
a11

)2
− 4detA

]1/2⎫⎬⎭, i = 1, 2,

with ξ =
√
γ1/γ2, the eigenvectors are

(
1/
√
1 + µ2i

µi/
√
1 + µ2i

)
. The orthogonal

matrix S diagonalising C is

S =

⎛⎜⎜⎝
1√

1 + µ21

1√
1 + µ22µ1√

1 + µ21

µ2√
1 + µ22

⎞⎟⎟⎠
and the normal modes are

z = STB1/2x =

⎛⎜⎜⎜⎝
(

γ1
1 + µ21

)1/2
µ1

(
γ2

1 + µ21

)1/2
(

γ1
1 + µ22

)1/2
µ2

(
γ2

1 + µ22

)1/2
⎞⎟⎟⎟⎠x.

To complete the solution of the problem under consideration it is now
sufficient to substitute back.

Problem 4
A point particle (P1,m) moves along the circle

x1 = R cosϕ, y1 = R sinϕ
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in a horizontal plane. A second point (P2,m) is constrained on the curve

x2 = R cosψ, y2 = R sinψ, z2 = h sinψ.

The two points interact with an elastic force of constant k; the constraints are
smooth. Consider the following three cases:

(i) no gravity, P1 fixed in the position ϕ = π/2;
(ii) no gravity, P1 free to move on the circle;
(iii) non-zero gravity, P1 free to move on the circle.

Then find what follows.

(a) For case (iii) write down the Lagrangian and Lagrange’s equations.
(b) Study the equilibrium in all cases.
(c) How can the fundamental frequencies around the stable equilibrium config-

uration be found?

Solution
(a) Since |P1 − P2|2 = R2[2 − 2 cos(ϕ − ψ)] + h2 sin2 ψ, the potential energy in

case (iii) is

V (ϕ,ψ) =
1
2
kR2 (γ2 sin2 ψ − 2 cos(ϕ− ψ)

)
+mgh sinψ,

with γ = h/R. For the kinetic energy we have

T =
1
2
mR2

[
ϕ̇2 + (1 + γ2 cosψ)ψ̇2

]
.

It follows that the Lagrangian is given by

L =
1
2
R2

[
ϕ̇2 + (1 + γ2 cosψ)ψ̇2

]
− 1

2
kR2 (γ2 sin2 ψ − 2 cos(ϕ− ψ)

)−mgh sinψ

and Lagrange’s equations are

mR2ϕ̈+ kR2 sin(ϕ− ψ) = 0,

mR2[(1 + γ2 cosψ)ψ̈ − γ2 sinψψ̇2]

+ kR2
[
1
2
γ2 sin 2ψ − sin(ϕ− ψ)

]
+mgh cosψ = 0.

(b) Case (i) [g = 0, ϕ = π/2]

V =
1
2
kR2 (γ2 sin2 ψ − 2 sinψ

)
,

V ′ = kR2(γ2 sinψ cosψ − cosψ),

V ′′ = kR2(γ2 cos 2ψ + sinψ).
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The equilibrium corresponds to cosψ = 0 and also to γ2 sinψ = 1, if γ > 1.
For ψ = π/2 we have V ′′ = kR2(1 − γ2); thus we get a stable equilibrium
if γ < 1, and an unstable equilibrium if γ > 1. For ψ = −π/2 we have
V ′′ = −kR2(1 + γ2); thus we get an unstable equilibrium. If γ > 1, let
ψ∗ = arcsin(1/γ2); then

for ψ = ψ∗, V ′′ = kR2
(
γ2 − 1

γ2

)
> 0 ⇒ stable equilibrium,

for ψ = π − ψ∗, as above.

Note that if γ = 1 we have ψ∗ = π−ψ∗ = π/2, with V ′′(π/2) = V ′′′(π/2) = 0,
V (IV)(π/2) > 0, and hence stability follows (even if the oscillations are not
harmonic).

Case (ii) [g = 0]

V =
1
2
kR2 (γ2 sin2 ψ − 2 cos(ϕ− ψ)

)
,

∂V

∂ϕ
= kR2 sin(ϕ− ψ),

∂V

∂ψ
= kR2

(
1
2
γ2 sin 2ψ − sin(ϕ− ψ)

)
,

and therefore the equilibrium equations can be written as

sin(ϕ− ψ) = 0, sin 2ψ = 0,

with solutions

(0, 0), (0, π), (π, 0), (π, π), (±π/2,±π/2), (±π/2,∓π/2).

We compute the Hessian matrix of V as

HV = kR2
(

cos(ϕ− ψ) − cos(ϕ− ψ)
− cos(ϕ− ψ) γ2 cos 2ψ + cos(ϕ− ψ)

)
.

Stability is only possible when ϕ = ψ, while all cases when ϕ − ψ = ±π are
unstable. In summary:

(0, 0) stable, (π, π) stable,

(±π/2,±π/2) ⇒ det(HV ) < 0 ⇒ unstable.

Case (iii)

∂V

∂ϕ
= kR2 sin(ϕ− ψ),

∂V

∂ψ
= kR2

[
1
2
γ2 sin 2ψ − sin(ϕ− ψ)

]
+mgh cosψ.
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The equilibrium equations can be written as

sin(ϕ− ψ) = 0,

1
2
γ2 sin 2ψ + α cosψ = 0, α =

mgh

kR2 .

We again find the equations cosψ = 0, sin(ϕ− ψ) = 0, yielding the solutions

(±π/2,±π/2), (±π/2,∓π/2).

In addition, if γ2 > α, there are the solutions of

γ2 sinψ + α = 0.

Setting

χ = arcsin
(

α

γ2

)
= arcsin

(mg

kR

)
,

the corresponding equilibrium configurations are

(−χ,−χ), (χ− π,−χ), (−χ, χ− π), (χ− π, χ− π).

The Hessian matrix of V is

HV = kR2
(

cos(ϕ− ψ) − cos(ϕ− ψ)
− cos(ϕ− ψ) γ2 cos 2ψ + cos(ϕ− ψ)− α sinψ

)
,

and det(HV ) = (kR2)2 cos(ϕ − ψ)(γ2 cos 2ψ − α sinψ). Stability is possible
only when ϕ = ψ. We examine these cases as follows.

(π/2, π/2): det(HV ) < 0, and thus we get an unstable equilibrium.

(−π/2,−π/2): det(HV ) has the sign of −γ2 + α and the second diagonal
element of HV is −γ2 + 1 + α. It follows that for γ2 < α there is stability,
and for γ2 > α there is instability.

(−χ,−χ): Note that cos(−2χ) = cos 2χ = 1− 2
(
α/γ2

)2
. Hence det(HV ) has

the sign of

γ2
(
1− 2

α2

γ4

)
+

α2

γ2
= γ2 − α2

γ2
;

this is positive if γ2 > α, which is our assumption. In addition, (HV )22 =
γ2 − α2/γ2 + 1 > 0, and thus we get a stable equilibrium.

(χ− π, χ− π): As above.
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(c) We only need to note that the Hessian matrix of the kinetic energy

HT = mR2
(
1 0
0 1 + γ2

)
is diagonal. It follows that in all cases examined, the formulae for the fundamental
frequencies are as summarised in equations (4.153).

Problem 5
Consider the system of two point particles (P1,m1), (P2,m2) as represented in
Fig. 4.6.
Find the stable equilibrium configurations and the frequencies of the normal

modes.

Solution
Let k be the elastic constant; then the Lagrangian of the system is

L =
1
2
m1R

2ϕ̇2 +
1
2
m2ξ̇

2 +m1gR cos ϕ− 1
2
k
[
(R sin ϕ− ξ)2 +R2(2− cos ϕ)2

]
.

Dividing this expression by m1R
2 and setting

η =
ξ

R
, Ω21 =

g

R
, Ω22 =

k

m1
, µ =

m2

m1
,

this can be written as

L =
1
2
ϕ̇2 +

1
2
µη̇2 + Ω21 cos ϕ− 1

2
Ω22

[
(sin ϕ− η)2 + (2− cos ϕ)2

]
.

The equilibrium equations are

Ω21 sin ϕ+ Ω22[(sin ϕ− η) cos ϕ+ (2− cos ϕ) sin ϕ] = 0,

sin ϕ− η = 0,

yielding

η = sin ϕ = 0.

Hence we conclude that there exists a configuration of unstable equilibrium
(η = 0, ϕ = π) and one of stable equilibrium (η = 0, ϕ = 0).
The quadratic approximation of the Lagrangian around the latter is

L2 =
1
2
ϕ̇2 +

1
2
µη̇2 − 1

2
Ω21 ϕ

2 − 1
2
Ω22

(
2ϕ2 − 2ϕη + η2

)
.

Therefore we identify the two matrices A and V :

A =
(
1 0
0 µ

)
,

V = Ω22

⎛⎝2 +
(
Ω1
Ω2

)2
1

1 1

⎞⎠ .
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Applying equations (4.153) we then find

ω± = Ω2

⎧⎪⎨⎪⎩1
2

(
1 +

(
Ω1
Ω2

)2
+

1
µ

)
± 1

2

⎡⎣(1 + (
Ω1
Ω2

)2
− 1

µ

)2

+
4
µ

⎤⎦1/2
⎫⎪⎬⎪⎭
1/2

.

What happens in the limiting cases Ω1 /Ω2 � 1 and Ω1 /Ω2 � 1?

Problem 6
Consider the holonomic system with smooth fixed constraints, and with l degrees
of freedom, associated with the kinetic energy

T =
1
2
q̇TS · q,

where S is a constant symmetric positive definite matrix. Let q = A(s)Q be a
group of linear transformations with A(s) an l× l matrix, such that A(0) = 1.

(i) How must A(s) be chosen for T to be invariant?
(ii) If there are no active forces, which is the corresponding first integral

(Noether’s theorem)?
(iii) If there exists a potential U(q), what conditions on its structure must be

imposed to ensure that the transformation is admissible for the Lagrangian?
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Solution
(i) ATSA = S. This transformation leaves the Riemannian metric associated

with the kinetic energy invariant. Verify that the matrices with this property
form a group and study the special case l = 2. (Hint: Choose the coordinates
so that S is diagonal and prove that det(A) = 1, A11 = A22. Then A(s) can
be looked for in the form

A(s) =
(

cos s c sin s
−c−1 sin s cos s

)
,

obtaining c = (S22/S11)1/2.)
(ii) Since p = Sq̇ and

dA
ds

Q
∣∣∣∣
s=0

= Ȧ(0)q,

the first integral is given by I = q̇TSȦ(0)q.
(iii) It must be that U(A(s)Q) = U(Q). In the particular case that S = k1,

k > 0, then A(s) is a group In this case Ȧ(0) = Ω is skew-symmetric and
the first integral takes the form I =

∑
i>j Ωij(piqj − pjqi).



5 MOTION IN A CENTRAL FIELD

5.1 Orbits in a central field

Consider a point particle of mass m and denote by r the position vector in the
space R3. Recall that a central field F(r) of the form

F(r) = f(r)
r
r
, r = |r| =/ 0, (5.1)

where f : (0,+∞) → R is a regular function, is conservative (Example 2.2) with
potential energy V (r) = − ∫

f(r) dr. The moment of the field (5.1) with respect
to the centre is zero, yielding conservation of the angular momentum L. The
motion takes place in the plane passing through the origin and orthogonal to
L, namely the plane identified by the initial position vector r0 and the initial
velocity vector v0 (note that in the case L = 0, the vectors r0 and v0 are
necessarily parallel and the motion takes place along a line).
We now introduce in the orbit plane (which we assume to be the (x, y) plane,

as shown in Fig. 5.1) the polar coordinates

x = r cosϕ, y = r sinϕ. (5.2)

The angular momentum of the system, L, can then be identified with the
component Lz:

Lz = m(xẏ − yẋ) = mr2ϕ̇, (5.3)

and the conservation of L yields that Lz is constant along the motion. The
conservation of Lz also yields Kepler’s second law, about the area swept by the
vector r = r(t) in the time interval (0, t):

S(t) =
1
2

∫ ϕ(t)

ϕ(0)
r2(ϕ) dϕ =

1
2

∫ t

0
r2ϕ̇ dτ =

Lzt

2m
. (5.4)

Theorem 5.1 (Kepler’s second law) The areal velocity

Ṡ(t) =
Lz

2m
(5.5)

is a constant, and its value is also known as the area constant. �
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Introduce the radial unit vector er = (cosϕ, sinϕ) and the orthogonal unit
vector eϕ = (− sinϕ, cosϕ). The equation of motion

mr̈ = f(r)
r
r
= −V ′(r)

r
r

(5.6)

can then be written componentwise as follows:

1
r

d
dt
(r2ϕ̇) = 2ṙϕ̇+ rϕ̈ = 0,

mr̈ −mrϕ̇2 = −dV
dr

,

(5.7)

and the first equation simply expresses the conservation of Lz.

Definition 5.1 The function

Ve(r) = V (r) +
L2z

2mr2
(5.8)

is called the effective potential energy. �

Using Ve(r) in (5.6), and considering equation (5.3), the equation governing
the radial motion becomes

mr̈ = −dVe

dr
(r). (5.9)

The total energy E also takes a simple form, given by

E =
1
2
mṙ2 + V (r) =

1
2
mṙ2 + Ve(r), (5.10)
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showing that the problem is equivalent to the one-dimensional motion of a point
particle of mass m under the action of a force field with potential energy equal
to the effective potential Ve. Note that shifting the term mrϕ̇2 to the right-hand
side of equation (5.7) is equivalent to writing the equation of motion in the
non-inertial reference system with an axis coinciding with the direction of the
radius r. The effective potential energy is the potential energy computed by such
an observer.

Remark 5.1
It is possible to reach the same conclusion through the use of the Lagrangian
formalism. Indeed, the Lagrangian of a point particle of mass m under the action
of a central field can be written as

L =
m

2
(ẋ2 + ẏ2 + ż2)− V (

√
x2 + y2 + z2), (5.11)

and is clearly invariant under the action of rotations around the origin. It follows
from Noether’s theorem (4.4) that the angular momentum L is conserved. If the
motion is in the (x, y) plane and ż ≡ 0, and after introducing polar coordinates
(5.2) the Lagrangian becomes

L =
m

2
(ṙ2 + r2ϕ̇2)− V (r). (5.12)

The coordinate ϕ is cyclic, and hence Lz = ∂L/∂ϕ̇ is constant, and the motion
is reduced to one-dimensional motion with energy (5.10). �

If Lz = 0, the motion is along the half-line ϕ = ϕ(0) and can reach the origin.
It is a solution of the equation mr̈ = f(r) which we discussed in Section 3.1.
Otherwise the polar angle ϕ is a monotonic function of time (increasing if Lz > 0
and decreasing Lz < 0). In this case the function ϕ = ϕ(t) is invertible, and hence
the trajectory can be parametrised as a function of the angle ϕ; we then write

dr
dt

= ϕ̇
dr
dϕ

=
Lz

mr2
dr
dϕ

· (5.13)

It follows from the fact that energy is conserved that the equation for the function
r = r(ϕ) describing the orbit is

dr
dϕ

= ±mr2

Lz

√
2
m
(E − Ve(r)). (5.14)

This equation is called the first form of the orbit equation. The sign in (5.14)
is determined by the initial conditions and equation (5.14) can be integrated by
separation of variables:

ϕ− ϕ0 = ±
∫ r

r0

Lz

m

√
m

2
dρ

ρ2
√
E − Ve(ρ)

, (5.15)
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where r0 = r(ϕ0). We find then ϕ = ϕ0 + ϕ(r), and inverting this expression we
obtain r = r(ϕ).

Remark 5.2
It is possible to have circular motion; by Theorem 5.1 such motion must be
uniform, in correspondence with the values of r which annihilate the right-hand
side of (5.9), and hence of the stationary points of Ve(r). If r = rc is one such
value, equation (5.10) shows that the energy corresponding to the circular motion
is Ec = Ve(rc). We shall return to this in Section 5.3. �

Example 5.1: the harmonic potential
Let

V (r) =
1
2
mω2r2 (5.16)

(motion in an elastic field).
The effective potential corresponding to it is given by

Ve(r) =
L2z

2mr2
+

1
2
mω2r2. (5.17)

It is easily verified (Fig. 5.2) that Ve(r) ≥ Ec = Ve(rc), where (Remark 5.2)

rc =

√
|Lz|
mω

,

Ec = ω|Lz|.
(5.18)

Ve (r)

Ec

rm rc rM r

Fig. 5.2
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For every fixed value of E > Ec, the equation Ve(r) = E has two roots:

rm =

√
E

mω2

√
1−

√
1− E2

c

E2 ,

rM =

√
E

mω2

√
1 +

√
1− E2

c

E2 .

(5.19)

From (5.15) we derive (note that rm/rc = rc/rM )

ϕ− ϕ0 =
∫ r(ϕ)

r0

dr

r2

√
2mE

L2z
− 1

r2
− r2

r4c

, (5.20)

from which, setting w = 1/r2,

ϕ− ϕ0 =
∫ 1/r2

0

1/r(ϕ)2

dw

2

√(
m2E2

L4z
− 1

r4c

)
−
(
w − mE

L2z

)2 , (5.21)

and by means of the substitution

w − mE

L2z
=

√
m2E2

L4z
− 1

r4c
cosψ =

mE

L2z

√
1− E2

c

E2 cosψ,

we find that the integration yields ψ/2. Choosing the polar axis in such a way
that r = rm for ϕ = 0, we finally obtain

1
r(ϕ)2

=
mE

L2z

[
1 +

√
1− E2

c

E2 cos 2ϕ

]
. (5.22)

Equation (5.22) describes an ellipse centred at the origin, whose semi-axes are
given by (5.19). Note that the orbit is a circle if E = Ec, yielding r = rc. �

Another form of the orbit equation can be obtained by the substitution of
u = 1/r into the equation of motion (5.9). Since

d
dt

= ϕ̇
d
dϕ

, (5.23)

we obtain, as in (5.13),

r̈ = ϕ̇
d
dϕ

ϕ̇
d
dϕ

r =
L2zu

2

m2

d
dϕ

u2
du
dϕ

dr
du

= −L2zu
2

m2

d2u
dϕ2

· (5.24)
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On the other hand

− ∂

∂r
Ve(r) = u2

d
du

Ve

(
1
u

)
, (5.25)

and substituting (5.24) and (5.25) into (5.9) we obtain the equation

d2u
dϕ2

= − m

L2z

d
du

Ve

(
1
u

)
, (5.26)

called second form of the orbit equation.
Using the variable u the energy can be written in the form

E =
1
2m

L2z

(
du
dϕ

)2
+ Ve

(
1
u

)
. (5.27)

Example 5.2
Consider the motion of a point particle of mass m = 1 in the central field
V (r) = −k2/2r2, where k is a real constant. Setting u = 1/r, the effective
potential is given by Ve (1/u) = 1

2 (L
2
z − k2)/2u2; substituting the latter into

(5.26) yields the equation

d2u
dϕ2

+
(
1− k2

L2z

)
u = 0. (5.28)

If we set ω2 =
∣∣1− k2/L2z

∣∣, the solution of (5.28) corresponding to the data
u′(0) = −r′(0)/r(0)2 is given by

u(ϕ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(0) cosωϕ+

u′(0)
ω

sinωϕ, if k2 < L2z,

u(0) + u′(0)ϕ, if k2 = L2z,

u(0) coshωϕ+
u′(0)
ω

sinhωϕ, if k2 > L2z.

If k2 > L2z and the energy E = 1
2 (L

2
z/2)[(u

′(0))2−ω2(u(0))2] is negative, the orbit
is bounded (i.e. u(ϕ) does not vanish) and it describes a spiral turning towards
the centre of the field if u′(0) > 0 (the so-called Cotes spiral ; see Danby 1988).�

We now return to the general case and fix a non-zero value of Lz; the orbit
belongs to

AE,Lz = {(r, ϕ)|Ve(r) ≤ E}, (5.29)

consisting of one or more regions bounded by circles. In each region the radius r
lies between a minimum value rm (pericentre) and a maximum rM (apocentre,
see Fig. 5.3), where rm and rM are two consecutive roots of Ve(r) = E (except
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in the case rm = 0 or rM = +∞). If the point is initially positioned in a region
in which

0 ≤ rm ≤ rM < +∞

the motion is bounded. If rm < rM (otherwise the motion is circular), from
equation (5.3) it follows that the polar angle ϕ varies monotonically, while r
oscillates periodically between rm and rM . In general the orbit is not closed.
Indeed, from equation (5.15) it follows that the angle Φ between a pericentre
and an apocentre is given by the integral

Φ =
∫ rM

rm

Lz

mr2
dr√

2
m
[E − Ve(r)]

(5.30)

(the integral converges provided that rm and rM are simple roots of the equation
Ve(r) = E) and the angle between two consecutive pericentres is given by 2Φ.
Hence the necessary and sufficient condition that the orbit is closed is that there
exist two integers n1 and n2 such that

Φ = 2π
n1
n2

, (5.31)

i.e. that the ratio Φ/2π is rational. If, on the other hand, Φ/2π is not rational,
one can prove that the orbit is dense in the annulus rm < r < rM .

5.2 Kepler’s problem

In this section we study the motion under the action of the Newtonian potential

V (r) = −k

r
, k > 0. (5.32)



186 Motion in a central field 5.2

The effective potential corresponding to (5.32) is

Ve(r) =
L2z

2mr2
− k

r
=

L2zu
2

2m
− ku, (5.33)

where we set u = 1/r. Substituting equation (5.33) into the orbit equation (5.26)
we find

d2u
dϕ2

= −u+
km

L2z
. (5.34)

The solution of the latter is the sum of the integral of the associated homogeneous
equation, which we write in the form u = (e/p) cos(ϕ − ϕ0), and of a particular
solution of the non-homogeneous equation u = 1/p, corresponding to the unique
circular orbit admissible for the Newtonian potential, of radius

rc = p =
L2z
km

(5.35)

and corresponding to energy

Ec = −k2m

2L2z
· (5.36)

The parametric equation of the orbit is given by

u =
1
p
(1 + e cos(ϕ− ϕ0)),

and Kepler’s first law follows:

r =
p

1 + e cos(ϕ− ϕ0)
, (5.37)

where e ≥ 0 is the eccentricity of the orbit. Hence the orbit is a conical section,
with one focus at the origin: if 0 ≤ e < 1 the orbit is an ellipse, if e = 1 it is a
parabola and if e > 1 it is a hyperbola. The eccentricity is determined by

e =

√
1 +

2L2zE
k2m

=

√
1 +

E

|Ec| , E ≥ Ec. (5.38)

In the elliptic case (E < 0) the two semi-axes a and b are given by

a =
1
2
(rm + rM ) =

p

1− e2
=

k

2|E| ,

b = a
√
1− e2 =

p√
1− e2

=
|Lz|√
2|E|m,

(5.39)
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where rm and rM denote the distance from the apocentre and pericentre, respect-
ively. The verification of equations (5.39) is immediate, while equation (5.38) is
obtained from (5.27):

E = Ve(rm) = −k

p
(1 + e) +

L2z
2mp2

(1 + e)2,

E = Ve(rM ) = −k

p
(1− e) +

L2z
2mp2

(1− e)2,

yielding

e2 = 1 +
2EL2z
k2m

. (5.40)

From Kepler’s second law it follows that the area swept by the radius over a
period T of the motion of revolution, and hence the area of the ellipse with
semi-axes a and b, is proportional to the period T , namely (see (5.5))

πab =
|Lz|
2m

T. (5.41)

On the other hand, it follows from equations (5.35) and (5.39) that

|Lz| =
√
akm(1− e2). (5.42)

Substituting this into (5.41) and recalling that b = a
√
1− e2, we find

πa2
√
1− e2 =

1
2

√
a(1− e2)

√
k

m
T ,

and hence

a3

T 2
=

k

4π2m
, (5.43)

which is the proportionality between the cube of the major semi-axis and the
square of the period of revolution (Kepler’s third law).

5.3 Potentials admitting closed orbits

Among all closed orbits, the circular orbits are of particular relevance. These
orbits are defined by the parametrisation

r(t) = rc, ϕ(t) = ϕ(0) + ωct, (5.44)

where ω2c = f(rc)/mrc (see (5.7)). By equation (5.9) rc is necessarily a critical
point of the effective potential Ve, i.e. it is a root of

V ′
e (r) = 0, (5.45)
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and in particular it is a regular function of the angular momentum Lz. The
energy Ec of the orbit can be derived from equation (5.10):

Ec = Ve(rc) = V (rc) +
L2z

2mr2c
. (5.46)

This is the critical value of Ve corresponding to rc.
Suppose that the point particle moves along a circular orbit and receives a

small impulse δp. Since the resulting variation δL of the angular momentum
satisfies δL = r × δp, the component of δp which is parallel to the angular
momentum L has the effect of slightly altering |L| and the plane of the orbit.
The component of δp orthogonal to L can be decomposed into a vector parallel
to er—which does not change L—and one parallel to eϕ, changing the absolute
value but not the direction of the angular momentum. The orbit therefore always
stays in a plane close to the plane of the initial reference circular orbit, and in
studying stability we can as a first approximation neglect the variation of L.

Definition 5.2 Let L be fixed. A circular orbit (5.44) is called (Lagrange) stable
if for every ε > 0 there exists δ > 0 such that, for any initial data r(0), ṙ(0) such
that |r(0)− rc| < δ, |ṙ(0)| < δ, it holds that

|r(t)− r(0)| < ε, (5.47)

for every t ∈ R. �

Remark 5.3
Note that ϕ(0) does not influence the computation of the orbit, while the
value of ϕ̇(0) is fixed by the choice of r(0), after we fix the value of
Lz = mr(0)2ϕ̇(0). �

Remark 5.4
‘Lagrange’ stability of a circular orbit is equivalent to ‘Lyapunov’ stability of
the equilibrium position corresponding to r = rc for the corresponding one-
dimensional motion (5.9). However, it is a weaker notion than that of Lyapunov
stability in the phase space R4 of the original problem. Indeed, we have neglected
the change in polar angle, which, in general, differs linearly in time from that
of the reference circular orbit. As an example, in Kepler’s problem the circular
orbit r = rc = k/2|Ec| is clearly stable. However, if we consider a nearby orbit,
of energy E = Ec + δE with δE > 0, by Kepler’s third law (5.43) the period of
the motion becomes

T =

√
4π2m
k

a3/2 =

√
π2mk2

2
|E|−3/2, (5.48)

by equation (5.39). Hence, if Tc is the period of the circular orbit,

T = Tc
1

(1− δE/|Ec|)3/2
= Tc

(
1 +

3
2
δE

|Ec| + O((δE)2)
)
, (5.49)
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and thus the difference of the polar angles along the two orbits grows linearly
with time. �

From Remark 5.4 and applying Proposition 3.1 to the one-dimensional system
(5.9) we obtain the following.

Theorem 5.2 If the effective potential Ve has an isolated relative minimum at rc,
the corresponding circular orbit is stable. �

For the study of orbits near the circular orbits we linearise the equation of
motion (5.9) following a procedure analogous to that of Section 3.4.
Setting

x =
Lz√
mr

, (5.50)

since

d
dt

=
x2

Lz

d
dϕ

and
d
dr

= −
√
m

Lz
x2

d
dx

,

it follows that equation (5.9) can be written as

d2x
dϕ2

= −dW
dx

, (5.51)

where

W (x) = V

(
Lz√
mx

)
+

x2

2
= Ve

(
Lz√
mx

)
. (5.52)

Equation (5.51) can be identified with the equation of motion for a one-
dimensional mechanical system with potential energy W (x) and total energy

E =
x′2

2
+W (x), (5.53)

where the polar angle ϕ replaces time and x′ denotes the derivative of x with
respect to ϕ. The orbit equation (5.14) becomes

dx
dϕ

= x′ = ±
√
2[E −W (x)], (5.54)

and the angle Φ between a pericentre and an apocentre is given by

Φ =
∫ xM

xm

dx√
2[E −W (x)]

, (5.55)

where xm = Lz/
√
mrM , xM = Lz/

√
mrm. Equation (5.55) expresses the half-

period of the one-dimensional motion (5.51). The circular orbits are obtained in
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correspondence with the roots xc of W ′(xc) = 0, and if W ′′(xc) > 0 then the
orbit is stable. Consider an orbit near a circular orbit. Setting x1 = x − xc,
the behaviour of the orbit is described by the equation obtained by linearising
equation (5.51):

d2x1
dϕ2

= −W ′(xc)−W ′′(xc)x1 + O(x21). (5.56)

From this it follows, by neglecting the nonlinear terms and setting Wc = 1
2W

′′(xc),
that

d2x1
dϕ2

+ 2Wcx1 = 0. (5.57)

This is the equation of a harmonic oscillator.
The angle Φc between the pericentre (the maximum of x1) and apocentre

(minimum of x1) of an orbit close to a circular orbit of radius rc is to a first
approximation equal to the half-period of oscillations of the system (5.57):

Φc =
π√
2Wc

=
πLz

r2c
√
mV ′′

e (rc)
(5.58)

because
d
dx

= −
√
mr2

Lz

d
dr

,

which yields

Wc =
mr4c
2L2z

V ′′
e (rc).

From the expression (5.8) for the effective potential we find that

V ′′
e (r) = V ′′(r) +

3L2z
mr4

.

However V ′
e (rc) = V ′(rc) − L2z/mr3c = 0, and hence mr4c/L

2
z = rc/V

′(rc), and
equation (5.58) becomes

Φc = π

√
V ′(rc)

rcV ′′(rc) + 3V ′(rc)
. (5.59)

We can now give the proof of a theorem due to Bertrand (1873).

Theorem 5.3 In a central field with analytic potential energy V (r), all bounded
orbits are closed if and only if the potential energy V (r) has one of the following
forms:

V (r) =

⎧⎨⎩kr2,

−k

r
,

(5.60)

where k > 0. �
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Hence the only central potentials for which all bounded orbits are closed are
the elastic and Newtonian potentials; Bertrand commented that, ‘all attracting
laws allow closed orbits but natural law is the only one dictating them.’
Before the proof we consider the following.

Lemma 5.1 If in a central field all orbits, close to a circular orbit, are closed,
then the potential energy V (r) has the form

V (r) =

{
arb, b > −2, b =/ 0,

a log
r

R
,

(5.61)

where a, b and R are constants. For these potentials, the angle between a pericentre
and an apocentre is given, respectively, by

Φc =
π√
b+ 2

, Φc =
π√
2
. (5.62)

Proof
Since rc depends continuously on Lz, from equation (5.59) it follows that Φc

depends continuously on Lz. The condition (5.31) that ensures that an orbit is
closed is false for a dense set of values of Φc. Hence the only way that it can be
satisfied for varying Lz is if Φc is a constant, independent of rc. In this case, by
imposing

V ′

rV ′′ + 3V ′ = c > 0, (5.63)

where c is a constant, it follows that

V ′′ =
1− 3c
rc

V ′, (5.64)

from which, setting U = V ′, we get that U = ar(1−3c)/c. Integrating the last
relation we obtain (5.61). Equation (5.62) follows from (5.59). �

Proof of Theorem 5.3
By Lemma 5.1 we can assume that V (r) has the form (5.61).
Note that we must have ab > 0 (or a > 0 in the logarithmic case), otherwise

Ve is a monotone function and no closed orbits can exist.
Let x = Lz/

√
mr as in (5.50). Then we can reduce the study of the variation

of the angle between a pericentre and an apocentre (which must be a rational
multiple of 2π for the orbits to be closed) to the study of the variation of the
period (5.55) of the one-dimensional motion (5.53), (5.54), with

W (x) =

⎧⎪⎪⎨⎪⎪⎩
x2

2
+ αx−b, α = a

(
Lz√
m

)b

, b > −2, b =/ 0,

x2

2
− a log

x

X
, X =

Lz√
mR

.

(5.65)
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Each of these potentials has a stable equilibrium point, corresponding to a stable
circular orbit, and obtained by imposing W ′(xc) = 0:

xc =
{
(αb)1/(2+b), b > −2, b =/ 0,√

a.
(5.66)

To conclude the proof we use a result proved in Problem 4(ii) of Section 3.9,
and in particular the formula (3.63) expressing the variation of the period of a
one-dimensional motion with respect to the period of small oscillations, for orbits
near the equilibrium position.
Setting y = x − xc, ε = E − Ec, Ŵe(y) = W (xc + y) − W (xc), we have

Ŵe(0) = Ŵ ′
e(0) = 0,

Ŵ ′′
e (0) =

{
b+ 2, b > −2, b =/ 0,
2 (5.67)

and

Φ =
∫ yM

ym

dy√
2[ε− Ŵe(y)]

. (5.68)

Use of the Taylor series expansion of Ŵe yields

Ŵe(y) =
b+ 2
2

y2
(
1− b+ 1

3xc
y +

(b+ 1)(b+ 3)
12x2c

y2
)
+ O(y5). (5.69)

Note that equation (5.69) for b = 0 is precisely this Taylor expansion in the case
that

W (x) =
x2

2
− a log

x

X
.

It follows then that Φ = Φc+Φ1(ε), where Φc is given by (5.62) while
Φ1 is obtained from (3.63) (by the substitution m = 1, ω = 2π/Φc, c1 =
(b+ 1)/3xc, c2 = (b+ 1)(b+ 3)/12x2c):

Φ1(ε) =
3π
2

ε

ω3

(
5
2
c21 − 2c2

)
=

3εΦ3c
16π2x2c

[
5
18

(b+ 1)2 − 1
6
(b+ 1)(b+ 3)

]
= ε

Φ3c
48π2x2c

(b+ 1)(b− 2). (5.70)
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Hence Φ1(ε) is independent of ε if and only if (b + 1)(b − 2) = 0. In all other
cases, the angle between a pericentre and an apocentre varies continuously with
ε, and hence not all orbits can be closed. Thus it must be that either b = −1
(Newtonian potential, Φc = π) or b = 2 (elastic potential, Φc = π/2). �

The interesting relation between the harmonic oscillator and Kepler’s problem
is considered in Appendix 6, where we prove the existence of a transformation
of coordinates and of time which maps the associated flows into one another.

5.4 Kepler’s equation

In this section we derive the time dependence in Kepler’s problem.
This problem can be addressed directly; this is done in the usual manner for

the case of one-dimensional problems, by using the conservation of the total
energy

E =
mṙ2

2
+

L2z
2mr2

− k

r
, (5.71)

from which it follows that

t =
√

m

2

∫ r(t)

r(0)

dr√
k

r
− L2z

2mr2
+ E

· (5.72)

Using equations (5.37) and (5.3) we also find

t =
mp2

Lz

∫ ϕ(t)

ϕ(0)

dϕ
(1 + e cos(ϕ− ϕ(0)))2

· (5.73)

This integral can be solved in terms of elementary functions, noting that∫
dϕ

(1 + e cosϕ)2
= (1− e2)−1

[
− e sinϕ
1 + e cosϕ

+
∫

dϕ
1 + e cosϕ

]

= (1− e2)−1
[
− e sinϕ
1 + e cosϕ

+
2√

1− e2
arctan

(√
1− e2tan (ϕ/2)

1 + e

)]
.

However this approach yields a rather complicated form for the time dependence.
In addition, it is necessary to invert the relation t = t(ϕ).
A simpler solution, due to Kepler, consists of introducing the so-called eccentric

anomaly ξ (Fig. 5.4) and the mean anomaly (time normalised to an angle)

l =
2πt
T

=
Lz

mab
t. (5.74)
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The substitution r − a = −ae cos ξ (see Problem 12) in the integral (5.72) yields
Kepler’s equation

ξ − e sin ξ = �, (5.75)

and a parametric representation of the relation between r and t:

r = a(1− e cos ξ),

t =
mab

Lz
(ξ − e sin ξ),

(5.76)

where we assume that at time t = 0 the particle is at the pericentre.
The variable ξ, the so-called eccentric anomaly, has a remarkable geometrical

interpretation. Consider a Cartesian reference system with origin at the centre
C of the ellipse traced by the particle along its orbit, and denote by X and Y
the coordinates in the standard system, different from x = r cosϕ and y = r sinϕ
which are referred to the system with a focus F at the origin, and axes parallel
to X,Y . It then follows that

x = X − ae,

y = Y,
(5.77)

and in the new coordinate system the equation of the ellipse is given by

X2

a2
+

Y 2

b2
= 1. (5.78)
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The eccentric anomaly parametrises the ellipse in the form

X = a cos ξ = r cosϕ+ ae,

Y = b sin ξ = r sinϕ,
(5.79)

and using this parametrisation the motion is described by the equation ξ = ξ(l).
Trace a circle of centre C and radius equal to the major semi-axis a of the

ellipse. If P denotes the point subject to the central force field, moving around
the ellipse, denote by Q the point of the circle with the same x-coordinate as
P . Let H be a point on the X-axis with the same x-coordinate XH as P and
Q. It then follows (see Fig. 5.4) that

area (AFP ) = −FH ·HP

2
+
∫ a

XH

b

a

√
a2 −X2 dX.

On the other hand

area (AFQ) = −FH ·HQ

2
+
∫ a

XH

√
a2 −X2 dX,

and HP = (b/a)HQ. Therefore

area (AFP ) = b/aarea (AFQ). (5.80)

By Kepler’s second law it follows that the area (AFP ) = Lzt/2m, yielding

Lzt

2m
=

b

a
area (AFQ) =

b

a
[area (ACQ)− area (QFC)]

=
b

a

[
a2ξ

2
− CF ·QH

2

]
=

ab

2
(ξ − e sin ξ).

This finally leads to Kepler’s equation (5.75).
The solution of Kepler’s equation is given by the following theorem (here, to

avoid any confusion with number e = 2.718 . . ., the eccentricity is denoted by ε.
See also Problem 6).

Theorem 5.4 The eccentric anomaly is an analytic function of the eccentricity
ε for |ε| < 1/e and of the mean anomaly l. Its series expansion is given by

ξ(ε, l) =

∞∑
m=0

cm(l)
εm

m!
, (5.81)
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where

c0(l) = l, (5.82)

cm(l) =
(
d
dl

)m−1
(sin l)m for all m ≥ 1. (5.83)

The series (5.81) converges uniformly in l and ε for all values of the eccentricity
|ε| < 1/e. �

Remark 5.5
Newton proved that the solution of Kepler’s equation, which expresses the
coordinates (x, y) of the point particle along the orbit as a function of time,
cannot be an algebraic function. His proof can be found in the book by Arnol’d
(1990, Chapter 5). �

The proof of Theorem 5.4 is a consequence of Lagrange’s formula, to be
discussed in the next section. As an exercise we now verify that the first two
terms in the series expansion (5.71) are correct.
Since when the eccentricity is zero we have that ξ = l, it is natural to seek

the solution of Kepler’s equation in the form of a series in ε with coefficients
depending on the mean anomaly l and with the zero-order term equal to l:

ξ(ε, l) = l + εξ1(l) + ε2ξ2(l) + O(ε3). (5.84)

Substituting equation (5.84) into (5.75) we find

l + εξ1 + ε2ξ2 − ε[sin l cos(εξ1 + ε2ξ2) + cos l sin(εξ1 + ε2ξ2)] = l + O(ε3).

Using the series expansion of the sine and cosine functions, up to second order,
this yields

εξ1 + ε2ξ2 − ε sin l − ε2ξ1 cos l = O(ε3).

From the latter expression, by equating powers of ε, it follows that

ξ1(l) = sin l,

ξ2(l) = ξ1(l) cos l = sin l cos l,

and hence

ξ(ε, l) = l + ε sin l + ε2 sin l cos l + O(ε3),

which is in agreement with (5.83).
The proof of the uniform convergence, for |ε| < e−1, of the series expansion

(5.81) of the solution of Kepler equation follows from the formula (see Wintner
1941)

cm(l) =
dm−1

dlm−1 (sin l)
m =

[m/2]∑
k=0

(m− 2k)m−1 (−1)k
2m−1

(
m

k

)
sin[(m− 2k)l],
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where [m/2] denotes the integer part of m/2. This formula can be deduced from

(sin l)m =

m∑
k=0

(
m

k

)
1

(2i)m
(−1)kei(m−2k)l.

Applying Stirling’s formula (Dieudonné 1968, p. 130)

m! ∼
√
2πmm+1/2e−m (for m → +∞),

since | sin[(m− 2k)l]| ≤ 1 and (m− 2k)m−1 ≤ mm−1, we find

max
0≤l≤2π

|cm(l)| ≤ 1
2m−1m

m−1
[m/2]∑
k=0

(
m

k

)
≤ 1

2m−1m
m−12m = 2mm−1,

yielding

max
0≤l≤2π

∣∣∣∣εmm!
cm(l)

∣∣∣∣ ∼ 2εmmm−1
√
2πe−mmm+1/2

=

√
2
π
emm−3/2εm.

It follows that

|ξ(ε, l)| ≤
√

2
π

∞∑
m=0

(eε)m < +∞

if 0 ≤ ε < 1/e, i.e. the radius of convergence of the power series for the eccentricity

∞∑
m=0

(
max
0≤l≤2π

|cm(l)|
)
εm

m!

is at least 1/e.

5.5 The Lagrange formula

In the previous section we studied the Kepler equation (5.75) and the convergence
of its series solution (5.81), (5.83). The expansion of the eccentric anomaly in
power series in terms of the eccentricity is a particular case of a more general
formula. This formula was derived by Lagrange in the study of the Kepler
equation. In this section we now prove that the series (5.81) is indeed a formal
solution of (5.75).
Consider the more general problem of the determination of the solution x =

X(y, ε) of an equation

x = y + εf(x), (5.85)

where ε is a parameter and f is an analytic function of x such that f(0) = 0. If
|εf ′(x)| < 1 the implicit function theorem yields the existence of a unique solution
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x = X(y, ε) in a neighbourhood of x = y. We can seek the series expansion of X
as a power series in ε with coefficients depending on y:

X(y, ε) = y + εX1(y) + ε2X2(y) + · · · .

The Lagrange formula (also called the series inversion, as it yields the inversion
of the relation between x and y through a series expansion) is a formula for the
explicit determination of the coefficients Xn of this expansion, in terms of the
function f and of its derivatives.

Theorem 5.5 (Lagrange) The solution x = X(y, ε) of (5.85) is given by the
series of functions (if it converges)

X(y, ε) = y +

∞∑
n=1

εnXn(y), (5.86)

where

Xn(y) =
1
n!

dn−1

dyn−1 [(f(y))
n], (5.87)

with the convention (d0/dy0)f(y) = f(y). In addition, if g is an analytic function
such that g(0) = 0, then

g(X) = g(y) +

∞∑
n=1

εnGn(y), (5.88)

where

Gn(y) =
1
n!

dn−1

dyn−1 [(f(y))
ng′(y)]. (5.89)

�

The proof is given below.

Remark 5.6
The formulae (5.86) and (5.87) are obtained from equations (5.88) and (5.89) by
setting g(y) = y. �

The previous theorem yields the following corollary.

Corollary 5.1 The series (5.81), (5.83) solves Kepler’s equation (5.75).

Proof
It is sufficient to set x = ξ, y = l, ε = e, f(ξ) = sin ξ and to apply the result of
Theorem 5.5. �
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Proof of Theorem 5.5
Let x = X(y, ε) be the solution; its existence is guaranteed by the implicit
function theorem. By differentiating (5.85) we find

dX = dy + εf ′(X) dX + f(X) dε, (5.90)

from which it follows that

∂X

∂ε
=

f(X)
1− εf ′(X)

= f(X)
∂X

∂y
. (5.91)

Let F and G be any two regular functions. From (5.91) it follows that

∂

∂ε
F (X(y, ε)) = f(X(y, ε))

∂

∂y
F (X(y, ε)), (5.92)

and hence

∂

∂ε

[
F (X(y, ε))

∂

∂y
G(X(y, ε))

]
=

∂

∂y

[
F (X(y, ε))

∂

∂ε
G(X(y, ε))

]
(5.93)

as

∂

∂ε

(
F (X)

∂

∂y
G(X)

)
= f(X)

∂F

∂y
(X)

∂G

∂y
(X) + F (X)

∂2G

∂ε∂y
(X),

∂

∂y

(
F (X)

∂

∂ε
G(X)

)
=

∂F

∂y
(X)f(X)

∂G

∂y
(X) + F (X)

∂2G

∂y∂ε
(X).

From equations (5.92) and (5.93) we deduce by recurrence that for every integer
n ≥ 1 and for any analytic function g such that g(0) = 0 we have

∂ng

∂εn
(X(y, ε)) =

∂n−1

∂yn−1

[
(f(X(y, ε)))n

∂g

∂y
(X(y, ε))

]
.

Consequently Taylor’s formula yields

g(X(y, ε)) = g(X(y, 0)) +

∞∑
n=1

εn

n!
∂n−1

∂yn−1

[
f(X(y, 0))n

∂g

∂y
(X(y, 0))

]
.

Since X(y, 0) = y we find the expression (5.89). �

Example 5.3
Consider the equation

x = y + εx2. (5.94)
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Applying the Lagrange formula we find the solution

X(y, ε) = y +

∞∑
n=1

εn

n!
(2n)!

(n+ 1)!
yn+1.

On the other hand, the solution of (5.94) such that X(0, ε) = 0 is given by

X(y, ε) =
1
2ε

− 1
2ε

√
1− 4εy.

Verify as an exercise, using the Taylor series expansion of
√
1− 4εy, that

the Lagrange series is indeed the correct solution (hint: first show by induction
that 2n(2n−1)!! = (2n)!/n!). For fixed y, what is the radius of convergence of the
series? �

5.6 The two-body problem

Consider two bodies of mass m1 and m2 described by the position vectors r1
and r2, respectively, in R3. Assume the two bodies interact through a central
potential V (|r1 − r2|). We can prove the following.

Theorem 5.6 Let

r = r1 − r2,

rM =
m1r1 +m2r2
m1 +m2

(5.95)

be, respectively, the relative position vector of the two bodies and the position
vector of the centre of mass of the system. Then the acceleration of the centre of
mass with respect to an inertial system is zero, and in a reference system having
the centre of mass as its origin the equations of motion are given by

mr̈ = −∇rV, (5.96)

where

m =
m1m2

m1 +m2
(5.97)

is the so-called reduced mass of the two-body system. In addition, since

r1 = rM +
m2

m1 +m2
r,

r2 = rM − m1

m1 +m2
r,

(5.98)

the trajectories of the two points are planar curves lying in the same plane, and
similar to each other, with similarity ratio m1/m2.
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Proof
The verification that r̈M = 0 is left to the reader. In addition,

mr̈ = mr̈1 −mr̈2 =
m1m2

m1 +m2

(
− 1
m1

∇r1V +
1
m2

∇r2V

)
= −∇rV.

The remaining claims are of immediate verification. �

We saw in Section 4.9 that because of the (rigid) translation invariance of
the two-body system, due to the absence of forces external to the system, the
centre of mass follows a linear uniform motion. The initial value problem with
six degrees of freedom is thus reduced to the problem of the motion of a point
particle, with mass equal to the reduced mass of the system, in a central potential
field. For this problem, the considerations of the previous sections apply.

5.7 The n-body problem

The study of the problem of n bodies interacting through a Newtonian potential
is central to the study of celestial mechanics (for a very readable introduction,
see Saari 1990). In the previous section we saw how the two-body problem is
integrable and can be reduced to the motion of a single point in a central potential
field. If n ≥ 3, the resulting motion is much more complicated, and in this short
introduction we only list the most classical and elementary results. For a more
detailed exposition, we recommend Wintner (1941), Siegel and Moser (1971),
Alekseev (1981) and the monographs of Pollard (1966, 1976) which inspired this
section.
Consider n bodies with masses mi, i = 1, . . . , n and corresponding position vec-

tors ri (measured in an inertial reference frame). Let G indicate the gravitational
constant. The force of the gravitational attraction between any pair (i, j) has the
direction of rj − ri and intensity equal to Gmimj/r

2
ij , where rij = |ri − rj |. The

equations describing the motion of the bodies are of the form

mir̈i =

n∑
j=1,j �=i

Gmimj

r2ij

rj − ri
rij

, (5.99)

where i = 1, . . . , n.

Remark 5.7
The problem of the existence of solutions, local in time, of the initial value
problem for equation (5.99), for prescribed initial conditions ri(0),vi(0), and of
the possibility of their continuation has been widely studied. Here we only note
that from the theorem of the existence and uniqueness for ordinary differential
equations there follows the existence of a solution of the system (5.99) for a
sufficiently small time interval, assuming that at time t = 0 the relative distances
|ri(0)− rj(0)| of the points are bounded from below by a constant r0 > 0. �



202 Motion in a central field 5.7

The system of differential equations (5.99) is a system of order 6n. Denoting
by

rM =
1
M

n∑
i=1

miri (5.100)

(where M =
∑n

i=1mi represents the total mass of the system) the position
vector of the centre of mass, it is easy to verify, by summing over all i in
equations (5.99), that

r̈M = 0. (5.101)

From this, it follows that the centre of mass moves with a linear uniform motion
in the chosen inertial frame of reference. Hence the coordinates and the velocity
of the centre of mass constitute a set of six first integrals of the motion for
the system. In what follows we suppose that the chosen frame of reference has
origin coinciding with the centre of mass, and axes parallel to those of the initial
inertial system, so that

rM = ṙM = 0. (5.102)

In addition it is easy to verify that in this frame of reference the energy integral
can be written as

E = T + V =

n∑
i=1

1
2
mi|ṙi|2 −

∑
1≤i<j≤n

Gmimj

rij
, (5.103)

where

T =

n∑
i=1

1
2
mi|ṙi|2 and V = −

∑
1≤i<j≤n

Gmimj

rij

represent the kinetic and potential energy of the system.
An equivalent formulation of the conservation of E can be obtained when

considering the polar moment of inertia of the system

I =
1
2

n∑
i=1

mir
2
i , (5.104)

where ri = |ri|. Indeed, by differentiating twice with respect to time, we find

Ï =
∑
i=1

mi|ṙi|2 +
n∑

i=1
ri ·mir̈ = 2T +

n∑
i=1

ri ·mir̈i,
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and, recalling (5.99), it follows that

Ï = 2T +

n∑
i=1

n∑
j=1,j=/ i

Gmimj

r3ij
[ri · rj − r2i ]

= 2T +
1
2

n∑
i=1

n∑
j=1,j=/ i

Gmimj

r3ij
[r2j − r2i − r2ij ]

= 2T − 1
2

n∑
i=1

n∑
j=1,j=/ i

Gmimj

rij
= 2T + V = E + T.

(5.105)

The identity Ï = E + T is called the Lagrange–Jacobi identity.
The coordinates, the velocity of the centre of mass of the system and the total

energy E constitute a set of seven independent constants of the motion for the
n-body problem. Three more constants are given by the conservation of the total
angular momentum L:

L =

n∑
i=1

miri × ṙi. (5.106)

Indeed, since ṙi × ṙi = 0, we find

L̇ =

n∑
i=1

miri × r̈i =

n∑
i=1

n∑
j=1,j=/ i

Gmimj

r3ij
ri × rj = 0,

because in the last summation there appear both ri × rj and rj × ri = −ri × rj
with equal coefficients. This yields the proof of the following theorem.

Theorem 5.7 The system of equations (5.99) admits ten first integrals of the
motion. �

We end this brief introduction with an important result (see Sundman 1907)
regarding the possibility that the system of n points undergoes total collapse, i.e.
that all n particles are found in the same position at the same time, colliding
with each other (in this case, of course equation (5.99) becomes singular).

Theorem 5.8 (Sundman) A necessary condition that the system undergoes total
collapse is that the total angular momentum vanishes. �

Before proving Theorem 5.8, we consider a few lemmas.

Lemma 5.2 (Sundman inequality) If L is the magnitude of the total angular
momentum (5.106) then

L2 ≤ 4I(Ï − E). (5.107)
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Proof
From definition (5.106) it follows that

L ≤
n∑

i=1
mi|ri × ṙi| ≤

n∑
i=1

mirivi,

where vi = |ṙi|. Applying the Cauchy–Schwarz inequality we find

L2 ≤
⎛⎝ n∑

i=1
mir

2
i

⎞⎠⎛⎝ n∑
i=1

miv
2
i

⎞⎠ = 4IT.

Hence the result follows from the Lagrange–Jacobi identity (5.105). �

Lemma 5.3 Let f : [a, b] → R be a function of class C2 such that f(x) ≥ 0,
f ′′(x) ≥ 0 for every x ∈ [a, b]. If f(b) = 0 then f ′(x) ≤ 0 for every x ∈ [a, b]. �

The proof of Lemma 5.3 is left to the reader as an exercise.

Lemma 5.4 The polar moment of inertia (5.104) is given by

I =
1
2M

∑
1≤i<j≤n

mimjr
2
ij . (5.108)

Proof
We have that

n∑
i=1

mi(ri − rj)2 =

n∑
i=1

mir
2
i − 2rj ·

n∑
i=1

miri +

⎛⎝ n∑
i=1

mi

⎞⎠ r2j .

Hence from (5.102) it follows that
n∑

i=1
mi(ri − rj)2 = 2I+Mr2j .

Multiplying both sides by mj , summing over j and using that (ri − rj)2 = r2ij
we find

n∑
i=1

n∑
j=1

mimjr
2
ij = 2I

n∑
j=1

mj +M

n∑
j=1

mjr
2
j = 4IM.

From this relation, since rii = 0, we deduce equation (5.108). �

Equation (5.108) shows that total collapse implies the vanishing of I (all
particles collide at the origin).

Proof of Theorem 5.8
We first show that any total collapse must necessarily happen in finite time, i.e.
it is impossible that I(t) → 0 for t → +∞. Indeed, if for t → +∞ we find rij → 0
for every i and j, then V → −∞. From the Lagrange–Jacobi identity (5.104)
it follows that Ï → +∞. There then exists a time t̂ such that for every t ≥ t̂
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we have Ï(t) ≥ 2, and hence I(t) ≥ t2 + At + B for t → ∞, contradicting the
hypothesis I → 0.
Hence any total collapse must happen at some finite time t1. We have just

showed that V → −∞, I → 0 and Ï → +∞ as t → t1, and thus an application
of Lemma 5.3 to I(t) yields that İ(t) ≤ 0 for t2 < t < t1. Multiplying both sides
of the Sundman inequality (5.107) by −İ/I we find

−1
4
L2

İ

I
≤ Eİ − İÏ,

and integrating both sides of the latter with respect to time, we find for t ∈ (t2, t1)
that

1
4
L2 log

I(t2)
I(t)

≤ E[I(t)− I(t2)]− 1
2
[İ
2
(t)− İ

2
(t2)] ≤ EI(t) + C,

where C is a constant. Hence

1
4
L2 ≤ EI(t) + C

log(I(t2)/I(t))
,

which tends to 0 for t → t1. Since L is constant, it follows that L = 0. �

5.8 Problems

1. Study the existence and stability of circular orbits for the following central
potentials:

V (r) = ar−3/2 + br−1,

V (r) = aebr,

V (r) = ar sin(br),

for varying real parameters a and b.
2. Find a central potential for which the polar angle varies with time as

ϕ(t) = arctan(ωt), with ω ∈ R fixed by the initial conditions.
3. Solve the orbit equation for the potential V (r) = −kr−1 + ar−2, where

k > 0 and a are prescribed constants. (Answer: r = p/(1 + e cos(ωϕ)) with
ω2 = 1 + 2am/L2z.)

4. A spherical galaxy has approximately constant density near its centre, while
the density tends to zero as the radius increases. The gravitational potential it
generates is then proportional to r2, a constant for small values of r, and
proportional to r−1 for large values of r. An example of such a potential is given
by the so-called isochronous potential (see Binney and Tremaine 1987, p. 38):

V (r) = − k

b+
√
b2 + r2

.
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Introduce an auxiliary variable s = 1 +
√
r2/b2 + 1. Prove that, if s1 and s2

correspond, respectively, to the distance of the pericentre and of the apocentre,
the radial period is given by

Tr =
2πb√−2E

[
1− 1

2
(s1 + s2)

]
.

In addition, prove that s1 + s2 = 2(1− k/2Eb), and hence that

Tr =
2πk

(−2E)3/2 ;

thus Tr depends only on the energy E, and not on the angular momentum L
(this is the reason V (r) is called isochronous). Prove also that the increment
Φ of the azimuthal angle between two consecutive passages at pericentre and
apocentre is given by

Φ =
π

2

[
1 +

L√
L2 + 4kb

]
.

Note that Φ → π when b → 0.
5. Find the series expansion of the solution of the equation

ξ − e cos ξ = l

and prove that it converges uniformly in l for |e| small enough.
6. Let y = sinx = x − x3/3! + x5/5! + O(x7). Compute the expansion of

x = X(y) up to terms of order O(y7). Verify the accuracy by comparing with
the Taylor series expansion of x = arcsin y.

7. Let y = x − x2 + x3 − x4 + · · · . Compute x = x(y) up to fourth order.
(Answer: x = y + y2 + y3 + y4 + · · · .)

8. Let y = x − 1/4x2 + 1/8x3 − 15/192x4 + · · · . Compute x = X(y) up to
fourth order. (Answer: x = y + 1/4y2 + O(y5).)

9. Solve, using the Lagrange formula, the equation

x = y + ε sin(hx).

For fixed y, for which values of ε does the series converge?
10. Solve, using the Lagrange formula, the equation

x = y + εx3

and discuss the convergence of the series.
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11. In the Kepler problem, express the polar angle ϕ as a function of the
average anomaly l and of the eccentricity e up to terms of order O(e3). (Answer:
ϕ = l − 2e sin l + 5/4e2 sin(2l) + O(e3).)
12. With the help of Fig. 5.4 show that r = a(1 − e cos ξ) (remember that

CF = ae).

5.9 Additional remarks and bibliographical notes

In this chapter we studied central motions and we have seen the most elementary
results on the n-body problem. What we proved constitutes a brief and elementary
introduction to the study of celestial mechanics. According to Poincaré, the final
aim of this is ‘to determine if Newton’s law is sufficient to explain all the
astronomical phenomena’.1 Laskar (1992) wrote an excellent introduction to the
history of research on the stability of the solar system, from the first studies
of Newton and Laplace up to the most recent developments of the numerical
simulations which seem to indicate that the motion of the planets, on long
time-scales, is better analysed with the tools of the theory of chaotic dynamical
systems. This is at odds with the previous firm (but unproven) belief that planets
are unchangeable, stable systems.2

For a deeper study of these topics, we suggest the book of Pollard (1976), of
exceptional clarity and depth. In it, after a summary of the fundamental notions
of mechanics and analytical mechanics, the reader can find the most important
results regarding the n-body problem. The problem with n = 3 is treated in
depth, with a careful analysis of all solutions discovered by Lagrange and Euler
and of the equilibrium positions of the reduced circular plane problem (where
it is assumed that the three bodies belong to the same plane and that two of
them—the primary bodies—move with a uniform circular motion around the
centre of mass). Another advanced work on the same subject is the book by
Meyer and Hall (1992). These authors choose from the first pages a ‘dynamical
systems’ approach to celestial mechanics, which requires a greater mathematical
background (the present book should contain all necessary prerequisites to such
a reading).
The monograph by Wintner (1941) is of fundamental importance, but it is not

easy to read.
In Wintner’s book one can find a discussion of Bertrand’s theorem (1873) (see

also Arnol’d 1978a and Albouy 2000).
The Kepler equation, and the various analytical and numerical methods for

its solution, are discussed in detail by Danby (1988) and by Giorgilli (1990). In

1 ‘Le but final de la mécanique céleste est de résoudre cette grand question de savoir si
la loi de Newton explique à elle seule tous les phénomènes astronomiques’ (Poincaré 1892,
p. 1).

2 However, Newton had already expressed doubts in the Principia Mathematica as he
considered that it was necessary to allow for the intervention of a superior being in order
to maintain the planets near their Keplerian orbits for very long times.
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the former, one can also find the listings of some easy BASIC programs to solve
Kepler’s equation and determine the time dependence in Kepler’s problem. In
addition, the book contains a detailed discussion of the problem of determining
all elements of a Keplerian orbit (eccentricity, semi-axes, inclination, etc., see
Section 9.8) starting from astronomical data.
In this book it was impossible, due to space constraints, to go into a more

detailed study of the geometric and topological aspects of the two-body and
n-body problems (although Appendix 6 partially fills this gap). The articles
by Smale (1970a,b) and the discussion by Abraham and Marsden (1978) are
excellent but very difficult; the work of Alekseev (1981) is more accessible but
less complete.
Finally, a curious observation: the Ptolemaic theory of epicycles has recently

been interpreted through Fourier series expansions and the theory of quasi-
periodic functions; we recommend the first volume of Sternberg’s book (1969).

5.10 Additional solved problems

Problem 1
Determine a central force field in which a particle of mass m is allowed to
describe the orbit r = r0ecϕ, where r0 > 0 is fixed, c is a non-zero constant and
ϕ is the polar angle. Compute ϕ = ϕ(t) and r = r(t).

Solution
Setting u = 1/r we have u = u0e−cϕ, where u0 = 1/r0. From equation (5.26) it
follows that

d
du

Ve

(
1
u

)
= −c2L2z

m
u,

from which by integration we obtain

V (r) = − L2z
2mr2

(1 + c2).

We find ϕ(t) starting from the conservation of the angular momentum: mr2ϕ̇ =
Lz, from which it follows that mr20e

2cϕ(t)ϕ̇(t) = Lz. The last relation can be
integrated by separation of variables.

Problem 2
Prove that in a central force field with potential energy V (r) = −αe−kr/r, where
α and k are two positive constants, for sufficiently small values of the angular
momentum there can exist a stable circular orbit.

Solution
The effective potential energy is given by

Ve(r) =
L2z

2mr2
− α

e−kr

r
,
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and hence lim
r→∞Ve(r) = 0, lim

r→0+
Ve(r) = +∞. Differentiating once we find

V ′
e (r) = − L2z

mr3
+ αk

e−kr

r
+ α

e−kr

r2
.

Circular orbits correspond to critical points of the effective potential energy. Thus
we must study the equation

re−kr(1 + kr) =
L2z
mα

. (5.109)

The function f(x) = xe−x(1 + x), when x ∈ R+ varies, has a unique critical
point (an absolute maximum) for x = (

√
5 + 1)/2. If we set M = f

(
(
√
5 + 1)/2

)
,

we find that (5.109) has a solution if and only if L2z ≤ mαM/k. In addition,
if L2z < mαM/k there are two solutions corresponding to a relative minimum
and maximum of Ve, and hence there exists a stable circular orbit, whose radius
tends to zero if L2z → 0.

Problem 3
(From Milnor 1983, pp. 353–65.)
Consider Kepler’s problem and suppose that the angular momentum is non-
zero. Prove that, as time t varies, the velocity vector v = ṙ(t) moves along
a circle C lying in a plane P passing through the origin. This circle, and its
orientation, uniquely determines the orbit r = r(t). The orbit is elliptic, hyperbolic
or parabolic according to whether the origin is at the interior, at the exterior,
or exactly on the circle C.

Solution
Let R = k/Lz. From equation (5.6) (with V (r) = −k/r) it follows that dv/dϕ =
−Rr/r which yields, by integration, v = Reϕ+c, with c = (c1, c2) an integration
constant. This shows that v moves along a circle C with centre c, radius R, lying
in the same plane containing the orbit. Let ε = |c|/R be the distance of c from
the origin, divided by the radius of the circle C. If we choose the orientation of
the axes x, y of the plane so that c lies on the y-axis, we find

v = R(− sinϕ, ε+ cosϕ). (5.110)

It follows that Lz = mrR(1 + ε cosϕ) and we find again that r =
Lz/[mR(1 + ε cosϕ)], and hence equation (5.37) in which the eccentricity is given
by ε. This shows how c lies at the interior or exterior, or it belongs to the circle
C according to whether the orbit is elliptic, hyperbolic or parabolic.

Problem 4
Prove that there are no equilibrium points for the n-body problem.
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Solution
An equilibrium point is a solution of the system of equations

−∇riV (r1, . . . , rn) = 0, i = 1, . . . , n,

where V is the potential energy (see (5.103)). Since V is homogeneous of degree
−1 we have

−
n∑

i=1
ri · ∇riV = V. (5.111)

However, since V is a sum of negative terms, it follows that V < 0, contrary
to the requirement that, at an equilibrium point, the left-hand side of (5.111)
vanishes.

Problem 5
A central configuration in the n-body problem is a solution of (5.99) of the
form ri(t) = ψ(t)ai, where ψ is a real function and the vectors a1, . . . ,an are
constant. Prove that if n = 3, for any values of the masses there exists a central
configuration in which the three particles are at the vertices of an equilateral
triangle (Lagrange’s solutions).

Solution
Without loss of generality we can assume that the centre of mass of the system
is fixed at the origin. Substituting ri = ψ(t)ai into equation (5.98) we find

|ψ|3ψ−1ψ̈miai =
∑
j �=i

Gmimj

|aj − ai|3 (aj − ai). (5.112)

Since the right-hand side is constant, by separation of variables we find

ψ̈ = − λψ

|ψ|3 , (5.113)

−λmiai =
∑
j �=i

Gmimj

|aj − ai|3 (aj − ai). (5.114)

Equation (5.113) has infinitely many solutions while (5.114) can be written as

∇riV (a1, . . . ,an) + λ∇riI(a1, . . . ,an) = 0. (5.115)

By the theorem of Lagrange multipliers, the system of vectors a1, . . . ,an yielding
a central configuration corresponds to an extremal point of the potential energy,
under the constraint that the polar moment of inertia (see (5.104)) I is fixed.

Let aij = |ai − aj |. Then 1 ≤ i < j ≤ 3, M =
∑3

i=1mi and since

4MI =
∑

1≤i<j≤3
mimja

2
ij ,
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equation (5.115) can be written as

−Gmimj

a2ij
+

λmimjaij
2M

= 0 (5.116)

and admits the unique solution aij = (2MG/λ)1/3.

Problem 6
A limiting case of the three-body problem is the so-called reduced plane circular
three-body problem, when one considers the motion of a point particle (of mass
m) under the action of two masses moving along circular orbits. Suppose that
the two masses are α and 1−α, with centre of mass at the origin. Show that in
the frame of reference moving with the two points, there exist three equilibrium
configurations when the three bodies are aligned.

Solution
The chosen reference system rotates with angular velocity ω. Choose the axes in
such a way that the coordinates of the points of mass α and 1−α are (1−α, 0)
and (−α, 0), respectively. The kinetic energy of the point particle is

T (x, y, ẋ, ẏ) =
1
2
m[ẋ2 + ẏ2 + 2ωyẋ− 2ωxẏ + ω2x2 + ω2y2], (5.117)

while the potential energy is

V (x, y) = − Gmα√
(x− 1 + α)2 + y2

− Gm(1− α)√
(x+ α)2 + y2

. (5.118)

It follows that the equations of motion are

mẍ− 2mωẏ =
∂Ve

∂x
(x, y),

mÿ − 2mωẋ =
∂Ve

∂y
(x, y),

(5.119)

where Ve(x, y) = V (x, y) − 1
2mω2(x2 + y2). Hence the equilibrium positions are

given by ẋ = ẏ = 0 and solutions (x, y) of ∇Ve(x, y) = 0. Along the axis y = 0
we find

Ve(x, 0) =
1
2
mω2x2 ± Gmα

x− 1 + α
± Gm(1− α)

x+ α
, (5.120)

where the signs are chosen in such a way that each term is positive: if x < −α
the signs are (−,−), if −α < x < 1 − α we have (−,+), if x > 1 − α we have
(+,+). Since Ve(x, 0) → +∞ when x → ±∞, x → −α, x → 1−α and Ve(x, 0) is
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a convex function (verify that

∂2Ve

∂x2
(x, 0) > 0

for all x), Ve has exactly one critical point in each of these three intervals.

Problem 7
An alternative way to solve Kepler’s equation (5.75) is obtained by computing
the Fourier series expansion (see Appendix 7) of the eccentric anomaly as a
function of the mean anomaly. Using the definition

In(x) =
1
2π

∫ 2π

0
cos(ny − x sin y) dy (5.121)

of the nth Bessel function prove that

ξ = l +

∞∑
n=1

2
n

In(ne) sin(nl). (5.122)

Solution
Let e sin ξ =

∑∞
n=1An sin(nl), where the coefficients An are given by An =

(2/π)
∫ π

0 e sin ξ sin(nl) dl. Integrating by parts and using the substitution l =
ξ − e sin ξ, we find

An =
2
nπ

∫ π

0
cos(nl)

d
dl
(e sin ξ) dl =

2
nπ

∫ π

0
cos(nl)

e cos ξ
1− e cos ξ

dl

=
2
nπ

∫ π

0
cos(nl)

(
dξ
dl

− 1
)
dl =

2
nπ

∫ π

0
cos[n(ξ − e sin ξ)] dξ =

2
n

In(ne).

Recalling the power series expansion of the Bessel functions

In(x) =

∞∑
k=0

(−1)kxn+2k
2n+2kk!(n+ k)!

, (5.123)

it is possible to verify that (5.122) leads to (5.81)–(5.83) and vice versa. It
is, however, necessary to appeal to equation (5.121) to get a better version of
Theorem 5.4 and to prove the convergence of the series expansions (5.81)–(5.83)
for all values of the eccentricity |e| < 0.6627434 . . .. The series (5.122) converges
for all values of e ∈ [0, 1] (see Watson 1980, in particular Chapter XVII ‘Kapteyn
series’ ).



6 RIGID BODIES: GEOMETRY AND KINEMATICS

6.1 Geometric properties. The Euler angles

Definition 6.1 A rigid body is a set of points {P1, . . . , Pn}, n ≥ 2 which satisfy
the rigidity constraints

|Pi − Pj | = rij > 0, 1 ≤ i < j ≤ n, (6.1)

where rij are prescribed lengths. �

We note that:

(a) the constraints (6.1) must satisfy certain compatibility conditions (e.g. the
triangle inequalities rij < rik + rkj , 1 ≤ i < k < j ≤ n);

(b) the n(n− 1)/2 equations (6.1) are not all independent when n > 3.

Regarding (b), if we consider three points P1, P2, P3 in the system, not lying on
the same line, for a chosen reference frame Σ = (Ω, ξ1, ξ2, ξ3) we can assign to
P1 three coordinates, to the point P2 two coordinates, and to the point P3 one
coordinate.
It is clear that having fixed the configuration of the triangle P1P2P3 with

respect to Σ, the coordinates of every other point in the system are automatically
determined as functions of the six prescribed parameters. From this follows the
well-known property stating that a rigid system containing at least three points,
not all lying on the same line, has six degrees of freedom.
In the case of a rigid body with all points lying on the same line, the number

of degrees of freedom is five (it is sufficient to determine the configuration of the
segment P1P2 with respect to Σ), while for a rigid body in the plane the degrees
of freedom are three.
We now introduce the concept of a body reference frame. Since the configuration

of a rigid body is determined by that of any triangle P1P2P3 formed by three
of its points, we can associate with it a frame S ≡ (O, x1, x2, x3), called a body
frame, for example assuming that the origin O coincides with P1, the x1-axis
contains the side P1P2, and the plane (x1, x2) contains the triangle P1P2P3 and
the x3-axis, with the orientation of the unit vector e3 = e1 × e2, where e1 and
e2 are the unit vectors of the x1- and x2-axes (Fig. 6.1).
Hence the problem of the determination of the configuration of a rigid body

with respect to a frame Σ (which we call ‘fixed’) is equivalent to the problem of
determining the configuration with respect to Σ of one of its body frames S.
A body frame is determined by choosing an element g of the group of

orientation-preserving isometries of three-dimensional Euclidean space (we exclude
reflections). We denote by SO(3) the group of real 3 × 3 orientation-preserving
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Fig. 6.1 Body reference frame.

orthogonal matrices A, i.e. such that AAT = 1 and detA = +1. Then
g ∈ R3 × SO(3) is the composition of a translation Σ → Σ′, determined by
the three coordinates of O in Σ, and of a rotation Σ′ → S around O.
The column vectors of the rotation matrix A are the direction cosines of the

axes of S with respect to Σ′ (nine parameters related by the six orthonormality
conditions). This proves the following important property.

Proposition 6.1 The configuration space of a rigid body with at least three non-
collinear points in three-dimensional Euclidean space is R3×SO(3). If the system
has a fixed point it must have three degrees of freedom and its configuration space
is SO(3). �

A more direct representation of the transformation Σ′ → S is given by the
so-called Euler angles (Fig. 6.2). It is easy to verify that the transformation
A : Σ′ → S can be obtained by composing three rotations. Let N be the line of
nodes, i.e. the intersection between the planes x3 = 0 and ξ′

3 = 0 and denote by
Aa(α) the rotation by an angle α around the axis a. We then have

A = Ax3(ϕ)AN (θ)Aξ′
3
(ψ), (6.2)
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Fig. 6.2

since

(a) the rotation Aξ′
3
(ψ) by an angle ψ (precession) around the axis ξ′

3 makes the
axis ξ′

1 coincide with the line of nodes N ;
(b) the rotation AN (θ) by an angle θ (nutation) around the line of nodes N

brings the axis ξ′
3 to coincide with the axis x3;

(c) the rotation Ax3(ϕ) by an angle ϕ around the axis x3 makes the axes ξ′
1, ξ

′
3

coincide with the axes x1, x2.

Remark 6.1
In order to determine the configurations of a rigid body it is not important
to know the actual geometric structure of the system. We only need to know if
the system has three non-collinear points. �

Often one considers rigid bodies subject to additional constraints.
In general, given a set of N rigid bodies each with an associated vector q(i)

with six components (three in the planar case), we can impose constraints of the
following kind:

fj(q(1), . . . ,q(N)) = 0, j = 1, . . . ,m, (6.3)

subject to the same criteria as seen in Chapter 1.

Example 6.1
We study the planar system made up of two rods AB, CD of length �1, �2,
respectively (�1 ≥ �2), with the endpoints A,C fixed at a distance � and with
the endpoint D constrained to lie on the segment AB (Fig. 6.3).
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The constraint imposed on D makes sense only if � < �1 + �2. In this case the
system has only one degree of freedom. We can take the angle α as a Lagrangian
coordinate. We distinguish the following cases.

(1) �2 > �. The angle α is variable, without limitations. Setting �/�2 = ξ we
have sinβ = ξ sinα, γ = π− [α+ β(α)], from which we can obtain the values
of sin γ, cos γ, if we note that cosβ =

√
1− ξ2 sin2 α (β is always acute, as

its opposite side is not the longest of the three sides, in any configuration).
Since

dγ
dα

= −1− dβ
dα

and
dβ
dα

= ξ
cosα
cosβ

,

it is easy to check that dγ/dα is bounded and does not vanish, and hence
the constraint is non-singular.

(2) �2 < �. Since now ξ > 1 we have the restriction |sin α| < 1/ξ. The extreme
values correspond to β = ±π/2 and give a singularity of dγ/dα; this is the
configuration which lies between those characterised by cosβ =

√
1− ξ2 sin2 α

and those for which cosβ = −
√
1− ξ2 sin2 α.

(3) �2 = �. The configuration with D ≡ A is degenerate; it can be obtained as
a limiting case for α → π/2, but if the point D remains fixed then the rod
AB can rotate around A. �

6.2 The kinematics of rigid bodies. The fundamental formula

Since the configuration of a rigid system with respect to a frame Σ is determined
by the configuration of any of its body frames S, the study of the kinematics of
rigid systems consists of the description of the motion of S with respect to Σ.
A fundamental property of the velocity field of S with respect to Σ is the

following.

Theorem 6.1 The velocity field of a rigid motion is expressed by the formula

v(P ) = v(O) + ω × (P −O), (6.4)
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where v(O) is the velocity of a prescribed point O and ω is called the angular
velocity. �

Equation (6.4) is a consequence of the following result.

Theorem 6.2 In every rigid motion there exists one and only one vector ω,
which is a function of time, through which we can express the variation of any
unit vector e in the body by means of the formula

de
dt

= ω × e (6.5)

(Poisson’s formula, also known as the attitude equation).

Proof
The variation of a unit vector e in the time interval (t, t+∆ t) can be expressed
as

e(t+∆ t)− e(t) = A(∆ t)e(t)− e(t) = (A(∆ t)− 1)e(t),

where A(∆ t) is an orthogonal matrix such that A(0) = 1. It follows that

de
dt

= Ȧ(0)e(t). (6.6)

Recalling Lemma 1.1, which states that Ȧ(0) is a skew-symmetric matrix, if we
write it in the form

Ȧ(0) = Ω =

⎛⎝ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎞⎠ , (6.7)

where ω1, ω2, ω3 define the vector ω(t), we see that (6.6) can be written exactly
in the form (6.5), as Ω e = ω × e.
The uniqueness of the vector ω follows by noting that if there existed a different

vector ω′ with the same characterisation, the difference would satisfy

(ω − ω′)× e = 0 (6.8)

for every unit vector e of S, implying ω = ω′. �

It is interesting to note that if a unit vector e(t) satisfies equation (6.5) then
it must be fixed in the body frame, as these are the only unit vectors satisfying
the transformation law (6.6).
The Poisson formula is clearly valid for any fixed vector in the body frame W:

dW
dt

= ω ×W. (6.9)

For any two points P,O in S, by applying equation (6.9) to the vector W = P−O,
one finds the formula (6.4).
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Clearly the condition ω �= 0 characterises any motion which is not purely a
translation.

Proposition 6.2 A necessary and sufficient condition for a rigid motion to be
a translation is that ω = 0. �

Proposition 6.3 If the direction of ω is constant in the reference frame Σ then
it is constant in the body frame S, and vice versa.

Proof
Suppose that e = ω/|ω| is constant in S. We can then apply to it equation (6.5)
and conclude that de/dt = 0, i.e. that e does not vary in Σ. Conversely, if
de/dt = 0 in Σ, the unit vector e satisfies (6.5), since trivially ω × e = 0. It
follows that e is constant in S. �

Rigid systems can be subject to non-holonomic constraints. This is illustrated
in the following example.

Example 6.2
Show that a disc that rolls without sliding on a plane π, and always orthogonal
to it, is not a holonomic system (Fig. 6.4).
If we ignored the kinematic condition which requires that the velocity at the

contact point is zero, we would have a holonomic system with four degrees of
freedom. The corresponding Lagrangian coordinates can be taken as:

– two coordinates x1, x2 which determine the position of the centre O;
– the angle ψ formed by the plane of the disc with a fixed plane, normal to the
base plane;

– the angle ϕ formed by a radius fixed on the disc with the normal to the base
plane.

O

O w

c

Fig. 6.4
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If the addition of the kinematic constraint preserved the holonomic property
of the system, then it would be possible to determine a relation of the kind
f(x1, x2, ϕ)= 0; indeed this constraint cannot have any effect on the determination
of the angle ψ. Hence to prove that the system is not holonomic, it is enough
to prove that the coordinates x1, x2, ϕ remain independent.
Hence we show that, for a given configuration of the system (for example, one

associated with zero values for x1, x2, ϕ, ψ), we can move the disc in such a way
that we can reach any other configuration, characterised by arbitrary values of
x1, x2, ϕ, ψ. Ignoring the coordinate ψ, which can be chosen once the other three
parameters are fixed, there exist infinitely many motions achieving this aim; if
R is the radius of the given disc, and if x(0)1 , x

(0)
2 , ϕ(0) are the coordinates of the

final configuration, it suffices to connect the points having coordinates (0, 0) and
(x(0)1 , x

(0)
2 ) in the plane π with an arc of any regular curve of length R(2kπ+ϕ(0)),

with k ≥ 0 any integer, allowing the disc to roll along this arc. �

This example shows that constraints that are not holonomic do not prevent
certain configurations, but limit to certain classes the motions that connect two
prescribed configurations (a familiar example is the parking of a car, when some
manoeuvring is necessary due to the fact that the wheels cannot slide on the
road).

Remark 6.2
If one prescribes a curve γ along which one constrains the disc of Example 6.2
to roll (x1 = x1(q), x2 = x2(q)) the system is again holonomic. Indeed, this gives
a relation

Rϕ =
∫ q

0
(x′2
1 (η) + x′2

2 (η))
1/2 dη + constant.

If in addition the disc is constrained in the plane containing the unit vector
tangent to γ then the system has only one degree of freedom, corresponding to
the Lagrangian coordinate q. �

6.3 Instantaneous axis of motion

Theorem 6.3 If ω �= 0 at a given time instant, then there exists at that instant
a straight line parallel to ω, whose points have velocity parallel to ω or zero.

Proof
First of all, note that by taking the scalar product of (6.4) with ω we find

v(P ) · ω = v(O) · ω, (6.10)

i.e. the product v · ω is invariant in the velocity field of a rigid system. We want
to show that there exists a line, parallel to ω, along which the velocity reduces
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only to the component parallel to ω (common to all the points in the field).
To this aim we consider the plane π normal to ω and passing through O and we
look for P ∗ ∈ π with the property that v(P ∗)×ω = 0. Evaluating equation (6.4)
at P ∈ π, and taking the vector product of both sides with ω, in view of the
fact that ω · (P −O) = 0, we find

v × ω = (P −O)ω2 + v(O)× ω.

This yields the sought solution P ∗ as:

P ∗ −O = ω × v(O)
ω2 . (6.11)

In addition, from (6.4) we immediately deduce that all points belonging to the
same line parallel to ω have the same velocity.
This completes the proof of the theorem. �

Definition 6.2 The straight line of Theorem 6.3 is called the instantaneous axis
of motion (instantaneous axis of rotation, if the invariant v · ω vanishes). �

For the previous considerations it follows that the velocity field in a rigid
motion has rotational symmetry with respect to the instantaneous axis of motion.
Figure 6.5 justifies the fact that the generic rigid motion is called helical.

v

Fig. 6.5 Axial symmetry of the velocity field around the instantaneous axis of motion.
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The kinematics of rigid systems has far-reaching developments, which we do
not consider here.1 We recall the following special kinds of rigid motion.

(a) Plane rigid motions: these are the motions defined by the presence of a plane
in the system superimposed on a fixed plane. They can be characterised by
the condition that

v · ω = 0, ω has constant direction, (6.12)

and can be studied in a representative plane. The intersection of the latter
with the instantaneous axis of rotation is called the instantaneous centre of
rotation.

(b) Precessions: rigid motions with a fixed point O : v(O) ≡ 0. Clearly v ·ω = 0
and the point O, called the pole of the precession, belongs to the instantaneous
axis of rotation for all times.

(c) Rotations: rigid motions with a fixed axis (a particular case of
Proposition 6.3). The rotation if said to be uniform if ω = constant.

6.4 Phase space of precessions

We state a result that we have already discussed.

Theorem 6.4 The tangent space to the space of orthogonal 3× 3 matrices com-
puted at the identity matrix is the space of 3× 3 skew-symmetric matrices (6.7),
denoted by so(3). �

We should add that when v(0) = 0, equation (6.4) reduces to ẋ = Ωx, where
Ω is the matrix given by (6.7). Setting x(0) = ξ, we can describe the precession by
the equation x = A(t)ξ, with A(0) = 1 and AAT = 1. It follows that ẋ = Ȧ(t)ξ
and finally, from (6.4) Ȧξ = ΩAξ, ∀ξ ∈ R3. Hence the matrix A satisfies the
Cauchy problem

Ȧ = ΩA, A(0) = 1 (6.13)

whose solution, if Ω = constant, is given by

A(t) = exp(tΩ) =

∞∑
n=0

tn

n!
Ωn . (6.14)

It is easy to compute the powers of the matrix Ω. The elements of Ω2 are
(Ω2)ij = ωiωj for i �= j, (Ω2)ii = −(ω2j + ω2k), with i, j, k all distinct, Ω3 = −ω2 Ω
and

Ω2n = (−1)n−1ω2(n−1) Ω2, Ω2n+1 = (−1)nω2n Ω , n ≥ 1.

1 See for instance Fasano et al. (2001).



222 Rigid bodies: geometry and kinematics 6.4

This yields the explicit expression for the series (6.14):

exp(tΩ) = 1+
Ω2

ω2
(1− cosωt) +

Ω
ω
sinωt. (6.15)

In the particular case of a rotation around the axis x3 the matrix Ω reduces to

Ω3 = ω

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠ ,
Ω23
ω2

=

⎛⎝−1 0 0
0 −1 0
0 0 0

⎞⎠ ,

and we find the well-known result that

A(t) = ω

⎛⎝cosωt − sinωt 0
sinωt cosωt 0
0 0 0

⎞⎠ .

If Ω is not constant, equation (6.13) is equivalent to the integral equation

A(t) = 1+
∫ t

0
Ω(t′)A(t′) dt′, (6.16)

which can be solved by iteration, and yields the formula

A(t) = 1+

∞∑
n=1

∫ t

0
dt1 Ω(t1)

∫ t1

0
dt2 Ω(t2) . . .

∫ tn−1

0
dtn Ω(tn). (6.17)

We now give an equivalent, more concise formulation of the latter expression. Note
that the order of multiplication in (6.17) is relevant, as in general Ω(ti)Ω(tj) �=
Ω(tj)Ω(ti) (obviously if Ω is constant, the series (6.17) reduces to (6.14)). Let

θ(t) =

{
0, t < 0,
1, t > 0.

(6.18)

The general term of the series (6.17) can be written as∫ t

0
dt1 . . .

∫ t

0
dtn θ(t1 − t2) · · · θ(tn−1 − tn)Ω(t1) · · ·Ω(tn)

=
1
n!

∫ t

0
dt1 . . .

∫ t

0
dtn

∑
σ∈P(n)

θ(tσ(1) − tσ(2)) · · · θ(tσ(n−1) − tσ(n))

× Ω(tσ(1)) · · ·Ω(tσ(n)), (6.19)

where P(n) denotes the group of permutations of the indices {1, . . . , n}; it is
clear that the number of elements σ of P(n) is n!. We then define the T -product
(time-ordered product) of the matrices Ω(t1), . . . ,Ω(tn) as

T [Ω(t1) . . .Ω(tn)] =
∑

σ∈P(n)
θ(tσ(1) − tσ(2)) · · · θ(tσ(n−1) − tσ(n))

× Ω(tσ(1)) · · ·Ω(tσ(n))
(6.20)
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in such a way that if σ denotes the permutation of {1, . . . , n} such that tσ(1) >
tσ(2) > · · · > tσ(n−1) > tσ(n) we have

T [Ω(t1) . . .Ω(tn)] = Ω(tσ(1)) · · ·Ω(tσ(n)).
Recalling (6.19) and the definition (6.20) we find that the solution (6.17) of
equation (6.13) can be written

Ω(t) = 1+

∞∑
n=1

1
n!

∫ t

0
dt1 . . .

∫ t

0
dtn T [Ω(t1) · · ·Ω(tn)]. (6.21)

This solution is also known as the T -exponential (or time-ordered exponential)

Ω(t) = T − exp
[∫ t

0
Ω(t′) dt′

]

= 1 +

∞∑
n=1

1
n!

∫ t

0
dt1 . . .

∫ t

0
dtn T [Ω(t1) · · ·Ω(tn)].

(6.22)

Again we note that if Ω is constant then equation (6.22) becomes (6.14). In the
special case that, for any t′, t′′ ∈ [0, t] one has Ω(t′)Ω(t′′) = Ω(t′′)Ω(t′), equation
(6.22) simplifies to

exp
(∫ t

0
Ω(t′) dt′

)
,

where the order of multiplication of the matrices Ω(ti) is not important.

6.5 Relative kinematics

After studying the motion of a frame S with respect to a frame Σ, we summarise
the main results of relative kinematics. This is concerned with the mutual relations
between kinematic quantities of a point in motion as observed by S (called
relative) and as observed by Σ (called absolute).
We use the subscript R for relative quantities, the subscript T for quantities

corresponding to the rigid motion of S with respect to Σ, and no subscript for
absolute quantities. The following relations hold:

v = vR + vT , (6.23)

a = aR + aT + aC , (6.24)

where ω is the rotational velocity of S with respect to Σ and the term aC =
2ω × vR is called the Coriolis acceleration.
The former can be found by differentiating the vector P −O =

∑
i xiei in the

Σ reference frame and using equation (6.5):

d(P −O)
dt

=
∑
i
ẋiei + ω ×

∑
i
xiei.
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Equation (6.23) expresses the relation between the absolute derivative (in Σ) and
the relative derivative (in S):

dW
dt

=
(
dW
dt

)
R

+ ω ×W, (6.25)

where W is any vector, variable in both S and Σ.
Applying (6.24) to vR we find

dvR

dt
= aR + ω × vR. (6.26)

For the derivative of vT = v(0) + ω × (P −O) we then obtain

dvT

dt
= aT + ω × vR, (6.27)

where the last term has its origin in the fact that the relative motion in general
produces a variation of vT , because the point in question moves in the velocity
field of the motion S with respect to Σ (note that this effect vanishes if the
relative motion is in the direction of ω, since vT does not vary in this direction).
We can now consider a triple S′ = (O′, x′

1, x
′
2, x

′
3), in motion with respect to

both S and Σ (Fig. 6.6), and find the relations between the characteristic vectors
of the relative motion and of the absolute motion.
We start by expressing that for every P ∈ S′

vR(P ) = vR(O′) + ωR × (P −O′), (6.28)

where ωR is the angular velocity of S′ with respect to S. Let ωT be the angular
velocity of S with respect to Σ. Then we have

vT (P ) = vT (O) + ωT × (P −O). (6.29)

From this it follows by adding (6.28) and (6.29) that

v(P ) = vR(O′) + vT (O) + ωT × (O′ −O) + (ωT + ωR)× (P −O′), (6.30)

which contains vT (O) + ωT × (O′ −O) = vT (O′).
Hence we find the expression for the absolute velocity field:

v(P ) = v(O′) + ω × (P −O′), (6.31)

with

v(O′) = vR(O′) + vT (O′) (6.32)
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Fig. 6.6 Composition of rigid motions.

and

ω = ωR + ωT . (6.33)

The absolute rigid motion is commonly called compound rigid motion.

Example 6.3: composition of precessions with the same pole
We immediately find that the compound motion is a precession whose angular
velocity is the sum of the angular velocities of the component motions. When
two uniform rotations are composed, the vector ω = ωR + ωT forms constant
angles with ωT fixed in Σ (known as the precession axis) and with ωR fixed in
S (spin axis). The resulting precession is called regular. �

Clearly ω can be thought of as the sum of the rotations driven by the variations
of the associated Euler angles:

ω = ϕ̇e3 + θ̇N+ ψ̇ε3, (6.34)
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where e3 is the unit vector fixed in S around which we have the rotation, N is
the unit vector of the node line, around which e3 rotates, and ε3 is the fixed
unit vector around which the node lines rotates.
We can find the decomposition of ω in the body frame by appealing to Fig. 6.7,

where the unit vectors N1,N, e3 form an orthogonal frame, so that ε3 (normal
to N) is in the plane of e3 and N1:

ε3 = sin θN1 + cos θe3, (6.35)

N = cosϕe1 − sinϕe2, (6.36)

N1 = sinϕe1 + cosϕe2. (6.37)

It follows that by projecting ω onto the vectors of the body frame, we find

ω = (θ̇ cosϕ+ ψ̇ sin θ sinϕ)e1 + (−θ̇ sinϕ+ ψ̇ sin θ cosϕ)e2

+ (ϕ̇+ ψ̇ cos θ)e3.
(6.38)

6.6 Relative dynamics

As an appendix to the study of relative kinematics we now present some obser-
vations on the relative dynamical picture. What we have just presented allows
us to complete the list of fundamental facts of the mechanics of a point particle
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(Chapter 2), by answering the following question: how can we write the equation
of motion of a point with respect to a non-inertial observer?
Consider the motion of a point particle (P,m) under the action of a force F

measured by a given inertial observer Σ, for whom the equation ma = F is valid.
Given a second observer S in motion with respect to the first one, using the
notation of (6.24) we can write

maR = F−maT −maC , (6.39)

where aR is the acceleration as measured by the non-inertial observer and aT
and aC are computed with respect to the motion of this observer relative to the
fixed inertial observer.
Ignoring for the moment the force F, the non-inertial observer measures some

apparent forces: the force connected to the acceleration of S relative to Σ,FT =
−maT , and the Coriolis force FC = −2mω × vR.
Recall that

aT (P, t) = a(O) + ω̇ × (P −O) + ω × [ω × (P −O)]. (6.40)

In particular, in the case that the reference frame of the observer S is in uniform
rotation with respect to that of Σ, the acceleration aT is reduced to the last
term of (6.40) (centripetal acceleration) and correspondingly, FT is a centrifugal
force.
If the reference frame S translates with respect to Σ (ω = 0) we have aT =

a(O). If S is chosen in such a way that P has zero relative velocity (let SP

denote such an observer) then a(O) = a and the apparent force observed by SP

acting on P is the so-called inertial force −ma.
In this case, the equation

0 = F−ma (6.41)

is interpreted by SP as the equilibrium equation.
If the point is constrained and φ is the constraint reaction, instead of

equation (6.41) we have

0 = F−ma+ φ, (6.42)

which again is interpreted by SP as the balance of forces in the equilibrium
position.

Remark 6.3
Despite their name, apparent forces are measurable in practice by a non-inertial
observer. This is true in particular for the inertial force; imagine carrying an
object in your hand and giving it an upwards or downwards acceleration (less
than the acceleration due to gravity, so the object does not leave your hand): in
the two cases one perceives that the force exerted on the hand (corresponding to
−φ) is either increased or decreased. These variations correspond to the inertial
force. �
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The interpretation of (6.42) as an equilibrium equation in SP , with the
introduction of inertial forces, is often referred to as d’Alembert’s principle.
An important property in the study of relative dynamics is that the Galilean

relativity principle, stated in Section 2.2 of Chapter 2 for the case of inertial
observers, is valid for any class of observers whose relative motion is a uniform
translation.

Proposition 6.4 The equation of motion (6.39) for a point particle (P,m) is
invariant in the class of observers that move with respect to one another with
zero acceleration.

Proof
If S and S′ are two observers whose relative motion has zero acceleration, the
sum aT + aC in S with respect to an inertial observer Σ is equal to the sum
a′
T + a′

C in S′. Indeed, the relative accelerations aR (with respect to S) and a′
R

(with respect to S′) are equal.
Note also that a′

T = aT + 2ω × v0, where v0 is the translation velocity of S′

with respect to S. Similarly a′
C = 2ω ×v′

R = 2ω × (vR −v0). Hence the variation
a′
T − aT = 2ω × v0 is balanced by the variation of a′

C − aC . Since the observers
S and S′ cannot distinguish the individual sources of apparent forces, but can
only measure their sum, it follows that it is impossible for them to be aware of
their relative motion solely on the evidence of mechanical observations. �

6.7 Ruled surfaces in a rigid motion

Definition 6.3 A fixed ruled surface (respectively body ruled surface) of a given
rigid motion is the locus of the lines which take the role of instantaneous axes of
motion in the fixed (respectively, in the body) reference frame. �

A trivial example is given by the purely rolling motion of a cylinder on a
plane; the fixed ruled surface is the plane; the body ruled surface is the cylinder.
These surfaces are important because they can generate a prescribed rigid

motion when the moving ruled surface rolls onto the fixed one (this fact is
exploited in the theory of gears).

Theorem 6.5 In a generic rigid motion the body ruled surface rolls onto the
fixed one. Along the contact line, the sliding velocity is equal to the invariant
component of the velocity field along the angular velocity.

Proof
We only need to prove that the two ruled surfaces at every instant are tangent
to each other (this fact characterises the rolling motion); indeed, the last claim
of the theorem is evidently true, as the contact line coincides at every instant
with the axis of instantaneous motion.
Recalling equation (6.11), which gives the intersection point P ∗ between the

axis of motion and the plane orthogonal to it and passing through O, we can
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write the equation for the axis of motion r(t) as

P −O = λω + ω × v(0)/ω2, λ ∈ (−∞,+∞). (6.43)

The two ruled surfaces are generated by the absolute and relative motion of the
line r(t) which moves with respect to the two reference frames so as to coincide
at every instant with r(t). To understand more clearly the different role played
by r(t) and by r(t), consider the case of the cylinder rolling on a fixed plane:
the points of the line r(t), considered in either Σ or S, have zero velocity, while
the points of the line r(t) move, sweeping the plane (absolute motion) or the
cylinder (relative motion).
We must then study the absolute and relative motion of the point P (λ, t) ∈ r(t),

defined by (6.43): the absolute velocity is tangent to the fixed ruled surface, while
the relative velocity is tangent to the body ruled surface. The velocity of the rigid
motion on the instantaneous axis of motion is vω = v(O) · ω/|ω|. It follows that

v(P )− vR(P ) = vω. (6.44)

If we ignore the degenerate case when the instantaneous axis of motion is sta-
tionary, we have that neither v(P ) nor vR(P ) are parallel to ω. Equation (6.44)
then implies that their difference must be either zero (v(O) · ω = 0) or parallel
to ω, and hence that the three vectors ω, v(P ), vR(P ) lie in the same plane.
Since the plane determined by the axis of motion and by v(P ) is tangent to
the fixed ruled surface, and the plane determined by the axis of motion and by
vR(P ) is tangent to the body surface, this proves that the two planes coincide
and that the two ruled surfaces are tangent. �

Corollary 6.1 For the motions with ω of constant direction (in particular
for plane rigid motions) the ruled surfaces are cylinders. For plane motions the
intersections of the ruled surfaces with the representative plane are called conjugate
profiles. �

Corollary 6.2 In any precession, the ruled surfaces are cones with their vertex
in the precession pole (Poinsot cones). �

The Poinsot cones are circular in the case of regular precession (Example 6.3)
and they both degenerate to a line in the case of rotations.

Example 6.4
We determine the conjugate profiles for the motion of a rod with endpoints
sliding along two orthogonal lines (Fig. 6.8).
The instantaneous centre of motion C can be trivially determined by using

Chasles’ theorem (see Problem 2), and considering the vectors normal to the
direction of the velocities of the two extremes A, B of the rod. We deduce that
in every configuration of the pair of reference axes (O, x1, x2) the point C is
characterised as follows:

(a) in the fixed reference frame (Ω, ξ1, ξ2) it is the point at a distance 2� = AB
from the point Ω;
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(b) in the reference frame (O, x1, x2) it is the point at a distance � from the
point O.

Hence the conjugate profiles in the fixed and in the body plane are the circle
of centre Ω and radius 2� and the circle of centre O and radius �, respectively.
The motion of the pole can be generated by laying the rod on the diameter of a
circle of radius � and making it rotate without sliding on a fixed circle of twice
the radius, as in Fig. 6.8 �

6.8 Problems

1. Compute the direction cosines of a moving reference frame with respect to
a fixed reference frame as a function of the Euler angles.
2. Prove that in a plane rigid motion the instantaneous centre of rotation lies

on the normal to the velocity of each point which is distinct from it (Chasles’
theorem).
3. A disc of radius R moves on a plane, rolling and sliding along a straight

line. Assuming that the velocity of the centre and the sliding velocity are known,
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find the instantaneous centre of motion. Find also the conjugate profiles when
the above velocities are constant.
4. A rod AB moves on a plane while being tangent to a given circle of radius

R. The rod has one of its endpoints constrained to slide on a line tangent to
the circle. Prove that the conjugate profiles are two parabolas.
5. Compose two uniform rotations around distinct parallel axes (consider both

the case of rotations with the same or opposite direction).
6. Compose two uniform rotations around incident axes (the result is a regular

precession).
7. Compose two uniform rotations around skew lines, proving that the two

ruled surfaces of the compound motion are one-sheeted hyperboloids.
8. A disc of radius r rolls without sliding on a circle of radius R, while being

orthogonal to the circle plane and moving in such a way that its axis intersects
at every instant the normal to the circle plane passing through its centre. Prove
that the motion is a precession and that the Poinsot cones are circular.
9. Determine the generalised potentials of the centrifugal force and of the

Coriolis force.

6.9 Additional solved problems

Problem 1
It is well known that if A,B are two n × n matrices (n ≥ 2) then eAeB =
eA+B = eBeA if and only if [A,B] = AB −BA = 0. More generally, show that if
[C,A] = [C,B] = 0, where C = [A,B], then

eAeB = eA+B+[A,B]/2. (6.45)

Solution
We start by showing that if F is a function analytic in x ∈ R and entire (i.e.
its radius of convergence is +∞) then

[A,F (B)] = [A,B]
dF
dx

(B).

Indeed it can be seen that if [C,B] = 0, then [C,Bn] = 0 and, by induction on
n ≥ 0, that

[A,Bn] = [A,B]nBn−1.

From this it follows that

[A,F (B)] =

∞∑
n=1

fn[A,Bn] = [A,B]

∞∑
n=1

fnnB
n−1 = [A,B]

dF
dx

(B),
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where F (x) =
∑∞

n=0 fnx
n. Now let G(t) = etAetB ; it is immediate to verify that

dG
dt

(t) = (A+ etABe−tA)G(t).

Since [B, etA] = [B,A]tetA we have

dG
dt

= (A+B + t[A,B])G(t).

Finally, since A + B under our assumptions commutes with [A,B] the latter
differential equation admits the solution (note that G(0) = 1)

G(t) = exp
(
(A+B)t+ [A,B]

t2

2

)
,

from which equation (6.45) follows by choosing t = 1.

Problem 2
Let A and B be two n× n matrices (n ≥ 2) and let t ∈ R. Prove that

etAetB = et(A+B)+(t2/2)[A,B]+(t3/12)([A,[A,B]]+[B,[B,A]])+O(t4). (6.46)

Solution
By definition eC = 1 +

∑∞
n=1 C

n/n!, from which it follows that

etAetB = 1 + t(A+B) +
t2

2
(A2 +B2 + 2AB)

+
t3

6
(A3 +B3 + 3AB2 + 3A2B) + O(t4), (6.47)

exp
{
t(A+B) +

t2

2
[A,B] +

t3

12
([A, [A,B]] + [B, [B,A]]) + O(t4)

}
= 1 + t(A+B) +

t2

2
[A,B] +

t3

12
([A, [A,B]] + [B, [B,A]])

+
1
2

{
t2(A+B)2 +

t3

2
[(A+B)[A,B] + [A,B](A+B)]

}
+

t3

6
(A+B)3 + O(t4),

(6.48)

and to obtain (6.46) one only needs to identify the coefficients of t0, t1, t2 and
t3. In the case of t0 and t1 this is obvious, while for t2/2 we find

A2 +B2 + 2AB = (A+B)2 + [A,B] = A2 +AB +BA+B2 +AB −BA.
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For t3/12 the computation is more tedious. The coefficient of t3/12 in (6.48) is

[A, [A,B]] + [B, [B,A]] + 3(A+B)[A,B] + 3[A,B](A+B) + 2(A+B)3. (6.49)

By iterating the identity BA = AB − [A,B] we find

(A+B)3 = (A+B)(A2 +AB +BA+B2) = (A+B)(A2 + 2AB +B2 − [A,B])

= A3 +B3 + 2A2B +AB2 +BA2 + 2BAB − (A+B)[A,B]

= A3 +B3 + 3A2B + 3AB2 − (2A+B)[A,B]− [A,B](A+ 2B).
(6.50)

Comparing (6.49) with the coefficient of t3/6 in (6.47), recalling also (6.50), it
follows that the proof of (6.46) is complete if we can show that

[A, [A,B]] + [B, [B,A]] + 3(A+B)[A,B] + 3[A,B](A+B)

− 2(2A+B)[A,B]− 2[A,B](A+ 2B) = 0.

This reduces to

[A, [A,B]] + [B, [B,A]] + (B −A)[A,B] + [A,B](A−B) = 0

with immediate verification.

Problem 3
Consider a plane rigid motion and suppose that the conjugate profiles, as well
as the angular velocity ω(t), are known. Determine at every instant t:

(i) the locus of points P for which a(P ) ‖ v(P );
(ii) the locus of points P for which a(P ) ⊥ v(P ).

Solution
Let C(t) be the instantaneous centre of rotation. This is the point at time t
where the conjugate profiles are tangent. By definition, the velocity v(C) = 0 in
the rigid motion (while in general the acceleration is not zero). Introduce the
point C(t) (moving with respect to both the fixed and the body reference frame),
which at every instant coincides with C(t). In its absolute motion, C(t) travels
over the fixed conjugate profile, while its trajectory in the relative motion is the
body conjugate profile. It is easily seen that C(t) has equal absolute and relative
velocities. Writing the absolute velocity field at every instant t in the form

v(P ) = ω × (P − C) (6.51)

we obtain, by differentiating, the acceleration field

a(P ) = ω̇ × (P − C) + ω × [ω × (P − C)− v], (6.52)

where v = dC/dt. The condition for a point to belong to the locus (i) is
a(P ) · (P − C) = 0, which reduces to

ω2(P − C)2 + ω × v · (P − C) = 0. (6.53)
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Setting P = C = C in expression (6.52) we find the acceleration of the instantan-
eous centre C, i.e. a(C) = −ω×v, orthogonal to v. Setting (P −C)/|P −C| = e
and 2R = a(C)/ω2, expression (6.53) can be written

|P − C| = 2R · e,

clarifying the following structure of the locus (i).
The locus of points P for which a(P ) ‖ v(P ) at time t is a circle tangent to

the conjugate profiles, and of radius R = v/2ω.
The points having such a property find themselves at a point of the trajectory

with vanishing curvature. For this reason, the locus (i) is also called the circle
of inflection points. Analogously, imposing the condition a(P )× (P −C) = 0 one
arrives at the equation for the locus (ii):

ω̇(P − C)2 + ω[v · (P − C)] = 0.

If ω̇ = 0 this locus reduces to the line passing through C and orthogonal to v.
If ω̇ =/ 0, setting 2R̂ = |ω/ω̇|v, we conclude that the locus of points P for which
a(P ) ⊥ v(P ) at time t, if ω̇ =/ 0, is a circle through C and orthogonal to the
conjugate profiles of radius R̂ = 1

2 |ω/ω̇|v.
If ω̇ = 0 it degenerates to a line normal to these profiles. The kinematic meaning

of the locus (ii) lies in the fact that the magnitude of the velocity of its points
has at that time zero time derivative, and hence the name stationary circle. We
note finally that the intersection H of the two circles, different from C, has zero
acceleration. Hence the acceleration field of the body frame can be written in
the form

a(P ) =
d
dt
[ω × (P −H)].

For this reason H is called the pole of accelerations.
To complete the problem, we now find the relation between v and ω. Consider

the case that the principal normal vectors to the conjugate profiles at the point of
contact have opposite orientation. Let kf , kb be their curvatures. Considering the
osculating circles, it is easy to find that if the point C undergoes a displacement
ds = v dt, the angular displacement of the respective normal vectors to the
two curves at the contact point is dϕf = kf ds, dϕb = kb ds, in the fixed and
body frames, respectively. Consequently the variation of the angle that a fixed
direction forms with a body direction is ω dt = dϕf+dϕb = (kf+kb)v dt, yielding
ω = (kf+kb)v. Hence we conclude that the radius of the circle of inflection points
is R = 1

2 (kf + kb), while the radius of the stationariness circle can be written as
R̂ = 1

2 (ω
2(kf + kb))/|ω̇|. In the case that the two principal normal vectors have

the same orientation, we substitute kf + kb with |kf − kb| (obviously we must
have kf =/ kb).



7 THE MECHANICS OF RIGID BODIES: DYNAMICS

7.1 Preliminaries: the geometry of masses

In contrast with kinematics, the dynamics of rigid bodies depends on the specific
distribution of masses. Hence it is necessary to review some results on the
geometry and kinematics of masses; we shall limit ourselves to the essential
facts.1

Rigid bodies can be treated equally well by a discrete or by a continuum model.
The latter consists of defining a mass density function in the region occupied
by the system. This is due to the fact that for rigid continua it makes sense
to consider forces applied to single points, or rather, to substitute a force field
(such as weight) with equivalent systems of forces applied to various points of
the system, or rigidly connected to it. This should be contrasted with the case
of deformable continua, and for which one must define force densities.
To simplify notation, we consider in this chapter discrete rigid systems,

but the results can be easily extended to continua: it is enough to substi-
tute any expression of the type

∑n
i=1 mif(Pi), where the sum extends to

all points (P1,m1), . . . , (Pn,mn) of the system, with an integral of the form∫
R ρ(P )f(P ) dV , where ρ is the density and R is the region occupied by the
body.
We start by recalling the notion of centre of mass:2

m(P0 −O) =

n∑
i=1

mi(Pi −O) (7.1)

(O is an arbitrary point in R3, m =
∑n

i=1 mi). The moment of inertia with
respect to a line r is given by

Ir =

n∑
i=1

mi[(Pi −O)× e]2 (7.2)

(O ∈ r, e is a unit vector of r). The centrifugal moment or product of inertia
with respect to a pair of non-parallel planes π, π′ with normal vectors n, n′ is

Iππ′ = −
n∑

i=1
mi[(Pi −O) · n][(Pi −O) · n′] (7.3)

1 A more detailed description can be found in Fasano et al. (2001).
2 Recall that in the gravity field the centre of mass coincides with the baricentre.
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(O ∈ π ∩ π′). Given a reference frame (O, x1, x2, x3), we denote by I11, I22, I33
the moments of inertia with respect to the axes and by Iij , i =/ j, the products
of inertia with respect to the pairs of coordinate planes xi = 0, xj = 0. Note
that the matrix (Iij) is symmetric.
It is also possible to define other quadratic moments, but we will not consider

them here. For each of them Huygens’ theorem holds, which in the cases of
interest here, takes the form

Ir = Ir0 +m[(P0 −O)× e]2, (7.4)

Iππ′ = Iπ0π′
0
−m[(P0 −O) · n][(P0 −O) · n′], (7.5)

where r0 is the line parallel to r and passing through the centre of mass P0, and
π0, π′

0 are planes parallel to π, π′, respectively, and passing through P0. The
other symbols in (7.4), (7.5) keep the same meaning as in formulas (7.1)–(7.3).
It is customary to also define the radius of gyration with respect to a line:

δr = (Ir/m)1/2, (7.6)

and hence equation (7.4) can also be written as

δ2r = δ2r0 + δ2, (7.7)

where δ is the distance between P0 and r.

Remark 7.1
Equation (7.4) implies that among all lines in a given direction, the one for
which the moment of inertia has a minimum is the one passing through P0. �

7.2 Ellipsoid and principal axes of inertia

The distribution of moments of inertia with respect to the set of lines through
a given point O plays an important role in the dynamics of rigid bodies.
Given a reference frame (O, x1, x2, x3), we now compute the moment of inertia

with respect to the line passing through O with direction cosines α1, α2, α3.
Applying the definition (7.2) we find

I(α1, α2, α3) =

3∑
i,j=1

αiαjIij . (7.8)

Since in equation (7.2) we have that Ir > 0 for any unit vector e, the quadratic
form (7.8) is positive definite (at least excluding the degenerate case of a rigid
system with mass distributed along a straight line passing through O, in which
the matrix is positive semidefinite). It follows that the level sets are the ellipsoid
of centre O (ellipsoid of inertia) given by the equation∑

ij
Iijxixj = λ2. (7.9)
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Definition 7.1 The symmetry axes of the ellipsoid of inertia are called the
principal axes of inertia. �

If the ellipsoid of inertia is an ellipsoid of rotation around one of the axes, all
straight lines through O and orthogonal to this axis are principal axes of inertia.
A principal reference frame (O,X1, X2, X3) is the triple of the three principal

axes of inertia. We denote by Ji the moment of inertia with respect to the
principal axis Xi. The direction of the principal axes of inertia is determined by
the eigenvectors of the matrix (Iij) and the principal moments of inertia Ji are
the eigenvalues of the same matrix (cf. Proposition 7.8).

Proposition 7.1 A necessary and sufficient condition for a reference frame to
be the principal frame is that the inertia products with respect to each of the pairs
of coordinate planes are zero.

Proof
If Iij = 0 for i =/ j, setting Iii = Ji, the level sets of (7.8) are determined by

3∑
i=1

JiX
2
i = λ2, (7.10)

and the equation is put in the canonical form characteristic of the triple of the
symmetry axes. Conversely, the quadratic form (7.8) written with respect to the
principal frame is diagonal and the ellipsoid equation is of the form (7.10). �

Proposition 7.2 A necessary and sufficient condition for a straight line to be
a principal axis of inertia relative to O is that the products of inertia relative to
the plane passing through O and orthogonal to the line and to any other plane
through the line are zero.

Proof
Suppose that a straight line is a principal axis of inertia and consider an arbitrary
frame (O, x1, x2, x3), with x3 being the line itself. The plane of equation x3 = 0
is then a symmetry plane for the ellipsoid. It follows that its equation must be
invariant with respect to the variable change from x3 to −x3, i.e. I13 = I23 = 0.
Conversely, if in the same frame one has I13 = I23 = 0, the ellipsoid is

symmetric with respect to the plane x3 = 0. Hence x3 is a principal axis. �

It is easier to determine the principal axis when there are material symmetries.

Definition 7.2 A rigid system has a plane of material orthogonal symmetry
if in addition to the geometric symmetry with respect to the plane, one has the
property that symmetric points have the same mass (or, for continua, the same
density). �

This definition can be extended to the case of material symmetry with respect
to a straight line or to a point.
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Proposition 7.3 Let π be a plane of material orthogonal symmetry. Then for
any O in π, the straight line through O and normal to π is a principal axis of
inertia relative to O.

Proof
The ellipsoid of inertia relative to O is symmetric with respect to π. �

Remark 7.2
The latter proposition can be applied to the limiting case of plane systems. �

Proposition 7.4 Suppose that a system has two distinct (non-parallel) planes
of material symmetry, π and π′. Then there are two possible cases:
(a) the two planes are orthogonal;
(b) the two planes are not orthogonal.
In the case (a), given O ∈ r = π∩π′, the principal frame relative to O is given

by r and by the two straight lines through O normal to r lying in the planes π, π′.
In the case (b) the ellipsoid of inertia is a surface of revolution with respect to r.

Proof
Case (a) is trivial. In case (b) we note that the two straight lines through O
and normal to π and π′ are principal axes (Proposition 7.3). It follows that the
ellipsoid has a plane of symmetry containing two non-orthogonal symmetry axes.
This necessarily implies the rotational symmetry with respect to r. �

Another useful property for the determination of the principal axes of inertia
is the following.

Proposition 7.5 Let (P0, X
(0)
1 , X

(0)
2 , X

(0)
3 ) be a principal frame relative to the

centre of mass. The principal axes of inertia with respect to the points of the axes
X
(0)
1 , X

(0)
2 , X

(0)
3 can be obtained from it by translation (Fig. 7.1).

Proof
We recall Huygens’ theorem (1.5) and use it to verify that the products of inertia
in the translated frame are zero. �

Problem 7.1
Determine the principal frame for a regular material homogeneous polygon,
relative to a generic point of the plane of the polygon. �

The following remark is in some sense the converse of Proposition 7.5.

Proposition 7.6 If a straight line is a principal axis of inertia with respect to
two of its points (distinct), then it must contain the centre of mass.

Proof
Let O and O′ be the two points, and consider two frames with parallel axes
S = (O, x1, x2, x3), S′ = (O′, x′

1, x
′
2, x3), where x3 is the line referred to in the

statement. Recalling Proposition 7.2, we can write

n∑
i=1

mix
(i)
2 x

(i)
3 =

n∑
i=1

mix
(i)
1 x

(i)
3 = 0,
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X3
(0)

X1
(0)

X2
(0)

P0

X3

X1

X2

O

Fig. 7.1

and similarly

n∑
i=1

mix
(i)
2 (x(i)3 − z) =

n∑
i=1

mix
(i)
1 (x(i)3 − z) = 0,

where z is the third coordinate of O′ in S.
It follows that

n∑
i=1

mix
(i)
2 =

n∑
i=1

mix
(i)
1 = 0,

and hence that P0 lies on the axis x3. �

Definition 7.3 A system such that the central ellipsoid of inertia is a surface
of revolution is called a gyroscope. The axis of revolution of the central ellipsoid
is called the gyroscopic axis. �

7.3 Homography of inertia

Let us fix a triple S = (O, x1, x2, x3). Then the product of the symmetric matrix⎛⎝I11 I12 I13
I12 I22 I23
I13 I23 I33

⎞⎠ (7.11)
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with the vector

⎛⎝x1
x2
x3

⎞⎠ defines a map σ : R3 → R3, called the homography of

inertia.

Proposition 7.7 The map σ is independent of the choice of the frame S, and
depends only on its origin O.

Proof
We now show that the vector σx is intrinsically defined. Setting

f(x) =

3∑
i, j=1

Iijxixj , (7.12)

it is easily verified that

σx =
1
2

∇f. (7.13)

If x is such that f(x) = λ2, then σx is orthogonal in x to the ellipsoid of inertia.
Since σ is a linear map, we can deduce that in general σx is normal to the plane
tangent to the ellipsoid of inertia at the intersection point with the straight line
through the origin parallel to x (Fig. 7.2).
We also note that for every unit vector e:

e · σe = Ir, (7.14)

where r is the line passing through O with unit vector e. More generally

x · σx = Irx2 (7.15)

for any vector (Ir is computed with respect to the line through O and parallel
to x). Thus the quadratic form x · σx is positive definite (we are considering the

x

O

sx

Fig. 7.2
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generic case, excluding the possibility that the masses are distributed along a
straight line). The relation (7.15) determines the orientation and the length of
the vector σx. �

Corollary 7.1 If the reference frame is transformed by an orthogonal matrix A,
the components of σ are subject to a similarity transformation

σ′(0) = Aσ(0)AT . (7.16)
�

Because of (7.16) we can state that σ is a covariant tensor of rank 2
(Appendix 4), called the tensor of inertia.
The following properties are immediate.

Proposition 7.8 The principal axes of inertia are the eigenspaces of the homo-
graphy of inertia and the corresponding moments of inertia are its eigenvalues. �

In other words, σx is parallel to x, namely

σx = J x, (7.17)

if and only if x has the direction of one of the principal axes of inertia.
Seeking a principal triple of inertia is equivalent to the diagonalisation of (7.11),

because in the principal reference frame, σ(O) has the representation

σ(O) =

⎛⎝J1 0 0
0 J2 0
0 0 J3

⎞⎠ . (7.18)

Example 7.1
We solve the problem of the determination of two principal axes of inertia when
the third one is known. Let x3 be the known axis. Then the following three
methods are equivalent.

(1) For every pair of axes x1, x2 in the plane x3 = 0 let ϕ be the angle by which
it must be rotated to obtain the two axes. We know that I13 = I23 = 0 for
any ϕ (Proposition 7.2). Hence it suffices to find ϕ such that I12(ϕ) = 0.

(2) Find ϕ in such a way that the matrix

A =
(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)
diagonalises the matrix (

I11 I12
I12 I22

)
.

(3) Find among the lines passing through O in the plane x3 = 0 those which are
extremals for the moment of inertia

I(ϕ) = I11 cos2 ϕ+ I22 sin2 ϕ+ 2I12 sin ϕ cos ϕ. (7.19)
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Following the latter method we compute

I ′(ϕ) = (I22 − I11) sin 2ϕ+ 2I12 cos 2ϕ = 0, (7.20)

i.e.

tan 2ϕ =
2I12

I11 − I22
, (7.21)

if I11 =/ I22. The values of ϕ which follow from (7.21) give two mutually orthogonal
axes.
If I11 = I22 the relation (7.20) reduces to I12 cos 2ϕ = 0 and there are two

possible cases:

(a) I12 = 0 ⇒ the frame we started with is a principal frame;
(b) I12 =/ 0 ⇒ the principal axes are the bisectors of the quadrants defined by

the axes (x1, x2). �

We conclude this section by recalling an important formula: given two unit
vectors e = (α1, α2, α3), e′ = (α′

1, α
′
2, α

′
3) that are mutually orthogonal, we have

e′ · σ(O) e =
∑
i,j

Iijαiα
′
j = Iππ′ , (7.22)

where π, π′ are the planes through O whose normals are given by e, e′,
respectively. The proof is left as an exercise.

7.4 Relevant quantities in the dynamics of rigid bodies

(a) Angular momentum

Using equation (6.4) in the definition of the angular momentum, we find that
for a rigid system

L(O) = m(P0 −O)× v(O)−
n∑

i=1
mi(Pi −O)× [(Pi −O) × ω]. (7.23)

Let us examine the operator Σ(O) defined by

Σ(O) e = −
n∑

i=1
mi(Pi −O)× [(Pi −O)× e]

= e

n∑
i=1

mi(Pi −O)2 −
n∑

i=1
mi(Pi −O) [(Pi −O) · e].

(7.24)

The scalar product with e yields

e ·
∑
(O) e = Ie = e · σ(O) e (7.25)

(recall (7.14)), and hence Σ(O)e and σ(O)e have the same component on e.



7.4 The mechanics of rigid bodies: dynamics 243

Let e′ be any unit vector orthogonal to e, and consider the scalar product
of (7.24) with e′; this yields by the definition of the product of inertia Iee′ and
by (7.22),

e′ ·
∑
(O) e = Iee′ = e′ · σ(O) e. (7.26)

Equations (7.25) and (7.26) show that the operators Σ(O) and σ(O) coincide.
We then write

L(O) = m(P0 −O)× v(O) + σ(O)ω. (7.27)

In particular, if O = P0 or if O is fixed,

L(O) = σ(O)ω. (7.28)

Definition 7.4 We say that quantities observed from a reference frame Σ′ with
origin at the centre of mass and axes parallel to those of a fixed reference frame
Σ, are relative to the centre of mass. �

Proposition 7.9 The reference frames Σ and Σ′ measure identical values of the
angular momentum relative to P0.

Proof
The proof is based on (7.28), which can also be written as

L(P0) = σ(P0)ω (7.29)

in the two systems, which measure the same value of ω (recall equation (6.33)).
�

(b) Kinetic energy

It is easy to find

T =
1
2
m[v(O)]2 +

1
2

n∑
i=1

mi[(Pi −O) × ω]2 +mv(O) · ω × (P0 −O),

and hence if v(O) = 0

T =
1
2
Iω2 (7.30)

(I is the moment of inertia with respect to the axis of instantaneous rotation),
and more generally, choosing O = P0,

T =
1
2
m[v(P0)]2 +

1
2
I0ω

2, (7.31)

which is known as the König theorem (the kinetic energy is the sum of the
rotational energy relative to the centre of mass and of the translational energy
associated with the point (P0,m)).
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Note that the comparison between (7.30) and (7.31), and the fact that v(P0) =
ω × (P0−O) if v(O) = 0, shows that the König theorem is equivalent to Huygens’
theorem for the moments of inertia.
Finally for a precession

T =
1
2

ω · σ(O)ω (7.32)

and by exploiting (6.38), we find the expression for T in the principal frame of
reference as a function of the Euler angles of that frame:

2T = J1(θ̇ cos ϕ + ψ̇ sin θ sin ϕ)2 + J2(θ̇ sin ϕ − ψ̇ sin θ cos ϕ)2

+ J3(ϕ̇+ ψ̇ cos θ)2.
(7.33)

7.5 Dynamics of free systems

The power of a system of resultant force R and a resultant torque M(O) acting
on a rigid system can be computed easily by (6.4):

W = R · v(O) +M(O) · ω. (7.34)

From (7.34) we can deduce two important consequences. The first is that a
balanced system of forces (R = 0, M = 0) has zero power when acting on a rigid
system. This is the case for the system of reactions due to rigidity constraints, and
hence rigid bodies belong to the category of systems with smooth fixed constraints.
The second is that the equations of motion (4.19) express the vanishing of

the power of the force system Fi − miai, for any arbitrary choice of (v(O), ω),
and hence it is equivalent to the vanishing of the multipliers of v(O) and ω in
(7.34) (with the inclusion of the contributions of inertial forces) and leads to the
cardinal equations, which we write in the form

ma(P0) = R, (7.35)

L̇(P0) =M(P0). (7.36)

Hence equations (7.35), (7.36) for an unconstrained rigid body are equivalent
to Lagrange’s equations (4.40) and consequently they are sufficient to study the
motion and the equilibrium of the system; in the latter case they reduce to the
form

R = 0, M = 0. (7.37)

From this follows a well-known property concerning the motion and equilibrium
of a rigid system, namely that two systems of forces with the same resultant
force and the same resultant moment are equivalent. In particular the weight
force field can be replaced by its resultant force (the total weight applied at the
barycentre).
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A more interesting case arises when equation (7.35) is independently integrable;
this is the case if R depends only on the coordinates of P0 (not on the Euler
angles). In this case it is possible to first determine the motion of the centre of
mass (starting from given initial conditions) and then integrate equation (7.36),
which describes the motion ‘relative to the centre of mass’ (Definition 7.4 and
Proposition 7.9). This motion is obviously a precession. The study of precessions
is therefore of particular significance. This is considered in the following sections.

7.6 The dynamics of constrained rigid bodies

Suppose that a rigid system is also subject to external constraints, holonomic
and frictionless. Let φ(e) be the resultant of the constraint reaction, and µ(e) be
the resultant moment for the same system; then the cardinal equations take the
form

ma(P0) = R(e) + φ(e), (7.38)

L̇(P0) =M(e)(P0) + µ(e)(P0) (7.39)

(if as a result of the constraints, the system has a fixed point O, it is convenient
to refer the latter to this point).
Since the motion can be found by means of the Lagrange equations, (7.38) and

(7.39) can be used to determine φ(e) and µ(e), and hence each of the constraint
reactions φi, as long as these constraints are linearly independent. On the other
hand, in this case the number of scalar unknowns appearing in φ(e), µ(e) in
(7.38), (7.39) is equal to the number of degrees of freedom suppressed by the
constraints, and hence in general equations (7.38), (7.39) can be used directly
to determine simultaneously the motion and the constraint reactions. Similar
considerations are valid for the equilibrium.
If the constraints are not smooth it is necessary to acquire additional informa-

tion to balance equations (7.38), (7.39). This can be done by relating the actions
due to friction with the motion of the system. In the static case it is necessary
to define the maximal resistance that the constraint opposes sliding and rotation.

Example 7.2
A homogenous rod AB of mass m and length � has the point A sliding along a
line r in a horizontal plane (Fig. 7.3). All constraints are smooth. At time t = 0
the point A has zero velocity, B is on r and the angular velocity of the rod is
ω0. Study the motion of the rod and determine the constraint reaction φA.
Fix the axis x to coincide with the initial configuration of the rod and fix the

origin in the initial position of A. Take as Lagrangian coordinates the x-coordinate
x of A and the angle ϕ; see the figure. As initial conditions we have x(0) = 0,
ẋ(0) = 0, ϕ(0) = 0, ϕ̇(0) = ω0.
From the first cardinal equation we deduce that the x-component of the linear

momentum is constant. Since the initial velocity of P0 is orthogonal to the x-axis,
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P0 moves along the line orthogonal to the x-axis and passing through P0(0), i.e.

x+
1
2
� cos ϕ =

1
2
�. (7.40)

Since no work is done on the system, the kinetic energy is conserved and this
implies that it is easy to determine

ϕ̇2 =
4ω20

1 + 3 cos2 ϕ
. (7.41)

The integration of this relation via elliptic functions (see Appendix 2) yields a
complete description of the motion.
Since L̇(P0) = 1

12 m�2ϕ̈ and L̇(P0) = (A−P0)×φA, we can obtain the expression
for the unique component of φA by differentiating (7.41) and expressing ϕ̈ as a
function of ϕ:

ϕ̈ =
12ω20

(1 + 3 cos2 ϕ)2
sin ϕ cos ϕ. (7.42)

We finally find

φA = −m�
2ω20

(1 + 3 cos2 ϕ)2
sin ϕ. (7.43)

�

Example 7.3
A material homogeneous system of linear density ρ consists of a circular arc
of opening angle 2α and radius R. The system rolls without sliding along a
horizontal rectilinear guide in a vertical plane. Write the equation of motion and
find the expression for the horizontal component of the constraint reaction. What
is the period of small oscillations?
Let us recall that the distance �0 of the centre of mass G of the arc from

its centre O is �0 = R (sin α)/α and that the moment of inertia with respect to
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the line through O orthogonal to the plane of the motion is IO = 2αR3ρ. The
moment with respect to the parallel through G is then IG = IO − 2αRρ�20.
Let the Lagrangian coordinate ϕ be chosen as shown in Fig. 7.4 (|ϕ| < α).

Then the kinetic energy is

T =
1
2
IGϕ̇

2 +
1
2
2αRρĠ2 = 2αR2ρϕ̇2(R − �0 cos ϕ),

given that G = (Rϕ− �0 sin ϕ,−�0 cos ϕ). The conservation of energy (note that
the constraint reaction has zero power) yields

R

(
1− sin α

α
cos ϕ

)
ϕ̇2 − g

sin α

α
cos ϕ = constant.

Differentiate with respect to t and divide by ϕ̇. This yields

2R
(
1− sin α

α
cos ϕ

)
ϕ̈+R

sin α

α
sin ϕϕ̇2 + g

sin α

α
sin ϕ = 0.

The component φt of the constraint reaction is given by

φt = 2αRρẍG = 2αR2ρ

[
ϕ̈

(
1 +

sin α

α
cos ϕ

)
+

sin α

α
sin ϕϕ̇2

]
.

If initially ϕ(0) = 0, ϕ̇(0) = ω0, what must ω0 be in order for |ϕmax| < α? Note
that the motion is periodic; for small oscillations we have

ϕ̈+
g

2R
(sin α)/α

1− (sin α)/α
ϕ = 0,

from which the period is immediately computed.
What happens when α → π? �

Example 7.4
Consider the following model of the automatic opening of a gate. A homogeneous
rod AB of length l and mass m rotates around the point A in a horizontal plane.
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A retractible (or extensible) arm is attached to one of its points, P say. The arm
is then CP , with C different from A, and it is activated in such a way that its
length has a constant time derivative. Compute the motion of the rod, the force
applied by its extensible arm, and its power.
With reference to Fig. 7.5, suppose as an example that ϕ(0) = 0. The initial

length of the arm is �0 = [(R−xc)2+y2c ]
1/2, with R = AP , and the motion of the

rod can be deduced by writing that PC
2
= (�0 − vt)2, where v = dPC/dt, i.e.

(R cos ϕ− xc)2 + (R sin ϕ− yc)2 = (�0 − vt)2,

and hence

xc cos ϕ+ yc sin ϕ =
1
2R

[R2 + x2c + y2c − (�0 − vt)2]. (7.44)

Obviously there is a bound on t, because �0 − vt must always be greater than
the minimum possible distance between P and C, which is R − (x2c + y2c )

1/2.
Equation (7.44) yields ϕ = ϕ(t), e.g. by using the formulae

cos ϕ =
1− θ2

1 + θ2
, sin ϕ =

2θ
1 + θ2

,

with θ = tan (ϕ/2).
Supposing that the constraint in A is smooth (what must be changed

otherwise?), the force F applied at P can be obtained from the equation

L̇(A) = (P −A)× F, (7.45)
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by exploiting the fact that F = F (C − P )/|C − P |, with

C − P

|C − P | =
(
xc −R cos ϕ

�0 − vt
,
yc −R sin ϕ

�0 − vt

)

and knowing that L̇(A) = 1
3 m�2ϕ̈. Hence one finds

F (t) =
1
3
m�2ϕ̈

�0 − vt

R(yc cos ϕ− xc sin ϕ)

(note that the denominator vanishes in correspondence with the extreme values
of PC).
For the power W = F(t) (C−P )/|C−P | ·Ṗ = L̇ϕ̇ we can deduce the expression

W =
1
3
m�2ϕ̇ϕ̈.

Try to obtain the explicit solution in the case that xc = 0, yc = 1
4 R.

How should one modify the problem if instead of knowing the velocity of P
one knows the intensity of the force F (e.g. if it is known that F is constant)?
Or the power of F as a function of time? �

We conclude with a brief review of the dynamics of systems consisting of more
rigid components constrained among them or from the exterior. If the constraints
are smooth, the problem of motion (or of the equilibrium) can be solved using the
Lagrange equations. However, if one wants to determine the reactions associated
with the internal constraints one must write the cardinal equations for each rigid
component. A typical example is the case of a hinge between two rigid bodies,
when a pair of opposite forces is applied at the hinge.

Example 7.5
Consider the system described in Example 6.1 (Fig. 6.3), but now suppose that
the rods AB, CD have masses equal to m1 and m2, respectively, that the system
is in a horizontal plane and that the constraints are frictionless. Study the motion
in the absence of active forces, and determine the constraint reaction at the point
D, for generic initial conditions α(0) = α0, α̇(0) = ω0.
One immediately obtains the equation of motion requiring that the kinetic

energy T = 1
6 (m1�

2
1α̇

2+m2�
2
2γ̇

2) is conserved, and recalling that γ̇ = − (α̇+ β̇) =
−α̇[1 + ξ cos α(1 − ξ2 sin2 α)−1/2], where ξ = �/�2. We suppose that we are far
from the critical configurations described in the original example.
We thus find

1
6

{
m1�

2
1 +m2�

2
2

[
1 + ξ

cos α
(1− ξ2 sin2 α)1/2

]2}
α̇2 = constant,
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and we obtain α̇ as a function of α and, by differentiation, we also find α̈ as a
function of α. Let φ be the force applied on the rod AB by the constraint in D.
The second cardinal equation for the rod AB with respect to the point A, i.e.

1
3
m�21α̈ = φ�2(ξ2 + 1− 2ξ cos γ(α))1/2

yields the determination of φ as a function of α. �

7.7 The Euler equations for precessions

Consider a material rigid system with a fixed point O. If the constraint is
frictionless, the equation of motion is

L̇(O) =M(O), (7.46)

and hence is a system of three second-order differential equations for the Euler
angles. By integrating equation (7.46) with prescribed initial conditions, we obtain
from (7.38) the reaction applied on the constraint (or rather the equivalent
resultant of the system of reactions which physically realise the constraint).
If the constraint is not smooth, it presents a friction torque µ(O), which must

be expressed in terms of ω. As an example,

µ(O) = − kω, (7.47)

with k a positive constant. Thus the equation

L̇(O) =M(O) + µ(O) (7.48)

describes the motion of the system.
We now want to examine the expression for L̇ as a function of ω and ω̇. One

must start from (7.28), stating that L(O) = σ(O)ω, but expressing σ(O) in a
body frame, because otherwise σ(O) would depend on the Euler angles.
To obtain L̇(O) recall the relation between the absolute and relative

derivative (6.25):

L̇(O) = σ(O) ω̇ + ω × L(O). (7.49)

It is convenient to choose as the body frame the principal frame of inertia
relative to O. We thus find the Euler equations

J1ω̇1 = (J2 − J3)ω2ω3 +M1(O) + µ1(O),

J2ω̇2 = (J3 − J1)ω3ω1 +M2(O) + µ2(O),

J3ω̇3 = (J1 − J2)ω1ω2 +M3(O) + µ3(O).

(7.50)

The initial value problem for (7.50) naturally has a unique solution, under the
usual regularity assumptions for M and µ.
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Remark 7.3
If M and µ depend only on ω, then equations (7.50) yield a first-order non-linear
system for ω1, ω2, ω3. The phase space for equations (7.50) reduces to the space
of coordinates ω1, ω2, ω3. �

One such case is the trivial case of precessions by inertia, which happens when
there is zero torque with respect to the pole of the precession. This case deserves
a more detailed study.

7.8 Precessions by inertia

Inertia precessions have particularly simple kinematic properties, which are a
direct consequence of the first integrals

L(O) = L0 (7.51)

(vanishing moment of the forces) and

T = T0 (7.52)

(vanishing work), where L0 and T0 are determined by the initial value of ω:

ω(0) = ω0. (7.53)

(Indeed L0 = σ(0)ω0, T0 = 1
2 Iω

2
0 .) Note that equation (7.52) is not independent

of equation (7.51). Both follow from the Euler equations, which are now written as

J1ω̇1 = (J2 − J3)ω2ω3,
J2ω̇2 = (J3 − J1)ω3ω1,
J3ω̇3 = (J1 − J2)ω1ω2,

(7.54)

and simply express the vanishing of L̇(O).3

The most interesting result concerning these precessions is the following, which
yields a description of the motion alternative to that given by the Poinsot cones.

Theorem 7.1 (Poinsot) In the case of an inertia precession, the ellipsoid of
inertia relative to the rod rolls without sliding on a fixed plane.

Proof
At each instant, σ(0)ω = L0. We recall the geometric construction of σ(0)ω
(Section 7.3), and we can deduce that the ellipsoid of inertia, at the point where
it intersects the axis of instantaneous rotation, is tangent to a plane π orthogonal
to L0 (Fig. 7.6).

3 To obtain (7.52) from (7.54) multiply the latter by ω1, ω2, ω3, respectively, and add
them term by term. This yields Ṫ = 0.
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To complete the proof we only need to show that the plane π is fixed. We
compute the distance h from O:

h = |A−O| cos α = |A−O| ω · L0
ωL0

.

Recalling now (7.9), which gives the construction of the ellipsoid of inertia, we
find that |A−O| = λ/

√
I, where I is the moment of inertia with respect to the

axis of instantaneous rotation. Since ω · L0 = Iω2 = 2T = 2T0, it follows that

h =
λ

L0

ω · L0
(Iω2)1/2

=
λ

L0
(2T0)1/2. (7.55)

Hence the plane π has prescribed orientation and distance from O, and is therefore
fixed. Since the contact point between the ellipsoid and the plane lies on the axis
of instantaneous rotation, the ellipsoid does not slide. �

Corollary 7.2 The motion is determined by the rotation of a curve moving
with the ellipsoid of inertia (polhode) on a fixed plane curve (herpolhode). �

Remark 7.4
The polhode is the intersection of the body Poinsot cone with the ellipsoid
of inertia and the herpolhode is the intersection of the fixed Poinsot cone with
the fixed plane. �

The equations of these curves can be obtained by remarking that a polhode
is the locus of the points of the ellipsoid of inertia with the property that the
plane tangent to the ellipsoid at these points has a fixed distance h from O.
In the principal frame of inertia the equations of this locus are

3∑
i=1

Jix
2
i = λ2, (7.56)

3∑
i=1

Ji(Ji − J0)x2i = 0, (7.57)
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where we define

J0 = (λ/h)2. (7.58)

Equation (7.57) is the equation of the body Poinsot cone.
For a generic ellipsoid (J1 < J2 < J3) the maximal axis is in the x1 direction,

and the minimal axis is in the x3 direction. Let hmax, hmed, hmin be the lengths
of the three semi-axes. Then the constant h, determined by the initial conditions,
varies in the interval [hmin, hmax] and correspondingly J0 ∈ [J1,J3].
In the extreme cases h = hmin (J0 = J3), h = hmax (J0 = J1), equation (7.57)

implies that the polhodes degenerate to the vertices of the minimal or maximal
axes, respectively. The other degenerate case is h = hmed(J0 = J2), because in
this case we do not have the x2 term in equation (7.57), which then represents
the pair of planes

J1(J1 − J2)x1 ± J3(J3 − J2)x3 = 0, (7.59)

symmetrically intersecting on the axis x2. These planes produce four arcs of an
ellipse on the ellipsoid of inertia, called limiting polhodes. These arcs are separated
by the vertices on the intermediate axis, which are degenerate polhodes (Fig. 7.7).
In the generic case, the polhodes can be classified into two classes:

(a) hmin < h < hmed(J2 < J0 < J3), the body Poinsot cone has as axis the
minimal axis of the ellipsoid of inertia;

Polhodes around the
maximal axis

Polhode degenerating
on the median axis

Limiting polhodes

Polhodes around
the minimal axis

x2

x1

x3

Fig. 7.7 Classification of polhodes.
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(b) hmed < h < hmax(J1 < J0 < J2), the body Poinsot cone has as axis the
maximal axis of the ellipsoid of inertia.

The limiting polhodes are the separatrices of the two families.
As we have already noted in Section 7.7, the phase space for Euler equations

can be identified in the case of precessions by inertia with the space (ω1, ω2, ω3).
From this point of view, the study of polhodes is particularly interesting in view
of the following fact.

Proposition 7.10 The polhodes represent the trajectories in the phase space of
equations (7.54).

Proof
We verify that (7.56), (7.57) are still valid after the substitution x → ω.
Let us write the equations requiring that T and the absolute value of L(O)

are constant:
3∑

i=1
Jiω

2
i = 2T0, (7.60)

3∑
i=1

J 2
i ω2i = L20. (7.61)

By eliminating h between (7.55) and (7.58) we find

J0 = L20
2T0

. (7.62)

It follows, again using (7.60), that we can write equation (7.61) in the form

3∑
i=1

Ji(Ji − J0)ω2i = 0, (7.63)

and hence equations (7.56), (7.57) and (7.60), (7.63) coincide except for an
inessential homothety factor. �

As mentioned already, these considerations are also valid in the case of a
generic ellipsoid. When the ellipsoid of inertia is a surface of revolution, we have
J1 = J2 or J2 = J3, and it is easy to see that the polhodes and herpolhodes are
circles (Fig. 7.8).
The limiting polhodes do not make sense any more: every point of the circle

obtained by intersecting the ellipsoid with the plane through O orthogonal to
the rotation axis is a degenerate polhode.
The case that the ellipsoid becomes a sphere (J1 = J2 = J3) is trivial: all

points of the sphere are degenerate polhodes.

7.9 Permanent rotations

Theorem 7.2 If ω(0) = ω0 has the direction of a principal axis of inertia, the
corresponding precession by inertia is reduced to the uniform rotation ω = ω0.



7.9 The mechanics of rigid bodies: dynamics 255

Polhodes

Median
cross-section

Fig. 7.8 Polhodes for the ellipsoid of revolution.

Conversely, if a precession by inertia is a rotation, the latter must be uniform
and must be around a principal axis of inertia.

Proof
The first claim is trivial, as it is immediately verified that ω = ω0 is the only
solution of equations (7.54).
Suppose now that the motion is a rotation and let us examine first the case

when ω, which has constant direction by our hypotheses, has at least one zero
component. Suppose, e.g. that ω1 = 0. Then equations (7.54) imply that ω2
and ω3 are constant, and the rotation is uniform. In addition we find that
(J2−J3)ω2ω3 = 0, and hence either J2 = J3, which implies that every diametral
axis, including the axis of rotation, is a principal axis of inertia, or else one of
the components ω2, ω3 is also zero. This implies that ω has the direction of a
principal axis of inertia.
Consider finally the case that ω1ω2ω3 =/ 0. Since our hypotheses imply that

ω̇ = 0 or else that ω̇‖ω, we can always write

ω̇i

ωi
= f(t), i = 1, 2, 3, (7.64)

and we make f(t) appear on the left-hand side of equations (7.54) by rewriting
them in the form

Jiω
2
i f(t) = (Jj − Jk)ω1ω2ω3,

where {i, j, k} are the three even-order permutations. Summing term by term,
we obtain

2Tf(t) = 0,

which yields that f(t) = 0, and hence ω̇ = 0, and the rotation is uniform.
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In conclusion, the right-hand side of all equations (7.54) vanish. This is
compatible only with J1 = J2 = J3, which is the case that every line through O
is a principal axis of inertia. �

The rotations considered in the previous theorem are called permanent
rotations. Such rotations are associated with degenerate polhodes.

In the case of a generic ellipsoid of inertia, there exists an important qualitative
difference between the permanent rotations around the extreme axes of the
ellipsoid and those around the intermediate axis.

Theorem 7.3 The rotations around the extreme axes of the ellipsoid of inertia
are stable with respect to perturbations of ω0; those around the intermediate axis
are unstable.

Proof
We use the geometrical analysis of the polhodes of the previous section, and
the fact that these are the trajectories, in phase space, of equations (7.54)
(Proposition 7.10). This shows that, for a fixed neighbourhood of the degenerate
polhodes lying on the extreme axes, we can consider perturbations of ω0 of
such small amplitude that the corresponding polhodes remain inside the chosen
neighbourhood. This is not possible for the degenerate polhodes lying on the
intermediate axis, as every neighbourhood of such curves is crossed by polhodes
which rotate around the maximal axis, as well as by polhodes which rotate
around the minimal axis. �

In the case of ellipsoids of revolution we can easily prove that any rotation
around the rotation axis of the ellipsoid is stable, while any rotation around the
diametral axis is unstable.

Remark 7.5
Stable phenomena are not the only observable phenomena. Try to make a cyl-
inder, of height much larger than the radius, rotate around a diametral axis; in
spite of any error in initial conditions, the rotation will appear stable. This is
not in contradiction with what has just been proved: if the radius of the polhode
is much larger than the radius of the herpolhode the contact point must rotate
many times along the latter to make any tangible progress along the polhode,
in agreement with the instability of this phenomenon, although such instability
can only be observed over long time intervals. �

7.10 Integration of Euler equations

We consider again the first integrals (7.60) and (7.63). Eliminating once ω3 and
once ω1, we find the following equations:

J1(J1 − J3)ω21 = 2T0(J0 − J3)− J2(J2 − J3)ω22 , (7.65)

J3(J3 − J1)ω23 = 2T0(J0 − J1)− J2(J2 − J1)ω22 . (7.66)
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In the generic case that J1 < J2 < J3 we deduce that

ω21 = A2
1(ν

2
1 − ω22), ω23 = A2

3(ν
2
3 − ω22), (7.67)

with

A2
1 =

J2
J1

J3 − J2
J3 − J1 , A2

3 =
J2
J3

J2 − J1
J3 − J1 , (7.68)

ν1 =
[
2T0
J2

J3 − J0
J3 − J2

]1/2
, ν3 =

[
2T0
J2

J0 − J1
J2 − J1

]1/2
. (7.69)

The dimensionless coefficients A1, A3 contain information only on the geometric
structure of the system, while the frequencies ν1, ν3 are also determined by the
initial conditions. We assume that J0 =/ J1, J3 (we have already considered the
case that these quantities are equal).
Note also that

k =
ν23
ν21

=
J0 − J1
J2 − J1 · J3 − J2

J3 − J0 (7.70)

is greater than one if J0 > J2 and less than one if J0 < J2. We exclude
temporarily the case that J0 = J2.
Using equations (7.67) we obtain from the second of equations (7.54) a

differential equation for ω2:

ω̇2 = ±A(ν21 − ω22)
1/2 (ν23 − ω22)

1/2, (7.71)

with

A =
[
(J2 − J1) (J3 − J2)

J1J3

]1/2
. (7.72)

Note that the initial condition for ω2 must be such that |ω2(0)| ≤ min(ν1, ν3)
and the same inequality is satisfied for |ω2(t)|. In addition, the constant solution
|ω2| = min(ν1, ν3) must be discarded; indeed if, for example, ν1 < ν3, it follows
that ω1 = 0 (cf. (7.67)) and ω2ω3 =/ 0, contradicting the first equation of (7.54).4

We can now compute the integral of equation (7.71) corresponding to the
initial data ω2(0) = 0, and distinguish between two cases:

(a) J0 ∈ (J1,J2), that is k < 1:

t = ±τ1F

(
ω2
ν3

, k

)
; (7.73)

4 Besides the constant solutions ω2 = ± min(ν1, ν3), equation (7.71) also admits non-trivial
solutions which periodically take these values.
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(b) J0 ∈ (J2,J3), that is k > 1:

t = ±τ3F

(
ω2
ν1

, k−1
)
. (7.74)

Here F is the elliptic integral of the first kind (cf. Appendix 2):

F (z, k) =
∫ z

0
[(1− η2) (1− kη2)]−1/2 dη, |z| ≤ 1 (7.75)

and

τ1 =
1

ν1A
, τ3 =

1
ν3A

. (7.76)

The sign in (7.73), (7.74) must be chosen according to the initial conditions, and
must be inverted every time that ω2 reaches the extreme values (respectively,
± ν3 and ± ν1).
The solution is periodic of period 4τ1K(k) (see Appendix 2) along the polhodes

in the family described by J0 ∈ (J1,J2), and 4τ3K(k−1) along those in the family
J0 ∈ (J2,J3).
Finally, we examine the case that J0 = J2 (motion along the limiting polhodes).

In this case the frequencies ν1 and ν3 coincide (k = 1):

ν1 = ν3 ≡ ν = (2T0/J2)1/2. (7.77)

Since limk→1− K(k) = ∞ we expect that the motion is no longer periodic.
Equation (7.71) can be simplified to

ω̇2 = ±A(ν2 − ω22), (7.78)

where A is still given by (7.72). We choose the initial data ω2(0) ∈ (−ν, ν), since
we are not interested in the extreme values, which correspond to permanent
rotations. By separating variables we easily find

ν + ω2
ν − ω2

=
ν + ω2(0)
ν − ω2(0)

e±2t/τ , (7.79)

with

τ =
1
νA

=
{

2T0
J1J2J3 (J3 − J2) (J2 − J1)

}1/2
. (7.80)

It follows that ω2(t) tends monotonically to ± ν, depending on the sign
of ω̇2, which is determined by the initial conditions and by the second of
equations (7.54).
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7.11 Gyroscopic precessions

In the previous section we integrated equations (7.54) in the generic case that
J1 < J2 < J3. We now consider the gyroscopic precessions around a point of
the gyroscopic axis. Suppose that J1 = J2 = J and consider initially the simple
case of precessions by inertia. Setting

η =
J3
J − 1, (7.81)

and excluding the trivial case η = 0, equations (7.54) become

ω̇1 = − ηω2ω3,

ω̇2 = ηω3ω1,

ω̇3 = 0,

(7.82)

and hence the gyroscopic component of the rotational velocity, ω3, is constant,
and the system (7.82) is linear ; ω1 and ω2 oscillate harmonically with frequency

ν = |ηω(0)3 |/2π (7.83)

(we refer to the generic case that ω(0) does not have the direction of the
gyroscopic axis).
We also find the first integral

ω21 + ω22 = [ω1(0)]2 + [ω2(0)]2. (7.84)

It follows that the trajectory in the phase plane (ω1, ω2) is a circle centred
at the origin. The vector ωe with components (ω1, ω2, 0) is called the equatorial
component of ω; it rotates uniformly around the gyroscopic axis with frequency ν.
It is interesting to study the perturbations introduced by the presence of

a moment normal to the gyroscopic axis. To illustrate the main qualitative
properties of the motion, we consider a simple example for which the equations
of motion are easily integrable.
Consider the case of a moving torque, which we suppose has the same direction

as x2:

M(O) = (0,M, 0). (7.85)

Again, ω3 is constant and we must integrate the system

ω̇1 = − ηω
(0)
3 ω2, ω1(0) = ω

(0)
1 , (7.86)

ω̇2 = ηω
(0)
3 ω1 +M/J , ω2(0) = ω

(0)
2 , (7.87)

which is equivalent to

ω̈1 + (ηω(0)3 )2ω1 = −ηω
(0)
3 M/J , (7.88)

ω̈2 + (ηω(0)3 )2ω2 = 0, (7.89)
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with the additional conditions ω̇1(0) = −ηω
(0)
3 ω

(0)
2 , ω̇2(0) = ηω

(0)
3 ω

(0)
1 + M/J .

Instead of (7.84) we find the first integral

(ω1 − ω1)2 + ω22 = constant, (7.90)

with

ω1 = −M/[(J3 − J )ω(0)3 ], (7.91)

and we can immediately deduce the integrals for (7.88), (7.89):

ω1 − ω1 = C cos(2πνt+ α), (7.92)

ω2 = C sin(2πνt+ α), (7.93)

where

C = {[ω(0)1 − ω1]2 + [ω(0)2 ]2}1/2, (7.94)

tanα =
ω
(0)
2

ω
(0)
1 − ω1

. (7.95)

We summarise the properties of the perturbed motion.

(a) Amplitude and phase perturbations are measured by ω1. If initially

|ωe|/|ω(0)3 | � 1 (7.96)

and if

|ω1|/|ω(0)3 | � 1 (7.97)

then, because of (7.90), equation (7.96) is satisfied at every time. If e3 is the
unit vector of the gyroscopic axis, its variation is described by

de3
dt

= ω × e3 = ωe × e3,

i.e. |de3/dt| = |ωe|, which implies that the motion of the gyroscopic axis is
much slower than that around the same axis, and the effect of the torque
M is smaller for larger ω

(0)
3 .

(b) We note also that the vector ωe varies, with respect to the moving reference
frame, with frequency ν, proportional to ω

(0)
3 .

(c) Over a period of ωe the average of ω2 is zero, while the average of ω1 is ω1.
It follows that by taking the average over a period of ωe

de3
dt

= ωe × e3 =
M

(J3 − J )ω(0)3

, (7.98)

and hence the mean displacement of the gyroscopic axis is in the direction
of the torque (tendency to parallelism).
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7.12 Precessions of a heavy gyroscope (spinning top)

The system under consideration is depicted schematically in Fig. 7.9; the
constraint at O is assumed to be smooth.
Setting OG = ρ0, the gravitational potential is U(θ) = −pρ0 cos θ. Recalling

equation (7.33) and setting J1 = J2 = J , we arrive at the following expression
for the Lagrangian:

L =
1
2

J (θ̇2 + ψ̇2 sin2 θ) +
1
2

J3(ϕ̇+ ψ̇ cos θ)2 − pρ0 cos θ. (7.99)

This expression does not contain explicitly the two variables ϕ and ψ. From it
we can deduce the two first integrals ∂L/∂ϕ̇ = constant, ∂L/∂ψ̇ = constant, i.e.

ϕ̇+ ψ̇ cos θ = ω
(0)
3 , (7.100)

J ψ̇ sin2 θ + J3ω(0)3 cos θ = Λ(0)3 . (7.101)
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In addition, we have the energy integral

1
2

J (θ̇2 + ψ̇2 sin2 θ) +
1
2

J3[ω(0)3 ]2 + pρ0 cos θ = E. (7.102)

Equation (7.100) expresses the fact that the gyroscopic component of the
angular velocity ω is constant. This also follows directly from the third Euler
equation (7.50), because of the identity J1 = J2 and the fact that the torque
of the weight p is normal to the gyroscopic axis. Equation (7.101) expresses the
conservation of the vertical component of the angular momentum L, due to the
fact that the torque (G−O)×p is horizontal; to check this, compute the product
σ(0)ω · ε3 using equations (6.35) and (6.38).
The constants ω

(0)
3 , Λ(0)3 , E are to be determined using the initial conditions

for ϕ̇, ψ̇, θ̇, θ (the initial conditions for ϕ and ψ are not essential, as the axes
ξ1, ξ2 can be chosen so that ψ(0) = 0 and the axes x1, x2 can be chosen so that
ϕ(0) = 0). We exclude the case that θ(0) = 0.
The system (7.100), (7.101), (7.102) can be rewritten in normal form

ψ̇ =
Λ(0)3 −J3ω(0)3 cos θ

J sin2 θ
, (7.103)

ϕ̇ = ω
(0)
3 − Λ(0)3 −J3ω(0)3 cos θ

J sin2 θ
cos θ, (7.104)

θ̇ = ±
{
1
J

[
2E − 2pρ0 cos θ − J3[ω(0)3 ]2 − (Λ(0)3 −J3ω(0)3 cos θ)2

J sin2 θ

]}1/2

. (7.105)

We analyse equation (7.105) under the assumption (consistent with θ(0) =/ 0)

J3ω(0)3 =/ Λ(0)3 , (7.106)

which implies that in equation (7.105) the expression in parentheses is always
positive for the θ variable in an interval (θ′, θ′′), with 0 < θ′ < θ′′ < π.
If we exclude the trivial solutions θ = θ′, θ = θ′′, the function θ oscillates in

the interval (θ′, θ′′). These oscillations can be determined by integrating (7.105),
with sign inversion at the endpoints.
It is interesting to note that in equation (7.103) it may happen that ψ̇ vanishes

for some value of θ. In this case the precession stops momentarily, and its direction
may be inverted if ψ̇ changes sign in a certain interval. For example, if we consider
θ(0) = θ0 ∈ (0, π/2) and ψ̇(0) = 0, we have Λ(0)3 = J3ω(0)3 cos θ0, and equation
(7.103) becomes

ψ̇ =
J3ω(0)3

J sin2 θ
(cos θ0 − cos θ). (7.107)
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Fig. 7.10 Motion of the trace of the gyroscopic axis on a sphere: (a) momentary stop,
(b) inversion of the precession, (c) precession without stops.

If in addition we choose θ̇(0) = 0, equation (7.105) can be written

θ̇ = ±
⎧⎨⎩2pρ0

J (cos θ0 − cos θ)−
(

J3ω(0)3

J sin θ

)2

(cos θ0 − cos θ)2

⎫⎬⎭
1/2

, (7.108)

which shows that necessarily cos θ ≤ cos θ0, or θ ≥ θ0, and hence θ′ = θ0. To fix
ideas, choose

J3ω(0)3 > (2pρ0J / cos θ0)1/2. (7.109)

We then have θ′ < θ′′ < π/2. It follows that this case is characterised by
a momentary halt of the precession at instants when θ reaches its minimum
(corresponding to an inversion of the nutation). On the other hand, when θ takes
the value θ′′ (again the nutation is inverted), ψ̇ takes its maximum value (verify
that ψ̇ is an increasing function of θ), see Fig. 7.10a.
It is possible to choose initial conditions for which ψ̇ changes sign, e.g. 0 <

Λ(0)3 < J3ω(0)3 cos θ′, see Fig. 7.10b, or such that the precession is never inverted,
e.g. Λ3 > J3ω(0)3 > 0, see Fig. 7.10c.

7.13 Rotations

We conclude our discussion of the dynamics of rigid bodies by considering briefly
the case of a rigid system with a fixed axis. The physical realisation of such a
constraint can be obtained by a spherical hinge (triple constraint at the point
O, see Fig. 7.11) and with a collar (double constraint at the point A).



264 The mechanics of rigid bodies: dynamics 7.13

j3 ≡ x3

j2

j1

A

O

w

x2

x1

Fig. 7.11

It is convenient to fix the reference frame (O, x1, x2, x3) and the body frame
(O, ξ1, ξ2, ξ3) with the axes x3 and ξ3 coincident with the rotation axis. We take
as the Lagrangian coordinate the angle ϕ between the axes x1, ξ1, measured
counterclockwise. Hence we write

ω = ϕ̇e3. (7.110)

If the constraints are smooth, their action is expressed through a force φO

applied at O and a force φA applied at A and orthogonal to the axis of rotation.
Otherwise, we must additionally consider a friction couple µ, directed as the axis
of rotation, to be specified (as an example, µ = −kω).
The expression for the angular momentum in a rotation is given by

L(O) = σ(O)

⎛⎝0
0
ϕ̇

⎞⎠ =

⎛⎝I13
I23
I33

⎞⎠ ϕ̇, (7.111)

which reduces to

L(O) = J3ϕ̇e3 (7.112)

if the axis of rotation is also a principal axis of inertia (Proposition 7.2).
The projection onto the axis of rotation of the second cardinal equation

σ(0)ω̇ + ω × σ(0)ω =M(O) + (A−O)× φA + µ, (7.113)

namely

I33ϕ̈ = M3 + µ, (7.114)
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can normally be integrated independently of the others. Starting from initial
values ϕ, ϕ̇, it yields the motion of the system. The other two scalar components
of equation (7.113) can be written as

I13ϕ̈− I23ϕ̇
2 = M1(0)− |A−O|φA2, (7.115)

I23ϕ̈+ I13ϕ̇
2 = M2(0) + |A−O|φA1, (7.116)

and yield the components of φA. The reaction φO can be determined using the
first cardinal equation.
In the simple case of uniform rotations (ϕ̈ = 0), equations (7.115) and (7.116)

illustrate the dynamical effect of the products of inertia, which produce an
additional stress to the constraint at A. In this case, the constraint must balance
not just the component of M normal to the axis of rotation, as happens when
I13 = I23 = 0, when the axis of rotation is the principal axis of inertia. We
note also that the latter case is characteristic of principal axes of inertia. Indeed,
requiring that the left-hand sides of (7.115) and (7.116) vanish, one easily obtains

(I213 + I223)ϕ̇
2 = 0, (7.117)

and hence I13 = I23 = 0.

7.14 Problems

1. Let R be a rigid body with an axis γ with the following property: R takes
the same geometric configuration after any rotation of 2π/n around γ, with n > 2
integer. Prove that:

(a) γ contains the centre of mass;
(b) γ is an axis of rotation of the ellipsoid of inertia with respect to any of its

points.

2. Find the centre of mass of the following homogeneous systems: circular
sector, circular segment, spherical cap, pyramid, cone and truncated cone, arc of
ellipse, semi-ellipsoid.

3. Given a fixed reference frame, compute the tensor of inertia of the follow-
ing homogeneous systems for a generic configuration: segment, general triangle,
rectangle, circle, disc, regular polygon, sphere, cube.

4. Solve the problems in Examples 4.2, 4.3 of Chapter 4, replacing the two
point particles P1, P2 with a rigid homogeneous rod of mass m.

5. In Example 7.2 suppose that the point A is subject to a friction force given
by −λẋ (λ > 0). Prove that the system tends asymptotically to a configuration
in which the point A again takes its initial position, independently of the initial
value of ϕ̇.
Hint: take the projection along x of the first cardinal equation, and let x0 be
the x-coordinate of P0. Then mẍ0 = −λẋ, and by integration it follows that x
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must tend to zero (start by proving that ẋ must tend to zero and deduce the
asymptotic relation between x0 and ϕ).
Write down the complete system of equations of motion.
6. Two homogeneous equal rods AB,BC, of length l and mass m, are hinged

at the common endpoint B. The system lies in a vertical plane with the point A
fixed and the point C moving along a fixed circle passing through A, of radius
l and with centre O lying on the horizontal line through A. All constraints are
smooth. Find the configurations of stable equilibrium and the normal modes of
the system.

7. A heavy homogeneous circle of mass M and radius R rotates without
friction around its centre O. A point particle P of mass m is constrained to slide
without friction on the circle, and it is attracted with an elastic force by a point
A fixed on the circle. Write down the first integrals of the cardinal equations.

8. Study the motion of precession of a gyroscope around its centre of mass
O, assuming that the only torque with respect to O is due to the constraint
friction and that it is proportional to the angular velocity.

9. In a vertical plane, a homogeneous equilateral triangle ABC with weight p
and side l has the vertices A and B sliding without friction along a circular guide
of radius l (the point C is located at the centre of the guide). A horizontal force
of intensity p/

√
3 is applied at C. Find the equilibrium configurations and the

corresponding constraint reactions. Study the stability of the (two) configurations
and the small oscillations around the stable one. (Remark: the first part of the
problem can be solved graphically.)
10. In a vertical plane, a homogeneous rod of length l and mass m is con-

strained without friction so that its endpoints lie on the parabola with equation
2ay = x2 (y vertical, directed upwards). Study the equilibrium of the sys-
tem and describe the small oscillations around the configurations of stable
equilibrium.

7.15 Additional solved problems

Problem 1
In a vertical plane, two rods AB, BC are hinged at the common endpoint B
and the point A is constrained to be fixed. The respective lengths and masses
are �1, �2 and m1, m2. The plane on which the rods are constrained rotates
with constant angular velocity ω around the vertical line through A (Fig. 7.12).
Determine the configurations of relative equilibrium in the plane of the system,
as well as the constraint reactions.

Solution
In the rotating plane, a field of centrifugal forces normal to the axis of rotation
is established, whose intensity per unit mass is ω2r, with r being the distance
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from the axis of rotation. We can associate with this field the potential 1
2 ω

2r2.
It follows that the total centrifugal potential of the system is

1
2
ω2

m1

�1

∫ �1

0
(ξ sin ϕ)2 dξ +

1
2
ω2

m2

�2

∫ �2

0
(�1 sin ϕ+ ξ sin ψ)2 dξ.

In addition to this we have the gravitational potential, yielding for the total
potential

U(ϕ,ψ) =
1
2
�1m1g cos ϕ+m2g�1

(
cos ϕ+

1
2
�2
�1

cos ψ
)

+
1
2
ω2�21

[(
1
3
m1 +m2

)
sin2 ϕ+

�2
�1

m2 sin ϕ sin ψ

+
1
3

(
�2
�1

)2
m2 sin2 ψ

]
.

Requiring to vanish the first derivatives of U , we find the equilibrium equations,
which can be written in the form

sin ψ = a1 tanϕ− b1 sin ϕ, (7.118)

sin ϕ = a2 tanψ − b2 sin ψ, (7.119)
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with

a1 =
2g
ω2�2

(
1 +

1
2
m1

m2

)
, b1 = 2

�1
�2

(
1 +

1
3
m1

m2

)
,

a2 =
g

ω2�1
, b2 =

2
3
�2
�1
.

Equations (7.118), (7.119) always admit the solutions sin ϕ = sin ψ = 0. What
are the corresponding configurations? To determine the other possible solutions,
we study the function β = β(α) defined by

sin β = a tanα− b sin α.

We have β(0) = 0 and α ∈ (−α0, α0), with a tanα0 − b sin α0 = 1, α0 ∈ (0, π/2).
Moreover

β′(α) cos β =
a

cos2 α
− b cos α,

and hence β′(0) = a − b. If a > b, then β′(α) > 0 for α ∈ (0, α0), while if a < b
then β′(α) < 0 in a neighbourhood of α = 0. In addition

β′′(α) cos β = β′2 sin β + 2
a sin α

cos3 α
+ b sin α,

and hence β′′ > 0 for β > 0, α > 0. We can summarise this discussion in the two
graphs shown in Fig. 7.13.
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Fig. 7.14 Graphs of the curves (7.118), (7.119).

The solution of (7.118), (7.119) yields a variety of different cases. If, for
example, a1 < b1 (which happens for ω sufficiently large), but a2 > b2 (which
can be achieved by diminishing �2) there exists a unique non-zero solution (the
symmetric solution corresponds to the same configuration). The same happens
in the symmetric case, a1 > b1, a2 < b2 (Fig. 7.14). We leave it to the reader
to complete the analysis of all remaining cases in the whole variability interval
(−π, π) for ϕ and ψ.
Note that adding term by term equations (7.118), (7.119) we find the second

cardinal equation written with respect to the point A.
To find the constraint reactions in a given configuration of relative equilibrium,

we can proceed as follows:

(a) write the second cardinal equation for the rod AB with respect to A, to
obtain φB ;

(b) write the first cardinal equation for the whole system (then knowledge of φB

is not necessary), to obtain φA.

Problem 2
A homogeneous disc of mass M and radius R is constrained to rotate around
the normal axis passing through its centre O. In addition, a point A of the axis
is constrained to rotate on a fixed circle with centre O (Fig. 7.15). Determine
the motion of the system starting from a generic initial condition and compute
the constraint reaction at A.
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Solution
The constraint imposed on the point A is such that the line of nodes is fixed.
Choosing the fixed and moving reference frames as in Fig. 7.15, we obtain that
the vector ω is the sum of

ω = − ϕ̇ e3 (7.120)

and of

ωe = − θ̇N = − θ̇(cos ϕ e1 + sin ϕ e2), (7.121)

where N is the unit vector of the node lines (we assume the line coincides with
the ξ1-axis). The signs in equations (7.120), (7.121) are due to the fact that θ
and ϕ increase in the negative direction of the rotations.
Recall that J1 = J2 = 1

2 J3 = 1
4 MR2 and note that (A − O) × φ = �e3 ×

φ (cos ϕe1 + sin ϕe2). Then Euler’s equations can be written as

−1
4
MR2 d

dt
(θ̇ cos ϕ) = −1

4
MR2θ̇ϕ̇ sin ϕ− �φ sin ϕ,

−1
4
MR2 d

dt
(θ̇ sin ϕ) =

1
4
MR2 θ̇ϕ̇ cos ϕ+ �φ cos ϕ,
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the third one giving ϕ̈ = 0. We can choose the reference system in such a way
that θ(0) = ϕ(0) = 0. In addition, θ̇(0) = ω0e , ϕ̇(0) = ω03 . Clearly ϕ̇(t) = ω03 .
Multiplying the first equation by cos ϕ, and the second by sin ϕ and adding
them, we find

θ̈ = 0 ⇒ θ̇ = ω0e .

From the latter we can easily deduce the expression for the reaction φ:

φ = −MR2

2�
ω03ω

0
eN.

Note that the constraint contributes the torque M = 1
2 MR2ω03ω

0
eN× e3, which

can be expressed as M = J3ω03 de3/dt, in agreement with what was discussed
regarding gyroscopic effects.

Problem 3
Consider the precession by inertia of a rigid body around a point O with respect
to which the ellipsoid of inertia is not of revolution (J1 < J2 < J3). Using a
suitable Lyapunov function prove that the rotations around the middle axis of
the ellipsoid of inertia are unstable.

Solution
We write the system (7.54) in the form

ω̇ = f(ω),

with

f1 =
J1 − J3

J1 ω2ω3, f2 =
J3 − J1

J2 ω3ω1, f3 =
J1 − J2

J3 ω1ω2.

Consider the equilibrium point (0, ω02 , 0), ω
0
2 =/ 0, and prove that the function

Λ∗(ω) = J1J2J3ω1(ω2 − ω02)ω3

satisfies the hypotheses of the Četaev instability theorem (Theorem 4.10).
Examine first of all Λ̇∗ = ∇ω Λ∗ ·f(ω):

Λ̇
∗ = J2J3(J2 − J3)ω2ω23(ω2 − ω02) + J1J3(J3 − J1)ω21ω23
+ J1J2(J1 − J2)ω21ω2(ω2 − ω02).

The first and the last term have sign opposite to the sign of ω2(ω2 − ω02), while
the second term is positive if ω1ω3 =/ 0. To fix ideas, assume that ω02 > 0. Then
the inequality ω2(ω2 − ω02) < 0 is satisfied for 0 < ω2 < ω02 . In this strip we have
Λ̇

∗
> 0. Hence if we take Ω1 as the intersection of this strip with the sets ω1 > 0,

ω3 > 0, all the hypotheses of Četaev’s theorem are satisfied.
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Problem 4
In a horizontal plane a system of three equal rods AB, BC, CD hinged to one
another at B and C, is constrained at the ends A,D by hinges at two fixed
points located at a mutual distance a. Let l be the length of each rod. Then
we assume that 0 < a < 3l. The points B and D are mutually attracting by an
elastic force. Study the equilibrium of the system.

Solution
Set a/l = γ ∈ (0, 3). Choose ϕ ∈ (−π, π), the angle the rod AB makes with
the line AD (Fig. 7.16). This angle may be subject to further limitations, as we
request that BD ≤ 2l.
Since λ = BD/l = (1 + γ2 − 2γ cosϕ)1/2, it must be that λ2 ≤ 4, and hence

γ2 − 2γ cosϕ− 3 ≤ 0, yielding 0 < γ < cosϕ+
√
3 + cos2 ϕ. The function cosϕ+√

3 + cos2 ϕ takes values between 1 and 3, with maximum at ϕ = 0 and minima
at ϕ = ±π. It follows that for γ ∈ (1, 3) the above inequality defines the range
(−ϕ0, ϕ0) for ϕ, where ϕ0 ∈ (0, π) (ϕ0 → 0 for γ → 3 and ϕ0 → π for γ → 1).
When γ ∈ (0, 1] there are no prohibited values for ϕ. If ϕ is an admissible,
positive value, we find two configurations for the rods BC, CD, corresponding to
the two isosceles triangles of side l that can be constructed on the segment BD.
Let α be the angle ˆBDA and β be the angle ˆBDC. Then it is easy to deduce that

sinα =
sinϕ
λ

, cosβ =
1
2
λ,

and hence also that

cosα =
(λ2 − sin2 ϕ)1/2

λ
=

γ − cosϕ
λ

, sinβ =
1
2
(3− γ2 + 2γ cosϕ)1/2.

In addition, there are the symmetric configurations, obtained by the substitution
ϕ → −ϕ. For γ ∈ (0, 1] at equilibrium we have the two configurations that min-
imise λ2, corresponding to ϕ = 0, and the two configurations that maximise it
(ϕ = π). Obviously, in the first case the equilibrium is stable, and in the second
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case it is unstable. When γ ∈ (1, 3) there still exists the solution ϕ = 0, with the
corresponding configuration of stable equilibrium, and the solutions ϕ = ±ϕ0 for
which λ2 = 4, i.e. the segment BD by the rods BC, CD being made collinear.
The corresponding equilibrium configurations are unstable.

Problem 5
Outline the dynamic analysis of the following plane system (Fig. 7.17): a disc
(mass M , radius R) rotating around the fixed centre O; a rod (mass m, length l),
with the end A hinged at a point of the disc at a distance a < l from the centre
and with the end B sliding along a fixed line (x-axis) through O. Suppose that
the constraints are frictionless and that the only force applied is an elastic force
which pulls B towards the point B0 on the x-axis at a distance a+ l from O.

Solution
The system has one degree of freedom. Choose as the Lagrangian coordinate
the angle ϕ formed by the radius OA with the x-axis, and determine the angle
ψ = ˆABO. By the sine theorem we find

sinψ =
a

l
sinϕ, cosψ =

√
1− a2

l2
sin2 ϕ (7.122)

(note that ψ cannot reach π/2). The coordinates of the centre of mass G of the
rod are

G =
(
a cosϕ+

1
2
l cosψ,

1
2
l sinψ

)
,
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from which we obtain

Ġ2 = a2 sin2 ϕ ϕ̇2 +
1
4
l2ψ̇2 − al sinϕ sinψ ϕ̇ψ̇.

It follows that the kinetic energy is given by

T =
1
4
MR2ϕ̇2 +

1
2
m

(
a2 sin2 ϕ ϕ̇2 +

1
4
l2φ̇2 + al sinϕ sinψ ϕ̇ψ̇ +

1
12

l2ψ̇2
)
.

In addition to equation (7.122) we must use

ψ̇ =
a

l

cosϕ ϕ̇√
1− a2

l2 sin2 ϕ

to obtain

T =
1
2
ϕ̇2

⎧⎨⎩1
2
MR2 +ma2

⎛⎝sin2 ϕ+
1
3

cos2 ϕ
1− a2

l2 sin2 ϕ
+ sin2 ϕ

a

l

cosϕ√
1− a2

l2 sin2 ϕ

⎞⎠⎫⎬⎭ .

The potential energy is

V =
1
2
k(B −B0)2 =

1
2
k[a(1− cosϕ) + l(1− cosψ)]2.

We now have all the elements necessary to write down Lagrange’s equation,
which is very complicated. However it is easy to answer a question such as the
following: if ϕ̇0 is the angular velocity of the disc corresponding to ϕ = 0, what
is the velocity corresponding to ϕ = π? To answer, it is enough to use

T + V = E =
1
2
ϕ̇20

(
1
2
MR2 +

1
3
ma2

)
.
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Since V (π) = 2ka2, the new kinetic energy is

T =
1
2
ϕ̇2

(
1
2
MR2 +

1
3
ma2

)
=

1
2
ϕ̇20

(
1
2
MR2 +

1
3
ma2

)
− 2ka2

(we must of course have

ϕ̇20 >
4ka2

1
2MR2 + 1

3ma2

for ϕ = π to be reached). The analysis of the equilibrium of the system is trivial,
given that to ϕ = 0 and ϕ = π there correspond the minimum and maximum
of the potential energy. Since the potential energy has only variations of O(ϕ4)
near ϕ = 0, the small oscillations are not harmonic.

Problem 6
To illustrate the use of the cardinal equations in the systems made of rigid parts
mutually constrained, we examine the simplest case: two rods AB, BC, hinged
at B and constrained by hinges at A,C (Fig. 7.18). Apply to the two rods two
generic loads F1,F2 at the two internal points P1, P2, respectively. If l1, l2 are
the lengths of the rods, determine all the constraint reactions.

Solution
The cardinal equations

F1 + F2 + φA + φC = 0,

(P1 −A)× F1 + (P2 −A)× F2 + (C −A)× φC = 0
(7.123)

are three scalar equations in the unknowns φAx, φAy, φCx, φCy. Hence the system
is underdetermined. This is due to the fact that the system is not a rigid system.
(However, if the two rods are welded at B, yielding a rigid system, why are the
equations still insufficient? How must the constraints be modified to make them
sufficient?) To solve the problem, it is necessary to write the cardinal equations
for every rigid component. In the present case, this is equivalent to writing six
equations for the four unknowns mentioned plus the two components of the
reaction in B. Let ξ1 = |P1 −A|, ξ2 = |P2 −C|. Denote by φB the force that the
hinge transmits to the rod AB (the force transmitted to the rod BC is −φB);
we find for the equilibrium of the rod AB the equations

F1x + φAx + φBx = 0,

F1y + φAy + φBy = 0,

ξ1 cosϕ1F1y − ξ1 sinϕ1F1x + l1 cosϕ1φBy − l1 sinϕ1φBx = 0,
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and for BC the equations

F2x + φCx − φBx = 0,

F2y + φCy − φBy = 0,

−ξ2 cosϕ2F2y − ξ2 sinϕ2F2x + l2 cosϕ2φBy + l2 sinϕ2φBx = 0.

The two torque balance equations can be solved independently to obtain φBx, φBy.
Note that the determinant of the coefficients is l1l2 sin(ϕ1 + ϕ2) and that the
solvability condition is 0 < ϕ1 + ϕ2 < π, i.e. the two rods cannot be collinear.
Once φBx, φBy are known, the remaining equations are trivial. This example
includes the case that gravity is the only force acting on the system. It is also
interesting to analyse the case that the rods are not carrying any load, and that
the force is applied at the hinge point. This is the simplest case of a truss (more
generally, we can have systems with more than two rods concurring at the same
node). When a rod carries no load, the cardinal equations imply that the forces
at the extreme points must constitute a balanced pair. Hence the rod is under
pure tension or pure compression. In the elementary case that the two rods have
a force F applied at B the problem is solved immediately by decomposing F in
the direction of the two rods.

Problem 7
The effect of tides caused by the Moon is to constantly increase the length of the
day. Compute what is the eventual duration of the day when it coincides with the
lunar month (the period of revolution of the Moon around the Earth). The radius
of the Earth is r = 6.4× 103 km, the ratio between the masses is mT /mL = 81,
the Earth–Moon distance is R = 3.8× 105 km and the ratio between the angular
velocity ωT of the Earth and the angular velocity ωL of revolution of the Moon
around the Earth is ωT /ωL = 28.

Solution
For simplicity suppose that the axis of rotation is orthogonal to the plane of the
Moon’s orbit, that the Earth is a homogeneous sphere and that the Moon is a
point mass. The total angular momentum |L| with respect to the centre of mass
of the two bodies is equal to the sum of the contributions due to the rotation
of the Earth and of the Moon around the centre of mass and of the rotation of
the Earth around its axis:

|L| = mL

(
mTR

mL +mT

)2
ωL +mT

(
mLR

mL +mT

)2
ωL +

2
5
mT r

2ωT = ILωL + ITωT ,

(7.124)

where IT = 2
5mT r

2, IL = [mLmT /mL +mT ]R2. When the day is equal to the
lunar month, the angular velocity of the Earth is equal to that of the revolution
of the Moon around the Earth; we denote them by ω (they both have to
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change to keep |L| constant). Under this condition, by Kepler’s third law, the
Moon–Earth distance is equal to d = R(ωL/ω)2/3. The angular momentum is
equal to

|L| = (I ′
L + IT )ω, (7.125)

where I ′
L = [mLmT /mL +mT ]d2. Comparing (7.124) with (7.125), and setting

x = ω/ωT , since IL/I
′
L = x4/3(ωT /ωL)4/3, we find

x+ a

(
ωL

ωTx

)1/3
= 1 + a, (7.126)

where a = ILωL/ITωT . From equation (7.126) we obtain the fourth-degree
equation

x(1 + a− x)3 − a3
ωL

ωT
= 0. (7.127)

Substituting the approximate numerical values a � 3.8, ωL/ωT � 1/28, we find
that (7.127) has two real roots, xf � 1/55 and xp � 4. The solution xf cor-
responds to the future: the day has a duration of 55 present days, and the
Earth–Moon distance is about 6× 105 km. The solution xp corresponds to a past
state when the day’s duration was 6 present hours and the Earth–Moon distance
was only 2 × 104 km. The main approximation in this computation is due to
considering the rotation axes of the Moon and of the Earth as orthogonal to the
plane of the orbit. In reality, the respective inclinations are 23.5◦ and 5◦, and
hence the inclination of the lunar orbit with respect to the Earth’s equator varies
between 18.5◦ and 28.5◦. On the other hand, the angular momentum due to the
Moon’s rotation around its own axis is very small, with an approximate value of
2
5mLr

2
LωL, with rL = 1.7× 103 km. Comparing this with the angular momentum

of the Earth 2
5mT r

2ωT we see that the ratio is of order 10−3.



This page intentionally left blank 



8 ANALYTICAL MECHANICS: HAMILTONIAN
FORMALISM

8.1 Legendre transformations

Within the Lagrangian formalism, the phase space for the equations of motion
makes use of the coordinates (q, q̇). We start this chapter by studying the
coordinate transformations in this space. We shall see that this study has wide
and significant developments.
The first objective is the transformation of the equations of motion into a

form, the so-called canonical form, whose particular structure highlights many
important properties of the motion. This objective is realised by an application of
a transformation due to Legendre. In this section, we study the most important
properties of this transformation.
For simplicity, consider a real function f of a real variable w, defined in

an interval (a, b) (not necessarily bounded), with continuous, positive second
derivative,

f ′′(w) > 0. (8.1)

Because of (8.1) the equation

f ′(w) = p (8.2)

uniquely defines a function w = w(p), with p variable in an open interval (c, d)
where w′(p) exists and is continuous. Geometrically, we can interpret w(p) as the
abscissa of the point where the graph of f(w) is tangent to the line of slope p
(Fig. 8.1).

Definition 8.1 The Legendre transform of f(w) is the function

g(p) = pw(p)− f [w(p)]. (8.3)
�

A significant property of this transform is that it is involutive. The meaning
of this is expressed in the following.

Theorem 8.1 The function (8.3) in turn has a Legendre transform, which
coincides with the initial function f(w).

Proof
To verify that g(p) admits a Legendre transform it is sufficient to check that
g′′(p) > 0. Differentiating (8.3), and using (8.2), we find

g′(p) = w(p) + pw′(p)− f ′[w(p)]w′(p) = w(p), (8.4)
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and therefore

g′′(p) = w′(p) = {f ′′[w(p)]}−1 > 0. (8.5)

To construct the Legendre transform of g(p) we must firstly define the function
p(w) through the equation

g′(p) = w. (8.6)

Comparing this equation with (8.4), we find that p(w) is the inverse function of
w(p). Through p(w) we obtain the expression for the Legendre transform h(w)
of g(p), simply by an application of the definition:

h(w) = wp(w)− g[p(w)]. (8.7)

Finally, inserting (8.3) into (8.7) yields

h(w) = wp(w)− {p(w)w − f(w)} = f(w). (8.8)
�

We note that the use of Legendre transforms yields the Young inequality:

pw ≤ f(w) + g(p), (8.9)

where f and g are strictly convex functions which are the Legendre transform of
each other.
The inequality (8.9) is proved starting from the function

F (w, p) = pw − f(w) (8.10)

(where f is any function which admits a Legendre transform). Indeed, note that

∂F

∂w
= p− f ′(w),

∂2F

∂w2
= −f ′′(w) < 0,
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and hence the maximum of F for every fixed p is taken when w = w(p), defined
by (8.2). This maximum value thus coincides with g(p), i.e.

F (w, p) ≤ g(p),

which yields (8.9). This proves in particular that in equation (8.9) equality holds
along the curve w = w(p).

Example 8.1
Compute the Legendre transform of f(w) = awn, a > 0, n > 1, and prove that
the Cauchy inequality

2pw ≤ εw2 +
1
ε
p2, ∀ ε > 0 (8.11)

can be deduced from the Young inequality (8.9), which for this choice of f has
the form

pw ≤ a

[
wn + (n− 1)

( p

na

)n/(n−1)]
(8.12)

(see also Problem 6.1); it suffices to choose n = 2, a = ε/2. �

The previous considerations extend without difficulty to the case of a real
function f(w), with w ∈ R�, and with continuous second partial derivatives,
such that the quadratic form associated with the Hessian matrix

∂2f

∂wh∂wk
(8.13)

is positive definite. In this case it is possible to invert the system

∂f

∂wk
= pk, k = 1, . . . , �, (8.14)

and thus to define the vectorial function w = w(p). It is now clear how it is
possible to define the Legendre transform of f(w).

Definition 8.2 The Legendre transform of f(w) is

g(p) = p ·w(p)− f [w(p)]. (8.15)
�

We can also prove that f(w) in turn represents the Legendre transform of
g(p); it is enough to note that ∇g = w(p), and hence that the Hessian matrix
of g(p) coincides with the Jacobian matrix of w = w(p), and therefore with the
inverse of the Hessian matrix of f(w). The latter is also positive definite. We
can then define the function p = p(w) by inverting the system

∂g

∂pk
= wk, k = 1, . . . , �. (8.16)
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We conclude that p(w) is the inverse of w(p). Finally, we proceed as for (8.7)
and (8.8) to obtain the final result.
Analogously we can extend the Young inequality:

p ·w ≤ f(w) + g(p), (8.17)

where the equals sign holds for w = w(p).

Remark 8.1
The Legendre transform is paired with the invertible variable transformation
from wk to pk, defined by (8.14). The inverse transform is defined by (8.16). �

Remark 8.2
According to Theorem 4.1, the Lagrangian function L(q, q̇, t) of a system admits
a Legendre transform with respect to the variables q̇k, for every fixed q and t. �

Remark 8.3
The Legendre transform can be defined by inverting the signs in the right-hand
side of (8.3); this is equivalent to considering the transform of −f , a common
trick in thermodynamics. �

8.2 The Hamiltonian

We are ready to pass from the Lagrangian formalism to a new representa-
tion in phase space, by a Legendre transformation of the Lagrangian variables
(Remark 8.2). Only the kinetic variables q̇k are transformed, and replaced by
the corresponding variables pk, while the Lagrangian is replaced by its Legendre
transform, called the Hamilton function or Hamiltonian.
Therefore the transformation is obtained by expressing explicitly the vector

q̇ = q̇(q,p, t) from the system (linear in the variables q̇k, as clearly follows from
(4.32))

∂L

∂q̇k
= pk, k = 1, . . . , �, (8.18)

and the Hamiltonian is then defined by

H(p,q, t) = p · q̇(p,q, t)− L(q, q̇(p,q, t), t). (8.19)

Definition 8.3 The variables (pk, qk) are called conjugated canonical variables.
The pk are called kinetic momenta. �

The reason for the latter terminology is that the variables pk are the Lagrangian
components of the linear momentum in R3n (see (4.33)).

Remark 8.4
When there are no generalised potentials, we have ∂L/∂q̇k = ∂T/∂q̇k, and the
transformation (8.18) depends only on the geometric structure of the holonomic
system under consideration, and not on the system of applied forces.
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Verify that if the Lagrangian L is replaced by the Lagrangian L′ = cL or

L′′ = L+
d
dt
F (q)

(Remark 4.8), we obtain the respective momenta p′ = cp, p′′ = p +∇qF , with
the corresponding Hamiltonians H ′ = cH, H ′′ = H. �

Example 8.2
For an unconstrained point particle (P,m), of Cartesian coordinates qi, we have
T = 1

2m
∑3

i=1 q̇
2
i , and hence pi = mq̇i, q̇i = pi/m. It follows that p · q̇ = p2/m

and if the particle is subject to a field of potential energy V (q) we easily obtain

H(p,q) =
p2

2m
+ V (q). (8.20)

In particular, the Hamiltonian of the harmonic oscillator of frequency ω is

H(p,q) =
p2

2m
+

1
2
mω2q2. (8.21)

�

In the previous example the Hamiltonian coincides with the total energy. This
fundamental property is valid in more general situations.

Theorem 8.2 In a holonomic system with fixed constraints, of Lagrangian
L(q, q̇), and without any generalised potential, the Hamilton function H(p,q)
represents the total mechanical energy of the system.

Proof
From equation (8.2) it follows immediately that H does not depend explicitly on
t. The kinetic energy T is a homogeneous quadratic form in q̇k, and consequently

p · q̇ =

�∑
k=1

∂T

∂q̇k
q̇k = 2T, (8.22)

from which it follows that

H(p,q) = 2T − L(q,p) = T (p,q) + V (q). (8.23)
�

Remark 8.5
When there are generalised potentials, Theorem 8.18 is no longer valid. In this
respect see Problem 8.1. �

Remark 8.6
Since T (hence L) is a quadratic function of q̇k, equations (8.18) are an invert-
ible linear system. It follows that, in the Hamiltonian formalism, T becomes a
quadratic function of pk (homogeneous if the constraints are fixed). �



284 Analytical mechanics: Hamiltonian formalism 8.3

8.3 Hamilton’s equations

The main advantage in using the Legendre transformation in the phase space is
that the equations of motion then take the form

ṗk = −∂H

∂qk
, k = 1, . . . , �,

q̇k =
∂H

∂pk
, k = 1, . . . , �.

(8.24)

Equations (8.24) are called Hamilton’s canonical equations and can be easily
verified. The second group coincides with equations (8.16), and describes the
transformation q̇ = q̇(p,q, t). This can also be obtained by directly differentiating
the two sides of (8.19) with respect to pk and using (8.18).
Differentiating (8.19) with respect to qk we obtain

∂H

∂qk
= p · ∂q̇

∂qk
− ∂L

∂qk
− ∇q̇L · ∂q̇

∂qk
= − ∂L

∂qk
,

where we have once again used (8.18). Finally, recall that thanks to (8.18),
Lagrange’s equations (4.75) can be written in the form

ṗk =
∂L

∂qk
, k = 1, . . . , �. (8.25)

This yields immediately the first group of (8.24).

Remark 8.7
The Hamiltonian obviously has the same regularity as the Lagrangian. The exist-
ence and uniqueness of the solution of the initial value problem for equations
(8.24) is thus guaranteed. �

Proposition 8.1 If q = q(t),p = p(t) are solutions of the system (8.24), we
have

d
dt
H(p(t),q(t), t) =

∂

∂t
H(p(t),q(t), t). (8.26)

Proof
The proof follows directly from (8.24). �

Remark 8.8
From equations (8.26) we again find that if ∂H/∂t = 0 the Hamilton function H
is a constant of the motion, called the generalised energy integral. �

In what follows, it is convenient to use a vector notation for equations (8.24),

introducing the vector x =
(
p
q

)
and the 2�× 2� matrix

I =
(
0 −1
1 0

)
, (8.27)
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where 1 and 0 are the identity and the null �× � matrix, respectively.
Equations (8.29) can then be written as

ẋ = I∇H. (8.28)

Remark 8.9
The right-hand side of (8.28) is a vector field X(x, t), prescribed in phase space.
Equations (8.28) are the equations for the flow lines of this field.
In the autonomous case, when ∂H/∂t = 0, we find that the possible trajectories

of the system in the phase space are the flow lines of the field X(x), which belong
to the level sets H(p,q) = constant (and coincide with them for l = 1). �

Proposition 8.2 If H has two continuous second derivatives with respect to qk
and pk, then

div X = 0, (8.29)

where

X(x, t) = I∇H. (8.30)

Proof
It is of immediate verification. �

Equation (8.29) has significant consequences, which we will consider in the
following section, with reference more generally to systems of the form

ẋ = X(x, t), div X = 0, x ∈ Rn. (8.31)

Remark 8.10
The Hamilton system (8.24) is less generic than (8.31), since it has the peculiarity
that the projections Xk of X on each of the planes (qk, pk), have zero divergence
in the geometry of the respective planes, where Xk is the vector of components
(∂H/∂pk,−∂H/∂qk). �

8.4 Liouville’s theorem

Hamilton’s equations (8.24) induce a transformation St in the phase space into
itself, depending on time. With every point x0 ∈ R2� and for all t > 0 we
can associate the point x(t) obtained by integrating the Hamilton system with
the initial condition x(0) = x0. The transformation is invertible because of the
reversibility of the equations of motion.
An important property of the transformation St, which we call the flow in

phase space associated with the Hamiltonian H, is the following.

Theorem 8.3 (Liouville) In phase space, the Hamiltonian flow preserves
volumes. This property is true in general for any system of the type (8.31).
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Proof
We must show that in the flow we are considering, for every t > 0 the image
Ω(t) of any domain Ω ⊂ R2� with a regular boundary has the same measure as
Ω. Consider the flow associated with any differential system of the kind

ẋ = X(x, t). (8.32)

Let us ignore for the moment that div X = 0, and let us prove that

d
dt

|Ω(t)| =
∫
Ω(t)

div X(x, t) dx, (8.33)

where |Ω | denotes the measure of Ω. From (8.33) it clearly follows that |Ω(t)|
is constant for any system of the type (8.31).
Equation (8.33) expresses the balance of volumes depicted in Fig. 8.2. The

variation of the volume in time dt can be expressed as
∫
∂Ω(t)X ·N dσ dt, where

N is the outgoing normal. Therefore d/dt|Ω(t)| is simply the outgoing flux of
the field X(x, t) through ∂ Ω(t) and equation (8.33) immediately follows. �

Equation (8.33) highlights the physical significance of the divergence of a
velocity field v: div v is the dilation rate of the unit volume.
We shall see that this theorem has important applications in statistical mech-

anics. It also gives information on the nature of singular points (i.e. the constant
solutions) of (8.31).

Corollary 8.1 A singular point of a system of the type (8.31) cannot be
asymptotically stable.

Proof
If x0 were asymptotically stable, then there would exist a sphere of centre x0
such that all trajectories starting inside the sphere would tend asymptotically
to x0. The volume of the image of this sphere would therefore tend to zero as
t → ∞, contradicting Theorem 8.3. �

N

X

V(t + dt)

V (t)

Fig. 8.2
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Remark 8.11
If the points of the system are subject to elastic collisions with unilateral con-
straints (or between them), then correspondingly there exist discontinuities in the
trajectories. It can be proved that Liouville’s theorem is still valid in this case.
It is enough to consider the elastic collisions as limits of smooth conservative
interactions (see Section 2.6). �

Remark 8.12
It often happens that one needs to consider quantities such as the measure
of the manifold H = E in phase space, or of the norm of ∇xH. In this case
one needs to be careful about the particular metric used, as the canonical vari-
ables are not generally homogeneous quantities. The same remark applies to the
components of ∇xH. �

To avoid this difficulty, it is good practice to use from the start dimensionless
variables. Every time we use such quantities we shall therefore consider dimen-
sionless variables, without making an explicit note of it. As an example, for the
harmonic oscillator, we can replace the Lagrangian L = (1/2)(mq̇2 + kq2) with
L′ = (1/2)[(dq′/dt′)2 + ω′2q′2], where q′ = q/l, t′ = t/t0 for some length l and
some time t0, ω′ = t0ω = t0(k/m)1/2 and L′ = Lt20/(ml2) (recall it is always
possible to multiply the Lagrangian by a constant).
Correspondingly we obtain a kinetic momentum p′ = dq′/dt′ and a Hamiltonian

H ′ = (1/2)(p′2 + ω′2q′2) which are dimensionless. It is now clear what is the
(dimensionless) ‘length’ of an arc of a curve in phase space (p′, q′) and what we
mean by |∇x′H ′|.

8.5 Poincaré recursion theorem

This celebrated theorem states that at an unknown future moment, trajectories
in phase space come as close as we wish to their starting-point. We now specify
the sense of this ‘recurrence’.
Consider an autonomous system whose representative point in phase space is

allowed to move inside a bounded region Ω. This means that the point particles
composing the system are confined within a bounded domain of R3, and the total
energy is constant (hence any collisions of the particles between themselves or with
unilateral constraints are elastic and the kinetic momenta are uniformly bounded).
We can now state the following theorem.

Theorem 8.4 (Poincaré) Consider an autonomous Hamiltonian system for
which only a bounded region Ω in phase space is accessible.
Let B0 be any sphere contained in Ω and let B(t) be its image after time t in

the flux generated by the Hamiltonian. For any τ > 0, there exists a time t0 > τ
such that B(t0) ∩B0 =/ 0.

Proof
Consider the sequence of regions Bn = B(nτ), n = 0, 1, 2, . . . , which, by The-
orem 4.1, all have the same measure. Since the system is autonomous, Bn can
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be obtained by applying the transformation M which maps B0 in B1 = B(τ)
n times. (We can also define M0(B0) = B0 and write that M � ◦ Mn−� = Mn,
∀ � = 0, 1, . . . , n.)
Since Bn ⊂ Ω, ∀ n, there must necessarily exist two distinct integers, which we

denote by n0 and n0 + k with k > 0, such that Bn0 ∩Bn0+k =/ ∅. Otherwise, the
measure of the set ΓN =

⋃
n=1,...,N Bn would be equal to N times the measure of

B0, diverging for N → ∞, and hence contradicting the assumption that ΓN ⊂ Ω,
∀ N , and that Ω has bounded measure.
We now restrict attention to the set Bn0 ∩ Bn0+k. If n0 = 0 the proof is

finished; assume n0 ≥ 1. By tracing backwards the trajectories of all points
for a time τ , we see that they originated in Bn0−1 and Bn0+k−1, which must
therefore intersect. Going back n0 steps we find that B0 ∩Bk =/ 0, which proves
the theorem. �

Corollary 8.2 All trajectories which originate in B0 (except possibly a subset
of B0 of zero measure) must return to it infinitely many times.

Proof
It is enough to note that the proof of the theorem uses only the fact that the
measure of B0 is positive, and not that it is a sphere. Hence for every subset
of B0 with positive measure, the recurrence property holds (in the same subset,
and therefore in B0).
Applying the theorem successively, we find that there must be infinitely many

returns to B0. �

Remark 8.13
In the proof of Theorem 8.4, we only used the property implying that the
Hamiltonian flux preserves volumes in phase space (Theorem 8.3). This property
holds for the more general flows of differential systems of the form (8.31).
We finally have the following generalisation: let Ω be an open set in the phase

space of system (8.31), such that:

(1) the n-dimensional Lebesgue measure of Ω is finite;
(2) for any choice of the initial condition x(0) ∈ Ω, the corresponding solution

x(t) of (8.31) belongs to Ω for every t ∈ R.

It then follows that lim
t→+∞ inf ‖x(t)−x(0)‖ = 0 for almost every initial condition

x(0) ∈ Ω (this means except for a set of initial conditions of zero Lebesgue
measure). �

8.6 Problems

1. Consider the inequality (8.12) and note that, setting n = α, n/(n− 1) = β,
a = 1/α, we can deduce

pw ≤ wα

α
+

pβ

β
,

1
α
+

1
β
= 1. (8.34)
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If ξ(x), η(x) are two functions defined in an interval (a, b), such that the integrals

[∫ b

a

|ξ(x)|α dx

]1/α
and

[∫ b

a

|η(x)|β dx

]1/β

are convergent (we indicate them by ‖ξ‖α and ‖η‖β , respectively), show that
from (8.34) it is possible to derive Hölder’s inequality:∫ b

a

|ξ(x)η(x)| dx ≤ ‖ξ‖α‖η‖β . (8.35)

Sketch. For fixed x, use (8.34) to obtain

|ξ|
‖ξ‖α

|η|
‖η‖β ≤ 1

α

|ξ|α
‖ξ‖αα

+
1
β

|η|β
‖η‖ββ

,

and then one can integrate.
2. Consider the system ṗ = f(p), q̇ = g(q, p) and determine the structure of

the function g(q, p) for which the system is Hamiltonian. Repeat the problem
replacing f(p) by f(q).

3. What are the conditions under which the system ṗ = pf(q), q̇ = g(q, p) is
Hamiltonian?

4. Consider the motion generated by the Hamiltonian of the harmonic oscil-
lator (8.21) with initial conditions q(0) = q0, p(0) = p0. Compute the functions
q(t; q0, p0) and p(t; q0, p0), and prove directly that the area element 1/2(q dp−p dq)
is invariant with respect to time, or equivalently verify that it is at every instant
of time equal to 1/2(q0 dp0 − p0 dq0).

5. Formulate the theory of small oscillations around the stable equilibrium
configurations in the Hamiltonian formalism.

6. Write Hamilton’s equations for the system of Problem 9, Chapter 7.
7. Consider the Hamiltonian system ṗ = −αpq, q̇ = (α/2)q2, with α a con-

stant different from zero. Compute the solutions starting from arbitrary initial
conditions. Draw the trajectories in the phase plane. Determine the nature of
the point of equilibrium p = q = 0.

8. Find the conditions on the parameters a, b, c, d ∈ R such that the linear
differential equations

ṗ = ap+ bq, q̇ = cp+ dq

are the Hamilton equations for some function H, and compute H.

(Solution: a = −d, H = c(p2/2)− apq − b(q2/2).)



290 Analytical mechanics: Hamiltonian formalism 8.6

9. Find the condition on a, b, c ∈ R such that the system of equations

ṗ = aq − q2, q̇ = bp+ cq

is Hamiltonian, and compute the corresponding Hamilton function. Write the
associated Lagrangian.

(Solution: c = 0, H = (1/2)bp2 − (1/2)aq2 + (1/3)q3, L = q̇2/(2b) + (1/2)aq2 −
(1/3)q3.)
10. Find the conditions on α, β, δ (positive real constants) such that the

system of equations

ṗ = −pα+1qδ, q̇ = pαqβ

is Hamiltonian, and compute the corresponding Hamilton function. Solve the
equations for α �= −1.
(Solution: if α = −1 ⇒ β = 0,

H =

⎧⎨⎩log p+
qδ+1

δ + 1
+ constant, if δ =/ −1,

log pq + constant, if δ = −1.

If α =/ −1, δ = α, β = α+ 1,

H =
(pq)α+1

α+ 1
.

For α �= −1 we have p(t) = p(0)e−κt, q(t) = q(0)eκt, with κ = [(α+1)H]α/(α+1).)
11. Find the conditions on the coefficients such that the system of equations

ṗ1 = −a1q1 − b1q2, ṗ2 = −a2q1 − d2p2,

q̇1 = a3q1 + c3p1 + d3p2, q̇2 = b4q2 + d4p2

is Hamiltonian and compute the corresponding Hamilton function.

(Solution: a3 = d3 = 0, b4 = d2, a2 = b1, H = a1q
2
1/2 + a2q1q2 + c3(p21/2) +

d4(p22/2) + b4p2q2.)
12. Write down the Hamiltonian of Problem 9, Chapter 4.
13. Prove the following generalisation of formula (8.33) (transport theorem):

d
dt

∫
Ω(t)

F (x, t) dx =
∫
Ω(t)

[
∂F

∂t
+ div(FX)

]
dx,

with Ω(t) being a domain with regular boundary, F εC1 and ẋ = X(x, t).
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8.7 Additional remarks and bibliographical notes

The Hamiltonian form of the equations of motion was introduced by
W. R. Hamilton in 1835 (Phil. Trans., pp. 95–144), partially anticipated by
Poisson, Lagrange and Cauchy. The Legendre transformation can be general-
ised to functions which are not of class C2 (see Hörmander 1994, chapter II):
let f : Rn → R ∪ {+∞} be a convex function and lower semicontinuous (i.e.
f(x) = lim

y→x
inf f(y) for every x ∈ Rn). The Legendre transform g of f can be

obtained by setting

g(y) = sup
x∈Rn

(x · y − f(x)).

It is immediate to verify that g is also convex, lower semicontinuous and it can
be proved that its Legendre transform is f . This more general formulation has
numerous applications in the calculus of variations.
Poincaré’s recurrence theorem can rightly be considered the first example of a

theorem concerning the study of equations that preserve some measure in phase
space. This is the object of ergodic theory, to which we will give an introduction
in Chapter 13.

8.8 Additional solved problems

Problem 1
The Lagrangian of an electron of mass m and charge −e is (see (4.105) with
e → −e) L = 1

2mv2 − (e/c)v ·A, in the absence of an electric field. In the case
of a plane motion we have A = B/2(−y, x). Write the Hamiltonian in polar
coordinates. Study the circular orbits and their stability.

Solution
In polar coordinates v = ṙer + rϕ̇eϕ, and therefore v ·A = B/2(r2ϕ̇). Hence the
Lagrangian can be written as

L =
1
2
m(ṙ2 + r2ϕ̇2)− e

c

B

2
r2ϕ̇.

We apply the Legendre transform

pr = mṙ, pϕ = mr2ϕ̇− eB

2c
r2.

Setting ω = eB/mc we have

ṙ =
pr
m
, ϕ̇ =

pϕ
mr2

+
ω

2
,

and finally H = pr ṙ + pϕϕ̇− L gives

H =
p2r
2m

+
p2ϕ

2mr2
+

1
2
ωpϕ +

1
8
mr2ω2.
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The coordinate ϕ is cyclic, and hence pϕ = constant. If the motion has to lie on
a circular orbit, we must have pr = ṗr = 0. This is equivalent to ∂H/∂r = 0, or

−p2ϕ
m

r−3 +
1
4
mrω2 = 0.

The solution of this equation gives the radius of the only circular orbit
corresponding to the parameters pϕ, ω:

r0 =
(
2pϕ
mω

)1/2
.

Correspondingly, we have

ϕ̇ =
∂H

∂pϕ
=

pϕ
mr20

+
ω

2
= ω,

and therefore ω represents the angular velocity of the circular motion. The value
of pϕ is determined by the kinetic energy. Note that the kinetic energy is

T =
1
2
mr20ϕ̇

2 =
p2ϕ

2mr20
+

1
8
mr20ω

2 +
1
2
ωpϕ = ωpϕ

((1/2)pϕϕ̇ is not the kinetic energy because of the presence of the generalised
potential and the Hamiltonian H = pϕϕ̇ − 1

2mr2ϕ̇2 + V takes the value of T ,
since we find that pϕϕ̇ + V = 2T ). If we choose the velocity v0 of the electron
(ωr0 = v0) it follows that T = ωpϕ = 1

2mv20 , i.e. pϕ = mv20/2ω, which is consistent
with the expression for r0 = v0/ω. To study the stability of circular motion of
radius r0, set r = r0 + ρ and keep for pϕ the value corresponding to r0. In the
Hamiltonian we must take the expansion to second order in ρ of

1
r2

=
1
r20

1
(1 + ρ/r0)

2 � 1
r20

(
1− 2

ρ

r0
+ 3

(
ρ

r0

)2)

and note that the terms linear in ρ are cancelled. The remaining Hamiltonian is
(pr = pρ)

H =
p2ρ
2m

+

(
3
2

p2ϕ
mr20

+
1
8
mr20ω

2

)
ρ2

r20
+ ωpϕ

=
p2ρ
2m

+
ωpϕ
r20

ρ2 + ωpϕ.
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With pϕ = constant and ωpϕ/r
2
0 =

1
2mω2 we obtain

H =
p2ρ
2m

+
1
2
mω2ρ2 + constant,

describing harmonic oscillations of the radius with frequency ω.

Problem 2
In a horizontal plane a homogeneous rod AB, of length l and mass M is
constrained to rotate around its centre O. A point particle (P,m) can move on
the rod and is attracted by the point O with an elastic force of constant k. The
constraints are frictionless.

(i) Write down Hamilton’s equations.
(ii) Study the trajectories in phase space.
(iii) Study the motions with |P −O| constant and the small oscillations around

them.

Solution
(i) The kinetic energy is

T =
1
2
m(ξ̇2 + ξ2ϕ̇) +

1
24

Ml2ϕ̇2,

where ξ is the x-coordinate of P on OA and ϕ is the angle of rotation of
the rod. The potential energy is

V =
1
2
kξ2.

The kinetic momenta are

pξ = mξ̇, pϕ =
(
mξ2 +

1
12

Ml2
)
ϕ̇,

and hence the Hamiltonian is

H =
p2ξ
2m

+
1
2

p2ϕ

mξ2 + 1
12Ml2

+
1
2
kξ2.

Hamilton’s equations are

ṗξ = −kξ + p2ϕ
mξ

(mξ2 + 1
12Ml2)2

, ξ̇ =
pξ
m
,

ṗϕ = 0 (ϕ is a cyclic coordinate), ϕ̇ =
pϕ

mξ2 + 1
12Ml2

.
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The first integral pϕ = constant expresses the conservation of the total angu-
lar momentum with respect to O, which can clearly also be deduced from the
cardinal equations (the only external force is the constraint reaction at O).

(ii) Excluding the trivial case pϕ = 0 (a simple harmonic motion of P along the
fixed rod), the trajectories in the plane (ξ, pξ) have equation H = constant.
The function

f(ξ, pϕ) =
1
2

p2ϕ

mξ2 + 1
12Ml2

+
1
2
kξ2

is positive and if

pϕ >
M

12

√
k

m
l2,

(case (a)) it has a relative maximum at ξ = 0 (f(0, pϕ) = 6p2ϕ/Ml2), it is
symmetric with respect to ξ = 0 and it has two minima at ξ = ±ξ0, with ξ20 =
1/

√
mk

[
pϕ − (M/12)

√
k/m l2

]
. If, on the other hand, pϕ ≤ (M/12)

√
k/m l2

(case (b)) there is an absolute minimum at ξ = 0. The phase portraits in
cases (a), (b) are shown in Fig. 8.3.
Therefore there exist motions with ξ a non-zero constant if and only if

pϕ > (M/12)
√
k/ml2 and the corresponding value of the radius is ξ0. It

is also possible to have a simple uniform rotation of the rod with ξ = 0,
but in case (a) this is unstable, since the two separatrices between the two
situations listed below pass through the origin: (α) E ∈ (Emin, E∗), when
ξ oscillates around ξ0 without passing through the middle point O; (β)
E > E∗ (and less than some Emax guaranteeing ξ < l/2), when the point P
oscillates on the rod passing through the middle point O.

(iii) In case (b) the oscillation is around ξ = 0, and hence we can use the
approximation

1
mξ2 + 1

12Ml2
� 1

1
12Ml2

(
1− 12m

Ml2
ξ2
)
.

To second order in ξ, we find

H =
p2ξ
2m

+
1
2
ξ2m

[
k

m
− p2ϕ( 1

12Ml2
)2
]
,

describing oscillations of frequency

ω =

[
k

m
− p2ϕ( 1

12Ml2
)2
]1/2

.
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Fig. 8.3

In case (a) we study the perturbation ξ = ξ0 + η (η � ξ0), by expanding
(m(ξ0 + η)2 + 1

12Ml2)−1 around ξ0. We set A = 1
12Ml2 +mξ20 = pϕ

√
m/k,

and then we have

1

m(ξ0 + η)2 +
1
12

Ml2
=

1
A

1

1 +m
2ξ0η + η2

A

� 1
A

(
1−m

2ξ0η + η2

A
+

4m2ξ20
A2 η2

)
.

We see that in the expression for H the terms linear in η cancel, and we
are left with (pξ = pη)

H � p2η
2m

+
k

A
4mξ20η

2.

It follows that the oscillation is harmonic, with frequency

ω′ = 2ξ0

√
k

A
.
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Complete the problem by integrating ϕ̇ = ∂H/∂pϕ in the two cases (a), (b).

Problem 3
Consider the system of differential equations

ṗ = 5p2q + aq3 − bq,

q̇ = −8p3 − cpq2 + 6p,

where a > 0, b > 0, c > 0 are three parameters, a < 2c.

(i) Determine the equilibrium positions.
(ii) Consider the equilibrium positions for which q = 0. Linearise the equations

in a neighbourhood of q, discuss the linear stability and solve the linearised
equations.

(iii) Determine a, b, c in such a way that the system of equations is Hamiltonian
and compute the corresponding Hamiltonian.

(iv) Set a = 0; determine b and c so that the system is Hamiltonian and compute
the corresponding Hamiltonian. Determine α and β so that the two families
of curves of respective equations 4p2 + 5q2 + α = 0 and 2p2 + β = 0 are
invariant for the Hamiltonian flux.

(v) Set finally b = 5/2, determine the equilibrium positions, discuss their stability
and draw the phase portrait of the system.

Solution
(i) The equilibrium positions are the solutions of the system

5p2q + aq3 − bq = 0,

8p3 + cpq2 − 6p = 0,

which admits solutions p = q = 0; p = 0, q = ±√b/a; p = ±√3/4, q = 0. If
6a/c ≤ b ≤ 15/4, and only then, there are four additional equilibrium points
corresponding to the intersections of the two ellipses

5p2 + aq2 = b, 8p2 + cq2 = 6.

(ii) The linearised equations corresponding to the equilibrium points with q = 0
are

ṗ = bq, q̇ = −6p near (0, 0),

η̇ = −
(
b− 15

4

)
q, q̇ = −12η near

(
±
√

3
4
, 0

)
with η = p∓

√
3
4
.
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The first equation shows that (0,0) is linearly stable, and it has the solution

p(t) = p(0) cos
√
6bt+

√
b

6
q(0) sin

√
6bt,

q(t) = −
√

6
b
p(0) sin

√
6bt+ q(0) cos

√
6bt.

In the second case, the positions are linearly stable only if 0 < b < 15/4.
Let ω2 =

∣∣ 15
4 − b

∣∣.
The solutions are

η(t) =
q(0)ω
12

sinωt+ η(0) cosωt

q(t) = q(0) cosωt− 12
ω
η(0) sinωt

⎫⎪⎬⎪⎭ if 0 < b <
15
4
,

η(t) = η(0)
q(t) = q(0)− 12η(0)t

}
if b =

15
4
,

η(t) = −q(0)ω
12

sinhωt+ η(0) coshωt

rq(t) = q(0) coshωt− 12
ω
η(0) sinhωt

⎫⎪⎬⎪⎭ if b >
15
4
.

(iii) For the system to be Hamiltonian, the system of first-order partial differential
equations

−∂H

∂q
= 5p2q + aq3 − bq,

∂H

∂p
= −8p3 − cpq2 + 6p

must admit a solution. The first equation yields

H(p, q) = −5
2
p2q2 − a

4
q4 +

b

2
q2 + f(p),

and substituting in the second we find that we must set c = 5; the
Hamiltonian is

H(p, q) = −5
2
p2q2 − a

4
q4 +

b

2
q2 − 2p4 + 3p2 + constant.

(iv) Setting a = 0 the previous result guarantees that the system is Hamiltonian
if and only if c = 5, with Hamiltonian

H(p, q) = −5
2
p2q2 +

b

2
q2 − 2p4 + 3p2 + constant
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We then set

ψ(p, q, α) = 4p2 + 5q2 + α, ϕ(p, q, β) = 2p2 + β.

A necessary and sufficient condition for their invariance is that

dψ
dt

=
∂ψ

∂p
ṗ+

∂ψ

∂q
q̇ = −∂ψ

∂p

∂H

∂q
+

∂ψ

∂q

∂H

∂p
≡ 0; ψ(p, q, α) = 0,

and similarly for ϕ. We therefore find

dψ
dt

= 8p[5p2q − bq] + 10q[6p− 8p3 − 5pq2]

= 10pq
[
6− 5q2 − 4p2 − 4

5
b

]
.

Together with ψ(p, q, α) = 0, this forces α = 4/5(b−6). In an analogous way
we find β = − 2

5b.
(v) Setting b = 5/2 the Hamiltonian can be written

H(p, q) = −(4p2 + 5q2 − 4)(2p2 − 1)
1
4
+ 1,

the equilibrium positions are

p = q = 0, stable,

p = ±
√

3
4
, q = 0, stable,

p = ± 1√
2
, q = ±

√
2
5
, unstable.

The phase portrait is shown in Fig. 8.4.

Problem 4
Consider the system of differential equations

ẋ = (a− by)x(1− x),

ẏ = −(c− dx)y(1− y),

with x > 0, y > 0 and a, b, c, d real positive constants.

(i) Introduce new variables p, q though the substitution x = eq/(1 + eq), y =
ep/(1 + ep) and write the corresponding system.

(ii) Prove that the resulting system is Hamiltonian and compute the correspond-
ing Hamiltonian.

(iii) Let a < b and c < d. Show that the system has a unique equilibrium position;
linearise the equations and solve them.
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p

p =
1

2

p = –
1

2

Fig. 8.4

Solution
(i) Differentiating with respect to time, we obtain

ẋ = q̇
eq

(1 + eq)2
, ẏ = ṗ

ep

(1 + ep)2
.

Replacing in the given system yields

ṗ = −(1 + eq)−1[c+ eq(c− d)],

q̇ = (1 + ep)−1[a+ ep(a− b)],

which is the system of Hamilton’s equations associated with the Hamiltonian.
(ii) H(p, q) = ap+ cq − b log(1 + ep)− d log(1 + eq) + constant.
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(iii) If a < b, c < d the only equilibrium solution is given by q = log(c/(d− c)),
p = log(a/(b− a)). Setting P = p− p, Q = q − q the linearised system is

Ṗ = − ∂2H

∂p∂q
(p, q)P − ∂2H

∂q2
(p, q)Q =

c

d
(d− c)Q,

Q̇ =
∂2H

∂p2
(p, q)P +

∂2H

∂q∂p
(p, q)Q = −a

b
(b− a)P,

which shows that the equilibrium is linearly stable. The solution of the
linearised system is

P (t) =
bωQ(0)
a(b− a)

sinωt+ P (0) cosωt,

Q(t) = Q(0) cosωt− a(b− a)P (0)
bω

sinωt,

where we set ω2 = (ac/bd)(b− a)(d− c).



9 ANALYTICAL MECHANICS: VARIATIONAL
PRINCIPLES

9.1 Introduction to the variational problems of mechanics

Variational problems in mechanics are characterised by the following basic idea.
For a given solution of Hamilton’s equations (8.24), called the natural motion,
we consider a family F of perturbed trajectories in the phase space, subject to
some characterising limitations, and on it we define a functional ϕ : F → R.
The typical statement of a variational principle is that the functional ϕ takes its
minimum value in F corresponding to the natural motion, and conversely, that if
an element of F has this property, then it is necessarily a solution of Hamilton’s
equations. The latter fact justifies the use of the term principle, in the sense that
it is possible to assume such a variational property as an axiom of mechanics.
Indeed, one can directly derive from it the correct equations of motion.
We start with a very simple example. Let P be a point not subject to any

force, and moving along a fixed (frictionless) line. Clearly the natural motion will
be uniform. Suppose it has velocity v0 and that for t = t0 its coordinate on the
line is equal to x0. The natural motion is then represented by the function

x∗(t) = x0 + v0(t− t0), (9.1)

and a subsequent instant t1 the function x(t) reaches the value

x1 = x0 + v0(t1 − t0).

We now fix the attention on the time interval [t0, t1] and we define the following
family F of perturbed motions:

x(t) = x∗(t) + η(t), t0 ≤ t ≤ t1, (9.2)

subject to the conditions (Fig. 9.1)

x(t0) = x0, x(t1) = x1, (9.3)

or

η(t0) = η(t1) = 0, (9.4)

where the perturbation η(t) is of class C2[t1, t2].
We define the functional

ϕ(η) =

t1∫
t0

ẋ2(t) dt. (9.5)
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x (t ) h (t )

x1

x0

t0 t0 t1 tt1 t

Fig. 9.1

Up to a proportionality factor, this functional represents the mean kinetic energy
in the considered time interval. We compute the variation of the functional, i.e.
the difference between its value on a generic perturbed motion and on the natural
motion:

δϕ = ϕ(η)− ϕ(0) =

t1∫
t0

(2v0η̇(t) + η̇2(t)) dt. (9.6)

Due to (9.4) we find

δϕ =

t1∫
t0

η̇2(t) dt, (9.7)

and we conclude that δϕ > 0 on all the elements of F. Hence ϕ takes its
minimum, relative to F, in correspondence to the natural motion, and moreover
δϕ = 0 ⇔ η = 0, and hence this minimum property characterises the natural
motion.

9.2 The Euler equations for stationary functionals

We now consider the problem from a general perspective. Let F : R2�+1 → R be
a C2 function and let

Q = {q : R → R�|q ∈ C2[t0, t1], q(t0) = q0, q(t1) = q1}, (9.8)
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where q0, q1 are prescribed vectors in R� and [t0, t1] is a given time interval.
We introduce the functional ϕ : Q → R:

ϕ(q) =

t1∫
t0

F (q(t), q̇(t), t) dt, (9.9)

(note that we are using the Lagrangian formalism) and define what it means for
ϕ to be stationary on an element of q∗ ∈ Q. The difficulty lies in the fact that
Q is not a finite-dimensional space. We can simplify this concept by considering
‘directions’ in Q along which to study the behaviour of ϕ, as follows.
For a given q∗ ∈ Q, consider the set of perturbations

Z = {η : R → R�|η ∈ C2[t0, t1], η(t0) = η(t1) = 0},
and for a fixed η ∈ Z, consider the subset Qη ⊂ Z defined by the vectors q(t)
with components

qk(t) = q∗
k(t) + αkηk(t), k = 1, . . . , �, (9.10)

where the vector α varies in R�. The restriction of ϕ to Qη is now a function of
the � real variables α1, . . . , α�, which we denote by ψ(α; η).
At this point it is easy to give a precise definition.

Definition 9.1 We say that ϕ(q) is stationary in Q for q = q∗ if its restriction
ψ(α; η) = ϕ

∣∣
Qη

is stationary for α = 0, ∀ η ∈ Z. �

Hence q∗ is a stationary point for ϕ if and only if

∇α ψ(α,η)
∣∣
α=0 = 0, ∀η ∈ Z. (9.11)

We can now prove the following.

Theorem 9.1 A necessary and sufficient condition for the functional ϕ(q) to be
stationary in Q for q = q∗ is that the components q∗

k(t) of q
∗ are solutions of the

system of differential equations

d
dt

∂F

∂q̇k
− ∂F

∂qk
= 0, k = 1, . . . , � (9.12)

(called Euler’s equations).

Proof
Substitute equations (9.10) into (9.9), differentiate with respect to αk under the
integral sign, and set α = 0. This yields

∂

∂αk
ψ(0; η) =

t1∫
t0

(
∂F

∂qk
ηk +

∂F

∂q̇k
η̇k

)
q=q∗

dt.
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Integrating the second term by parts, recalling that ηk(t0) = ηk(t1) = 0, we find

∂

∂αk
ψ(0; η) =

t1∫
t0

(
∂F

∂qk
− d

dt
∂F

∂q̇k

)
q=q∗

ηk(t) dt. (9.13)

Thus the Euler equations (9.12) are a sufficient condition for the functional to
be stationary.
To prove that they are also necessary, we start from the assumption that q∗

is a stationary point, i.e. that

t1∫
t0

(
∂F

∂qk
− d

dt
∂F

∂q̇k

)
q=q∗

ηk(t) dt = 0, ∀η ∈ Z, k = 1, . . . , �. (9.14)

We then use the following two facts:

(a) the expression in parentheses under the integral sign is a continuous function,
which we henceforth denote by Φk(t);

(b) the functions ηk(t) are arbitrary functions in Z.

If for some t ∈ (t0, t1) we have Φk( t ) =/ 0 for at least one value of k, by
continuity it would follow that Φk(t) does not change sign in an interval (t′, t′′) �
t. We could then choose ηk(t) not changing its sign and with compact non-
empty support in (t′, t′′), and conclude that

∫ t1
t0
Φk(t)ηk(t) dt =/ 0, against our

assumption. It follows that Φk(t) ≡ 0, k = 1, . . . , �, and equations (9.12) are
verified. �

Remark 9.1
In the next section we will return to the question of the formal analogy between
the Euler equations (9.12) and the Lagrange equations (4.75). Here we only
recall that a solvability condition for the system (9.12) is that the Hessian mat-
rix ‖∂2F/∂q̇h∂q̇k‖ has non-zero determinant. In this case the function F admits
a Legendre transform. �

Remark 9.2
It is easy to find first integrals of equations (9.12) in the following cases:

(a) for a given k, F does not depend on qk; the integral is ∂F/∂q̇k = constant;
(b) for a given k, F does not depend on q̇k; the integral is ∂F/∂qk = constant;

this is however a degenerate case, as the solvability condition just mentioned
does not hold;

(c) F does not depend on t; the conserved quantity is then

G = p · q̇− F,
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with pk = ∂F/∂q̇k, i.e the Legendre transform of F with respect to q̇k
(Remark 9.8). We leave as an exercise the verification that G, evaluated
along the solutions of system (9.12), has zero time derivative. �

Example 9.1
For the functional considered in Section 9.1 we have that F (q, q̇, t) = q̇2, and
hence the Euler equation is simply q̈ = 0, coinciding with the equation of
motion. �

Example 9.2
We show that the line segment between two points is the shortest path between
the two points considered in the Euclidean metric.
For the case of the plane, we can reduce this to the problem of seeking the

stationary points of the functional

ϕ(f) =

x1∫
x0

√
1 + f ′2(x) dx (9.15)

in the class of functions f ∈ C2 such that f(x0) = f(x1) = 0. We must write the
Euler equation for ϕ, taking into account that F (f(x), f ′(x), x) =

√
1 + f ′2(x).

Since ∂F/∂f = 0, this can be reduced to ∂F/∂f ′ = constant. In addition, given
that ∂2F/∂f ′2 =/ 0, the former is equivalent to f ′ =constant, yielding f ′ = 0 and
finally f = 0. �

Example 9.3: the brachistochrone
Let (P,m) be a point particle constrained to lie on a frictionless regular curve
in a vertical plane, with endpoints A, B, and with B at a lower height than A.
We want to determine among all curves connecting the points A and B, the one
that minimises the travelling time of the particle P , moving under the action of
its weight with initial conditions P (0) = A, v(0) = 0.
Choose the coordinates in the plane of the motion as shown in Fig. 9.2,

and let x3 = −f(x1) be the equation of the curve we seek to determine. The
conservation of energy implies that v = (2gf)1/2. On the other hand, v = ṡ =
(1+f ′2(x1))1/2 dx1/dt. It follows that the travelling time is given by the expression

θ(f) =

α∫
0

[
1 + f ′2(x1)
2gf(x1)

]1/2
dx1. (9.16)

We can then write the Euler equation for F (f, f ′) = [(1 + f ′2)/f ]1/2. Recall
(Remark 9.2) that when ∂F/∂x = 0 the Legendre transform is constant. This
yields the first integral

f ′ ∂F
∂f ′ − F = constant, (9.17)
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x3

x1A

P

mg
B = (α, –b)

α, b > 0

Fig. 9.2

which in our case can be written

f(1 + f ′2) = c2, (9.18)

and hence
(
(c2/f)− 1

)−1/2
df = dx1. Using the substitution f = c2 sin2 ϕ/2 this

yields

x1 = k(ϕ− sin ϕ), f = k(1− cos ϕ), (9.19)

where the positive constant k must be determined by imposing the condition
that the point passes through (α,−β). It follows that the brachistochrone curve
is an arc of a cycloid. �

An excellent illustration of the use of the Euler equations is given by the
problem of determining the ‘shortest path’ connecting two points on a Riemannian
manifold M . If (u1, . . . , ul) are local coordinates, consider the curve t → u(t) =
(u1(t), . . . , ul(t)) on the manifold, with 0 < t < 1.
If gij(u1, . . . , ul) is the Riemannian metric given on M , the length � of the

curve u is given by the functional

�(u) =

1∫
0

√√√√ l∑
k,j=1

gkj(u1(t), . . . , ul(t))u̇k(t)u̇j(t) dt. (9.20)

By Theorem 9.1 a curve makes the length �(u) stationary if and only if it is

a solution of the Euler equations (9.12), where F =
√∑l

k,j=1 gkj u̇ku̇j , i.e. a
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solution of

d
dt

gij u̇j√
gkj u̇ku̇j

=
(∂gkj/∂ui) u̇ku̇j
2
√
gkj u̇ku̇j

, (9.21)

where i = 1, . . . , l and we have adopted the convention of summation over repeated
indices. Take the natural parameter s = s(t) =

∫ t

0

√
gkj u̇ku̇j dt′ on the curve.

We then find

d
dt

=
√
gkj u̇ku̇j

d
ds

,

and substituting this into (9.21) gives

∂gij
∂uk

duk
ds

duj
ds

+ gij
d2uj
ds2

=
1
2
∂gkj
∂ui

duk
ds

duj
ds

,

i.e.

gij
d2uj
ds2

+
1
2

(
∂gij
∂uk

+
∂gik
∂uj

− ∂gkj
∂ui

)
duk
ds

duj
ds

= 0.

Multiplying both terms by gni (the elements of the inverse matrix of (gij))
and summing over i, we find the geodesic equation (1.68). We have proved the
following.

Theorem 9.2 Among all paths connecting two fixed points on a Riemannian
manifold, the geodesics keep the length functional (9.20) stationary. �

Remark 9.3
In reality we have not proved that the geodesics make the length functional
attain its minimum. Indeed, this is generally false. Consider as an example a
pair of points not diametrically opposed on a sphere; they are connected by two
arcs of a maximal circle. Both these arcs make the length functional stationary,
but only one of them realises the minimal distance. If the two points are dia-
metrically opposed there are infinitely many geodesics of equal length connecting
them.
A more interesting case is the case of a flat bidimensional torus (Fig. 9.3). In

this case, it is easy to verify that, given any two points, there exist infinitely many
geodesics connecting them. Only one of them minimises the length. However, it
can be proved (see, for example, Dubrovin et al. 1991a, chapter 5) that for any
given pair of points on a Riemannian manifold, sufficiently close to each other,
the shortest path connecting them is unique and it is given by a geodesic. �
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g3

g2

g1 g2

g3

P

Q

Fig. 9.3 The curves γ1, γ2 and γ3 are geodesics connecting the two points P and Q

on the torus. The minimal length is attained by γ1. Note that the three geodesics are
not homotopic.

We now consider the problem of seeking the stationary points of a functional
in the presence of a constraint. We illustrate this for the case of the functional

ϕ(q) =

t1∫
t0

F (q(t), q̇(t), t) dt, (9.22)

with constraint

t1∫
t0

Φ(q(t), q̇(t), t) dt = c, (9.23)

where Φ is a function with the same properties as F , and c is a constant.
The problem can be solved by writing Euler’s equations for the function

G = F + λΦ. These, together with (9.23), yield the unknown q(t) as well as the
Lagrange multiplier λ.

Example 9.4
Among all plane closed curves of fixed perimeter, find the curve which encloses
the maximal area (isoperimetric problem).
We seek the curve in the parametric form

x1 = f(t), x2 = g(t), 0 < t < 2π.
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The constraint is
2π∫
0

(f ′2 + g′2)1/2 dt = �, (9.24)

and the functional to be studied is
∮

x2 dx1, i.e.

2π∫
0

g(t)f ′(t) dt. (9.25)

Hence the function under investigation is G = gf ′ + λ(f ′2 + g′2)1/2, and we can
write the equations

∂G

∂f ′ = g + λf ′(f ′2 + g′2)−1/2 = c1,
d
dt

∂G

∂g′ =
∂G

∂g
= f ′.

By integrating the second equation we obtain

g − c1 = −λf ′(f ′2 + g′2)−1/2, f − c2 = λg′(f ′2 + g′2)−1/2.

Squaring and summing, we finally obtain the equation of a circle:

(g − c1)2 + (f − c2)2 = λ2. (9.26)

The constants c1 and c2 do not play an essential role, as their variation only
produces a translation. The multiplier λ is determined by (9.24), as we must
have that 2πλ = �.
To complete the solution of the problem, we must prove that by perturbing

the circle, which we assume to be of radius 1, keeping the same length of the
resulting curve, the enclosed area is reduced.
We write the equation of the circle of radius 1 in the form x = x0(ϕ) and the

equations of the perturbed curves in the form

x(ϕ) = x0(ϕ)(1 + f(ϕ)), 0 < ϕ < 2π, (9.27)

where f is 2π-periodic and such that ‖f‖ � 1, ‖f ′‖ � 1, and ‖f‖ = max
0≤ϕ≤2π

|f(ϕ)|.
We hence consider only perturbed curves which enclose a ‘starred’ domain (i.e.
a domain which contains all the radii ensuing from one of its points, suitably
chosen). Indeed, it is easy to realise that if a domain is not a star domain, we
can modify the curve preserving its length, but enlarging the enclosed area, so we
exclude such domains from our analysis. Since x′

0(ϕ) is the unit vector tangent
to the circle, the length of the curve (9.27) is given by

�(f) =

2π∫
0

[(1 + f)2 + f ′2]1/2 dϕ.
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We can impose the condition �(f) = 2π up to order higher than ‖f‖2 and ‖f ′‖2,
by writing [(1 + f)2 + f ′2]1/2 � 1 + f + 1

2f
′2 (using

√
1 + x � 1 + 1

2x − 1
8x

2).
We find

2π∫
0

(
f +

1
2
f ′2

)
dϕ = 0. (9.28)

Since f is periodic, we can consider its Fourier expansion (Appendix 7):

f(ϕ) = a0 +
∞∑
n=1

(an cosnϕ+ bn sinϕ), (9.29)

f ′(ϕ) =
∞∑
n=1

(−nan sinnϕ+ nbn cosnϕ), (9.30)

and hence

2π∫
0

f dϕ = 2πa0,

2π∫
0

f ′2 dϕ = π

∞∑
n=1

n2(a2n + b2n),

and equation (9.28) implies the relation

a0 = −1
4

∞∑
n=1

n2(a2n + b2n). (9.31)

We now compute the area enclosed by the perturbed curve:

A(f) =
1
2

2π∫
0

(1 + f)2 dϕ = π +

2π∫
0

(
f +

1
2
f2
)

dϕ. (9.32)

Again using equation (9.28) we can estimate the variation

A(f)− π =
1
2

2π∫
0

(f2 − f ′2) dϕ. (9.33)

We now have

2π∫
0

f2 dϕ = π

[
2a20 +

∞∑
n=1

(a2n + b2n)

]
,

where a20 can be ignored. Indeed, it follows from equation (9.31), or from
equation (9.28), that the average of f (i.e. a0) is of the same order as ||f ′||2,
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and hence that a20 is of the order of the error, and can be ignored. We can
re-interpret equation (9.33) as

A(f)− π � −π

∞∑
n=1

(n2 − 1)(a2n + b2n). (9.34)

We can conclude that the perturbation causes a decrease in the area, as soon as
one of the Fourier coefficients with index n > 1 is different from zero. We must
still examine the case that f = a0 + a1 cosϕ + b1 sinϕ, when the perturbation
A(f) − π is of order greater than two. To evaluate �(f) we must consider the
expansion

√
1 + x � 1 + 1

2x− 1
8x

2 + 1
3!

( 3
8x

3)− ( 1
4! (

5
16x

4)
)
, which yields (keeping

terms up to fourth order)

[(1 + f)2 + f ′2]1/2 � 1 + f +
1
2
f ′2 − 1

2
ff ′2 +

7
24

f4 − 1
4
f2f ′2.

To compute the integral of this expression we must take into account the fact that
a0 is of the same order as a21 and b21, and hence many terms can be discarded.
Furthermore it is easy to compute

1
2π

2π∫
0

cos4 ϕ dϕ =
3
8
,

1
2π

2π∫
0

sin2 ϕ cos2 ϕ dϕ =
1
8
.

Finally, the condition �(f) = 2π can be written as

−a0

[
1− 1

4
(a21 + b21)

]
=

1
4
(a21 + b21) +

5
64

(a21 + b21)
2,

or, to the same order of approximation,

−a0 =
1
4
(a21 + b21) +

9
64

(a21 + b21)
2.

The area relative variation is then given by

A(f)− π

π
= 2a0 + a20 +

1
2
(a21 + b21),

yielding, to fourth order,

A(f)− π

π
= − 7

32
(a21 + b21)

2 < 0. �
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9.3 Hamilton’s variational principle: Lagrangian form

The analogy between the Euler equations (9.12) and the Lagrange equations
(4.75) is evident. The latter ones are also called the Euler–Lagrange equations,
and we can regard them as the equations characterising when the functional

A(q) =

t1∫
t0

L(q, q̇, t) dt, (9.35)

called the Hamiltonian action, is stationary in the class Q of perturbed motions,
defined by (9.8). These motions are called motions with synchronous perturbations
(to stress the fact that we are not altering the time-scale).
We can summarise what we have just discussed in the following statement.

Theorem 9.3 (Hamilton principle) The natural motion is characterised by the
property that the Hamiltonian action is stationary in the class of synchronous
perturbations which preserve the configurations of the system at the initial and
final time. �

Remark 9.4
Recall that L = T −V . We can then state that the natural motion makes the time
average of the difference between the kinetic and potential energy stationary. �

We stress the fact that the Hamilton principle is a characterisation of the
motion, in the sense that it can be regarded not only as a consequence of the
Lagrange equations, but it can also be assumed as the fundamental postulate of
mechanics, from which the Lagrange equations can be immediately deduced.
We now examine a series of examples in which we find that the Hamiltonian

action is not only stationary, but even minimised along the natural motion.

Example 9.5: motion of a free point particle in the absence of forces
It is sufficient to recall the problem solved in Section 9.1, removing the condition
that the point is constrained on a line. �

Example 9.6: motion of a point mass under gravity
Choose the reference frame in such a way that the natural motion has equations

x∗
1(t) = v01t, x∗

2(t) = 0, x∗
3(t) = v03t+

1
2
gt2 (9.36)

(axis x3 oriented along the descending vertical, initial velocity v0 = (v01, 0, v03)).
The synchronous perturbations are defined by

x1(t) = v01t+ η1(t), x2(t) = η2(t), x3(t) = v03t+
1
2
gt2 + η3(t), (9.37)

with ηi ∈ C2[0, θ], ηi(0) = ηi(θ) = 0, i = 1, 2, 3, for a given θ > 0.
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The variation of the Hamiltonian action

A =

θ∫
0

(
1
2
mv2 +mgx3

)
dt (9.38)

can be easily computed:

δA =
1
2
m

θ∫
0

∑
i
η̇2i dt, (9.39)

and is positive for every non-zero perturbation (we can add that it is of order 2
with respect to the perturbation, in the sense that for fixed η1, η2, η3 multiplied
by α, it follows that δA = O(α2)). �

Example 9.7: the harmonic oscillator
Choose the reference frame in such a way that we can write

x∗
1(t) = a sin ωt, x∗

2(t) = x∗
3(t) = 0 (9.40)

and consider the variations

x1(t) = a sin ωt+ η1(t), x2(t) = η2(t), x3(t) = η3(t), (9.41)

with ηi chosen as in the previous problem.
Since L = 1

2 mv2 − 1
2 mω2

∑
i x

2
i , we find

δA =
1
2
m

θ∫
0

∑
i
(η̇2i − ω2η2i ) dt+m

θ∫
0

(ẋ∗
1η̇1 − ω2x∗

1η1) dt. (9.42)

One integration by parts in the second integral yields − ∫ θ

0 (ẍ
∗
1 + ω2x∗

1)η1 dt = 0,
and hence we can conclude that δA evaluated along the natural motion is of
order 2 with respect to the perturbation (implying that A is stationary). Finally
we note that an integral of the type

∫ θ

0 (η̇
2 − ω2η2) dt can be estimated using

|η(t)| =
∣∣∣∣∣∣

t∫
0

η̇(τ) dτ

∣∣∣∣∣∣ ≤ √
t

⎡⎣ t∫
0

η̇2(τ) dτ

⎤⎦1/2 .
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We thus find

θ∫
0

(η̇2 − ω2η2) dt ≥
(
1− 1

2
ω2θ2

)⎡⎣ θ∫
0

η̇2(t) dt

⎤⎦1/2 .
Hence we can conclude that δA > 0 if θ <

√
2/ω, i.e. the Hamiltonian action has

a minimum when computed along the natural motion, provided that we impose
a restriction on the length of the time interval over which it is computed.
As an exercise, compute δA for η1 = α sin2 πt/θ, η2 = η3 = 0 and note that

δA � 0 for θ � 2π/3ω. �

9.4 Hamilton’s variational principle: Hamiltonian form

As we have explicitly observed, so far we have based our analysis of variational
principles on the Lagrangian formalism. This is convenient for the ease with which
one can then define the synchronous perturbations in the space of Lagrangian
coordinates.
Passing to the Hamiltonian formalism, we need only to express the action in

the canonical variables (p,q):

A(p,q) =

t1∫
t0

[p · q̇−H(p,q, t)] dt, (9.43)

where q̇ = q̇(p,q, t), but we must define the variations in the phase space. This
is naturally done by perturbing q∗

k(t) and in turn p∗
k(t), in such a way that the

formal relation pk = ∂L/∂q̇k is preserved.
However it is more convenient to introduce independent variations for qk and pk:

qk(t) = q∗
k(t) + ηk(t), k = 1, . . . , �,

pk(t) = p∗
k(t) + ζk(t), k = 1, . . . , �,

(9.44)

with ηk, ζk ∈ C2[t0, t1], ηk(t0) = ηk(t1) = 0, k = 1, . . . , �, where q∗
k(t) and

p∗
k(t) denote the solutions of the Hamilton equations. In this way we can define
perturbed curves in phase space (Fig. 9.4), which in general are not admissible
trajectories for the system (consider e.g. the trivial case � = 1 with p = mq̇ and
take ζ(t) =/ mη̇(t)).
The class of trajectories (9.44) is therefore larger than the class of synchronous

perturbations. If we prove that the functional A is stationary along the solutions of
the Hamilton equations with respect to this more extended class of perturbations,
it follows that it is also stationary within the more restricted class of synchronous
perturbations. This is the idea in the proof of the following theorem.
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p

q0 q1 q

Natural motion
Perturbed motion

Fig. 9.4 Sketch of the synchronous perturbations.

Theorem 9.4 A necessary and sufficient condition that δA = 0, to first order
in the class of perturbations (9.44), is that q∗

k, p
∗
k are solutions of the Hamilton

equations (8.24).

Proof
We immediately find that

δA =

t1∫
t0

(ζ · q̇∗ + p∗ · η̇ + ζ · η̇ − δH) dt, (9.45)

and since we are only interested in the first-order variation we can neglect the
term ζ · η̇ and write

δH � (∇qH)∗ · η + (∇pH)∗ · ζ, (9.46)

where (·)∗ denotes the values taken along the natural motion.
Integrating by parts the term containing η̇, we arrive at the expression

δA =

t1∫
t0

[ζ · (q̇− ∇pH)∗ − η · (ṗ+∇qH)∗] dt. (9.47)

From this we can deduce the equivalence

δA � 0 ⇔ (q̇− ∇pH)∗ = (ṗ+∇qH)∗ = 0, (9.48)

if we proceed as in the final part of the proof of Theorem 9.1. �

Remark 9.5
The previous theorem is still valid if we restrict to the class of perturbations
(9.44), imposing the limitations ζk(t0) = ζk(t1) = 0 (what needs to be modified
in the proof is not essential). �
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9.5 Principle of the stationary action

Besides Hamilton’s principle, there exist several other variational principles.1

We will discuss only one more, the most famous, which has special interest for
its geometric implications. This principle is called the principle of stationary
action, or Maupertuis’ principle. It is valid for systems with a time-independent
Hamiltonian.
It is convenient to refer to the space (p,q, t) and to parametrise not only p

and q but also t, thus considering the curves in R2�+1 given by the equations
p = p(u), q = q(u), t = t(u). To obtain a parametrisation of the natural motion,
it is enough to consider a function t = t(u), u0 ≤ u ≤ u1, in C2[u0, u1] with
t
′(u) =/ 0 in [u0, u1], and consequently define the functions qk(u) = q∗

k(t(u)),
pk = p∗

k(t(u)).
We find the curve of equations

p = p(u), q = q(u), t = t(u), (9.49)

along which we introduce the perturbations

p = p(u) + ζ (u), q = q(u) + η (u), t = t(u) + τ(u), (9.50)

in such a way that the new functions p(u), q(u), t(u) are also C2, and satisfy
η(u0) = η(u1) = 0.
The relevant novelty is that perturbations now include a variation in the

temporal scale. Therefore they are called asynchronous perturbations (Fig. 9.5).
We note that, in analogy with the case discussed in the previous section, only

a subset of the curves (9.50) is associated with possible motions. However, every
stationarity result obtained in this wider class applies to the subfamily of possible
motions.
In what follows we select a particular subclass of perturbations, satisfying

H(p(u),q(u)) = H(p(u),q(u)). (9.51)

The asynchronous perturbations subject to the condition (9.51) are called isoen-
ergetic. It will soon be clear that the need to introduce asynchronous variations
is due to the constraint imposed on the energy.
The functional we want to study is

Â =

t(u1)∫
t(u0)

p · q̇dt, (9.52)

which is also called the action. The integrand must be understood in the Hamilto-
nian formalism. This functional is obviously linked to the time average of the
kinetic energy (see (4.34)).

1 See, for example, Levi-Civita and Amaldi (1927), Whittaker (1936) and Agostinelli and
Pignedoli (1989).
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Fig. 9.5 Sketch of the asynchronous variations.

Theorem 9.5 (Stationary action of Maupertuis’ principle) If the Hamiltonian
does not depend explicitly on time, the functional (9.52) along the natural motion
is stationary with respect to the class of isoenergetic asynchronous perturbations.

Proof
We make the change of variables t = t(u) in (9.52) and we write

Â(ζ,η, τ) =

u1∫
u0

(p + ζ(u)) · d
du

(q + η(u)) du. (9.53)

Neglecting the higher-order term ζ · d
du

η and integrating by parts where

necessary, we arrive at the expression for the variation δÂ:

δÂ �
u1∫

u0

(
ζn · d

du
q − η · d

du
p
)
du. (9.54)

Using the Hamilton equations we find immediately that, to first order,

ζ · d
du

q− η · d
du

p � δH
dt
du

. (9.55)

Since by hypothesis δH = 0, the proof is finished. �



318 Analytical mechanics: variational principles 9.6

Remark 9.6
The functional (9.52) contains only information on the geometric-material struc-
ture of the system. The dynamic information comes into play because of the
isoenergetic constraint. �

Before examining the geometric consequences of this principle, we consider a
few simple examples.

Example 9.8: motion of a free point in the absence of forces
Isoenergetic motions are in this case the uniform motions with the same mag-
nitude of velocity as the natural motion. It is clear then that it is impossible to
perturb the trajectory without perturbing the temporal scale. The functional Â
can be written as

Â =
1
2
mv

t(u1)∫
t(u0)

v dt =
1
2
mvs, (9.56)

where s is the length of the path travelled. The geometric interpretation of the
principle of the stationary action is then that the natural motion is the motion
which makes the length of the travelled path stationary with respect to any other
path with the same velocity connecting the same start and end points. �

Example 9.9 motion of a point on an equipotential surface
Let P be constrained on the surface V = constant. In this case as well the
isoenergetic motions are the uniform motions with the same magnitude of velocity
as the natural motion, and the conclusion is the same as in the previous case:
the trajectory is a geodesic of the surface (Proposition 2.2). �

In fact, the minimality property of the path stressed by the previous examples
holds in general, as long as the manifold of configurations is endowed with the
appropriate metric. We shall develop this concept in the next section.

9.6 The Jacobi metric

Consider a holonomic system with fixed, smooth constraints, not subject to any
force directly applied to it. For such a system the kinetic energy is constant:

T = constant. (9.57)

Recall that T = 1
2

∑�

h,k=1
ahk q̇hq̇k is a positive definite quadratic form. We

interpret (ahk) as the metric tensor of the manifold of configurations of the
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system, as we did in Theorem 4.3:

(ds)2 =
�∑

h,k=1
ahk dqh dqk. (9.58)

With this metric, the velocity of the representative point in the space is such
that

|q̇|2 = 2T, (9.59)

and hence |q̇| = constant.
We can apply the principle of stationary action and conclude that the natural

motion is an extremal for the length of the path travelled on the Riemannian
manifold V endowed with the metric (9.58) (this is indeed the meaning of the
action). On the other hand, note that in this case Theorem 9.2 refers to the
extremal for the functional

∫ t1
t0

√
2T dt, the Euler equations coinciding, for T =

constant, with the Lagrange equations for L = T (see Problem 9.5).
Turning to the general case, when there is a conservative force field with

potential energy V (q), it is still possible to obtain an analogous result, as long
as the chosen metric incorporates the function V (q) in a suitable way, at the
same time preserving the information encoded in T . More precisely, we write

(ds)2 = 2(E − V )
�∑

h, k=1
ahk dqh dqk, (9.60)

so that

|q̇| = 2T (9.61)

and consequently the action coincides directly with the length of the arc of the
trajectory travelled by the point in the space of configurations. The metric (9.60)
is called the Jacobi metric and it is defined in the regions VE = {V (q) ≤ E}.
For a fixed energy E, the manifold VE with the metric (9.60) defines a Rieman-

nian manifold with boundary (∂VE = {V (q) = E}), and from the Maupertuis
principle it follows that the natural motion travels along the geodesics of this
manifold. Note that the metric (9.60) is singular on ∂VE .
The following examples make reference to systems with two degrees of freedom.

In the space (q1, q2) we look for the trajectories of the form q1 = f(q2). Hence
the functional we have to study is of the form

l(f) =

b∫
a

[E − V (f, q2)]1/2
[
a11

(
df
dq2

)2
+ 2a12

df
dq2

+ a22

]1/2
dq2,
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with aij functions of f and q2. After elimination of time, we can neglect the
perturbations of this variable.

Example 9.10
Verify that the trajectory of a central motion with potential energy V (r) is a
geodesic with respect to the Jacobi metric (9.60).
We seek the extremals of the functional

ϕ2∫
ϕ1

[(ρ2 + ρ′2)(E − V (ρ))]1/2 dϕ, (9.62)

from which we obtain the Euler equation

ρρ′′ − 2ρ′2 − ρ2

ρ2 + ρ′2 + ρ
V ′

2(E − V )
= 0 (9.63)

for the trajectory r = ρ(ϕ). We want to check that by integrating (9.63) we find
the trajectory of the motion under consideration. Indeed, it is enough to note
that, setting u = 1/ρ and V̂ (u) = V (ρ), equation (9.63) becomes

u′′ + u

u2 + u′2 =
V̂ ′(u)

2(V̂ − E)
, (9.64)

admitting the first integral

u′2 + u2 = k(E − V̂ ), (9.65)

with k constant (it suffices to multiply the two sides of (9.64) by 2u′). This is
simply the energy integral, after identifying k with 2m/L2z (see (5.27)).
Indeed, by substituting (9.65) into (9.64) we find

u′′ + u = − m

L2z
V̂ ′(u), (9.66)

and hence we obtain (5.26).
This proves that the solution of the variational problem, i.e. the integra-

tion of equation (9.64), is equivalent to the classical solution of the dynamical
problem. �

Example 9.11: motion of a point mass in a one-dimensional field
Choose the x3-axis in the direction of the field, and let V (x3) be the potential
energy, with V (0) = 0. We study the motion in the (x1, x3) plane, with the initial
conditions x1(0) = x3(0) = 0, ẋ1(0) = v01, ẋ3(0) = v03.
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Since x1(t) = v01t and ẋ3 = ± (−2/m (V (x3) + v203)
)1/2

, we find by separation
of variables in the latter

t = ±
x3∫
0

(
− 2
m

V (ζ) + v203

)−1/2
dζ. (9.67)

The equation of the trajectory is then

x1 = ±v01

x3∫
0

(
− 2
m

V (ζ) + v203

)−1/2
dζ, (9.68)

where the sign must be changed in correspondence to the possible singularities
of the integrand.
We now solve the problem using the variational technique considered in this

section, by finding the extremal of the length of the arc of the trajectory with
respect to the metric (9.60). Hence we find the function x1 = ξ(x3) which is an
extremal of the functional

�(ξ) =

ζ0∫
0

[−2V (x3) +m(v201 + v203)]
1/2[m(1 + ξ′2(x3))]1/2 dx3, (9.69)

where ξ(0) = 0 and ξ(ζ0) must coincide with the value taken by (9.68) for x3 = ζ0.
Since the integrand in (9.69) does not depend on ξ(x3), the Euler equation

admits the first integral

[−2V (x3) +m(v201 + v203)]
1/2 ξ′

(1 + ξ′2)1/2
= c,

i.e.

ξ′ = c[−2V (x3) +m(v201 + v203)− c2]−1/2. (9.70)

To find the desired value of ξ(ζ0) we take c2 = mv201, and hence c = ±√
mv01,

and the integral of equation (9.70) then coincides with (9.68). �

Example 9.12
Consider a rod AB constrained in the (x, z) plane, and with the point A sliding
on the x1-axis, without any directly applied force. The rod has length 2� and
mass m. We seek the equation of the trajectory in the Lagrangian coordinate
space. Choose the coordinates ϕ, ξ = x/� as in Fig. 9.6.
We compute the kinetic energy

T =
1
2
m�2

(
ξ̇2 − 2ξ̇ϕ̇ sin ϕ+

4
3
ϕ̇2
)

(9.71)
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and deduce that the correct metric to use in solving the problem is

ds2 = dξ2 − 2 sin ϕ dξ dϕ+
4
3

dϕ2.

By seeking the trajectories in the form ξ = ξ(ϕ), we must find the extremal of
the functional

�(ξ) =

ϕ2∫
ϕ1

(
ξ′2 − 2 sin ϕξ′ +

4
3

)1/2
dϕ. (9.72)

The Euler equation admits the first integral

∂

∂ξ′

(
ξ′2 − 2 sin ϕξ′ +

4
3

)1/2
= k,

from which

ξ′ = sin ϕ± (1− k2)−1/2
[
4
3

− sin2 ϕ

]1/2
, with |k| < 1. (9.73)

This equation leads to an elliptic integral.
Classically we can solve the problem by writing the conservation of the kinetic

energy:

ξ̇2 − 2ξ̇ϕ̇ sin ϕ+
4
3
ϕ̇2 = c0 (9.74)

and of the first component of the momentum:

ξ̇ − ϕ̇ sin ϕ = c1. (9.75)

Note that we must have c0 ≥ c21.
Solving the system (9.74), (9.75) with respect to ξ̇, ϕ̇ and eliminating time,

we find (9.73), with k = c1/
√
c0. �
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9.7 Problems

1. Determine all plane curves of equation y = y(x) passing through the origin,
and through the point with coordinates (π/2, 1) that are extremals for the
functional

∫ π/2
0 [(y′)2 − y2] dx.

2. Consider all plane curves y = y(x) passing through two fixed points A and
B. Show that the area of the surface of rotation obtained by rotating the graph
of the curve around the x-axis is given by S(y, y′) = 2π

∫ xB
xA

y
√
1 + (y′)2 dx. Show

that the area is stationary if y = a cosh(x − b)/a, and hence a catenary. The
constants of integration a and b are determined by requiring that the curve passes
through the points A and B (depending on the relative position of the points,
the solution may or may not be unique, or may not exist. Discuss all possible
cases). (Hint : since the integrand is independent of x, use Remark 9.2(c).)
3. Determine the extremals of the following functionals, for fixed values of

q(t0), q(t1):

(a)
t1∫
t0

(tq̇ + q̇2) dt;

(b)
t1∫
t0

(q2 + q̇2 − 2qt) dt;

(c)
t1∫
t0

(q̇ + t2q̇2) dt.

4. Let h = R2 → R be of the form h(x, x′) = (x − x′)2/2 + u(x), where
u : R → R is of class C∞. Given any finite sequence of real numbers (xj , . . . , xk),
j < k, set h(xj , . . . , xk) =

∑k−1
i=j h(xi, xi+1). A (k − j)-tuple is minimal for h if

h(xj , . . . , xk) ≤ h(x′
j , . . . , x

′
k)

for every (x′
j , . . . , x

′
k) such that x′

j = xj , x′
k = xk. Prove that if (xj , . . . , xk) is

minimal then it satisfies the following condition to be stationary:

xi+1 − 2xi + xi−1 = u′(xi) for all j < i < k.

Determine all the stationary n-tuples for the case u ≡ constant and u = ax.
Which are the minimal ones?
5. Deduce from the principle of stationary action that the orbit of a point

particle in a central force field of potential energy V (r) = 1
2kr

2, k > 0, is an
ellipse with centre at the origin.
6. Within special relativity theory, the Lagrangian of a point particle with

mass m (at rest) and in the absence of forces, is L(q̇) = −mc2
√
1− (|q̇|2/c2),

where c is the speed of light.
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Determine the kinetic momentum p, the Hamiltonian H and show than, for
any speed much smaller than the speed of light, H ∼ mc2 + |p|2/2m. Write the
Euler equations for the relativistic action functional S =

∫
L(q̇) dt and show that,

in the case |q̇| � c, they reduce to the equation mq̈ = 0.

9.8 Additional remarks and bibliographical notes

Although the first studies in the calculus of variations date back to the seventeenth
century, it was only in 1736 that Euler proved Theorem 9.1, which is still today
considered the fundamental result in this field. The proof we gave is due to
Lagrange, who obtained it in 1756. He also introduced the principle of stationary
action, without, of course, using the Hamiltonian formalism. The problem of
the additional conditions that a solution of the Euler equation must satisfy, in
order to effectively provide the maximum or minimum of the functional, was
successfully considered by Legendre, who gave an additional necessary condition.
It was only in 1837 that Jacobi succeeded in strengthening the condition of
Legendre to make it a sufficient condition, when he discovered the existence of
conjugate points at which the minimisation problem loses uniqueness. A detailed
discussion of these beautiful results goes beyond the scope of this work; for an
elementary and pleasant introduction, we recommend Fox (1987, chapters 1–3).
We simply note that if

(1) the Euler equation is satisfied,
(2) the interval of integration [t1, t2] is sufficiently small,
(3) the �× � matrix ∂2F/∂q̇i∂q̇j is either positive definite or negative definite,

then there is a maximum or a minimum according to whether ∂2F/∂q̇i∂q̇j is
negative or positive definite. This is enough to show that the Hamiltonian action
(9.35) is minimised along the natural motion (for sufficiently short time intervals).

9.9 Additional solved problems

Problem 1
Let S be a surface given as the graph z = f(x, y), with f ∈ C2(R2). Find the
periodic function ρ(ϕ) > 0 such that the area of the portion of S projected in
the region bounded by the curve r = ρ(ϕ) on the plane (x, y), with prescribed
length �, is an extremal.

Solution
The length of the curve is

� =

2π∫
0

√
ρ2(ϕ) + ρ′2(ϕ) dϕ.
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The area we are considering is

A(ρ) =

2π∫
0

⎧⎪⎨⎪⎩
ρ(ϕ)∫
0

√
EG− F 2 dr

⎫⎪⎬⎪⎭ dϕ,

where E,F,G are obtained by the following parametrisation of S:

x = r cosϕ, y = r sinϕ, z = f(r cosϕ, r sinϕ).

One verifies that

EG− F 2 = r2(1 + (∇f)2),

and hence the functional for which we seek an extremal is

2π∫
0

⎧⎪⎨⎪⎩
ρ(ϕ)∫
0

r(1 + (∇f)2)1/2 dr − λ

√
ρ2 + ρ′2

⎫⎪⎬⎪⎭ dϕ.

Note that if S is a plane, then (∇f)2 is constant and A(ρ) is simply the
area enclosed by the curve r = ρ(ϕ), and hence 1

2

∫ 2π
0 ρ2(ϕ) dϕ, divided by

1/(1 + (∇f)2)1/2. In this case the problem is equivalent to that of Example 9.4.
More generally, we must solve the Euler equation

d
dϕ

λρ′√
ρ2 + ρ′2

+ ρ(1 + (∇f)2)1/2r=ρ(ϕ) −
λρ√

ρ2 + ρ′2
= 0

requiring that the solution is periodic, with period 2π, and determining λ using
the constraint on length. As an example, in the case of a surface of rotation
z = f(r) we find (∇f)2 = f ′2 and the above equation becomes

λρ
ρρ′′ − 2ρ′2 − ρ2

(ρ2 + ρ′2)3/2
+ ρ(1 + f ′2(ρ))1/2 = 0,

which admits the solution ρ = R0, with R0 = �/2π, as long as R0 is inside the
domain of definition of f ′; indeed, it is enough to choose λ = (1+f ′2(R0))1/2/R0.
In the case of the sphere f(r) =

√
R2 − r, to find the circular solution we need

R0 < R.

Problem 2
On the surface of rotation

x = ρ(z) cosϕ, y = ρ(z) sinϕ, z = z
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consider the family of elicoidal curves defined by

ϕ = f(z), f(z1) = 0, f(z2) = 2π,

with f ∈ C2 increasing, and the interval (z1, z2) inside the domain of definition
of ρ(z). Find f so that the length of the curve is stationary.

Solution
The length of the curve is given by the functional

�(f) =

z2∫
z1

[(1 + ρ′2) + ρ2f ′2]1/2 dz.

Since the integrand does not depend on f , we can immediately write a first
integral of the Euler equation:

ρ2f ′ = c[(1 + ρ′2) + ρ2f ′2]1/2, c > 0, (9.76)

from which we find f ′:

f ′ =
c

ρ

[
1 + ρ′2

ρ2 − c2

]1/2
.

The constant c has to be determined by imposing, if possible,

c

z2∫
z1

1
ρ

[
1 + ρ′2

ρ2 − c2

]1/2
dz = 2π. (9.77)

If the surface has a vertex in z = z∗ (i.e. ρ(z∗) = 0) and z∗ lies in [z1, z2],
then equation (9.76) is incompatible with f ′ > 0, because it forces c = 0. In this
case the problem does not admit a solution. Even when this is not the case,
equation (9.77) is not always solvable. Take for example the cone ρ = zα, with
opening angle α, for which

f ′ =
c

zα

[
1 + α2

z2α2 − c2

]1/2
=

γ

z

(1 + α2)1/2

α

(
1

z2 sin2 α− γ2

)1/2
,

with γ = c(sinα)/α. Setting

z sinα = ζ and ζ = −γ
1 + t2

1− t2
,

the integral can easily be computed and yields

f(z) =
2
α
(1 + α2)1/2

[
arctan

(
z1 sinα+ γ

z1 sinα− γ

)1/2
− arctan

(
z sinα+ γ

z sinα− γ

)1/2]
.

(9.78)
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It is easy to see that the difference of the arctangents is positive for z > z1, and
it is always less than π/4. Hence the condition f(z2) = 2π cannot be satisfied
if α2 > 1/15. If on the other hand there exists a solution, it is unique, as the
right-hand side of (9.78) is an increasing function of γ in the interval (0, z1 sinα).
It is not at all intuitive that there may be cases when no solution exists. In fact a
solution always exists, but when it is singular it cannot be found as a solution of
the Euler equation. Indeed, in the class considered, a path that follows meridians
(f ′ = 0) and parallels (f ′ singular) may be the most economical (in terms of
length).

Problem 3
A point particle travels along the smooth curve z = −f(x) ≤ 0, 0 < x < a, in the
vertical plane (x, z). The curve joins the two points (x = 0, z = 0), (x = a, z = 0).
Initially the point is at (0, 0) with zero velocity, and its motion is periodic. Find
the curve, in the family of curves of class C2(a, b) with fixed length � > a, for
which the period is an extremal.

Solution
Without the constraint on length, the curve would be a cycloid. The period is
twice the travelling time along the curve between the points (0,0) and (a, 0).
Conservation of energy implies that ṡ =

√
2gf(x). Since ds =

√
1 + f ′2 dx we

have dt = ((1 + f ′2)/2gf)1/2 dx. The period is then

T (f) = 2

a∫
0

(
1 + f ′2

2gf

)1/2

dx.

We need to find the extremals of the functional T (f)−λ
∫ a

0 (1+f ′2)1/2 dx, where
λ is the Lagrange multiplier. The corresponding Euler equation has first integral
given by the Legendre transform of F (f, f ′) = (1 + f ′2)1/2

(√
(2/gf)− λ

)
, i.e.

f ′ ∂F
∂f ′ − F =

(
λ−

√
2
gf

)
1√

1 + f ′2
.

Introducing the integration constant c we can write

f ′2 = c2
(
λ−

√
2
gf

)2
− 1,

and separate variables:

f(x)∫
0

df

[
c2
(
λ−

√
2
gf

)2
− 1

]−1/2
= x, 0 < x <

a

2
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(the branch a/2 < x < a is symmetric, and equal values of f correspond to
opposite values of f ′). Set λ − √

2/gf = ζ, i.e. gf/2 = (λ − ζ)−2 and df =
−4/g(λ− ζ)−3 dζ. This puts the indefinite integral in the form

−4
g

∫
(λ− ζ)−3(c2ζ2 − 1)−1/2 dζ.

The transformation (c2ζ2 − 1)1/2 = (cζ − 1)t, i.e.

ζ = −1
c

1 + t2

1− t2
, dζ = −4

c

t dt
(1− t2)2

carries the integral to a rational form

− 8
cg

∫ [
λ+

1
c

1 + t2

1− t2

]−3
dt

1− t2
.

For f ↓ 0 we have ζ → −∞ and t → 1. The upper extremum can be deduced
from t = ((cζ + 1)/(cζ − 1))1/2 with ζ expressed through f(x). We then obtain
an implicit expression for f(x), where the constant c must be determined through

the condition f ′(a/2) = 0, i.e. c2
(
λ−√

2/gf(a/2)
)2

= 1. As usual the multiplier
λ is found by imposing the length constraint.

Problem 4
Prove that if for a functional

ϕ(q) =

t1∫
t0

F (q(t), q̇(t), t) dt, with q ∈ C2([t0, t1],R), q(t0) = q0, q(t1) = q1,

the Euler equation (9.12) becomes an identity, then ϕ does not depend on the
integration path q but only on (t0, q0) and (t1, q1).

Solution
Writing explicitly equation (9.12) we find

∂2F

∂q̇2
q̈ +

∂2F

∂q∂q̇
q̇ +

∂2F

∂q̇∂t
− ∂F

∂q
= 0.

If this equation is an identity, i.e. it is satisfied by any q, necessarily the coefficient
of q̈ must be identically zero, because there is no other way to eliminate q̈. Hence
F must be of the form F = a(t, q)q̇+b(t, q). Substituting in the equation, we find
∂a/∂t = ∂b/∂q, and hence the 1-form F dt is exact: F dt = a(t, q) dq+ b(t, q) dt =
df(t, q). From this it follows that

t1∫
t0

F (q, q̇, t) dt = f(t1, q1)− f(t0, q0).
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Problem 5
Consider the variational problem for the functional (9.9) in the function class
(9.8). Find the necessary and sufficient condition for its solutions to also be
solutions of the variational problem for the problem

ψ(q) =

t1∫
t0

G[F (q, q̇, t)] dt

with G(F ) ∈ C2, G′′ =/ 0.

Solution
Setting F(q, q̇, t) = G[F (q, q̇, t)], we immediately find

d
dt

∇q̇F − ∇qF = ∇q̇F
d2G
dF 2

dF
dt

.

Hence the required condition is that the function F (q, q̇, t) is a first integral of
the Euler equation for the functional (9.9).
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10 ANALYTICAL MECHANICS: CANONICAL
FORMALISM

10.1 Symplectic structure of the Hamiltonian phase space

Consider the real 2l × 2l matrix

I =
(
0 −1
1 0

)
(10.1)

(with 1 and 0 we henceforth denote the identity and the null matrix, with
the obvious dimensions, e.g. l × l in (10.1)). Note that I is orthogonal and
skew-symmetric, i.e.

I−1 = IT = −I (10.2)

and that I2 = −1. As observed in Chapter 8, setting x = (p,q), the Hamilton
equations can be written in the form

ẋ = I∇xH(x, t). (10.3)

Example 10.1
Let S be a real symmetric constant 2l× 2l matrix. A linear Hamiltonian system
with constant coefficients is a system of 2l ordinary differential equations of the
form (10.3), where

H(x) =
1
2
xTSx. (10.4)

The Hamiltonian is then a quadratic form in x and (10.3) takes the form

ẋ = J Sx.

The solution of this system of differential equations with the initial condition
x(0) = X is given by

x(t) = etBX, (10.5)

where we set

B = J S.

The matrices with this structure deserve special attention. �
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Definition 10.1 A real 2l×2l matrix B is called Hamiltonian (or infinitesimally
symplectic) if

BT I+ IB = 0. (10.6)
�

Theorem 10.1 The following conditions are equivalent:

(1) the matrix B is Hamiltonian;
(2) B = IS, with S a symmetric matrix;
(3) IB is a symmetric matrix.

In addition, if B and C are two Hamiltonian matrices, BT , βB (with β ∈ R),
B ± C and [B,C] = BC − CB are Hamiltonian matrices.

Proof
From the definition of a Hamiltonian matrix it follows that

IB = −BT I = (IB)T ,

and hence (1) and (3) are equivalent. The equivalence of (2) and (3) is immediate,
as S = −IB.
The first three statements of the second part of the theorem are obvious (for

the first, note that BT = −SI = IS′, with S′ = ISI symmetric). Setting B = IS
and C = IR (with S and R symmetric matrices) we have

[B,C] = I(SIR −RIS)

and

(SIR −RIS)T = −RIS + SIR.

It follows that the matrix [B,C] is Hamiltonian. �

Remark 10.1
Writing B as a 2l × 2l block matrix

B =
(
a b
c d

)
,

where a, b, c, d are l × l matrices, (10.6) becomes

BT I+ IB =
(−c+ cT −aT − d
a+ dT b− bT

)
,

and hence B is Hamiltonian if and only if b and c are symmetric matrices and
aT + d = 0. If l = 1, B is Hamiltonian if and only if it has null trace. �

Remark 10.2
From Theorem 10.1 it follows that the Hamiltonian matrices form a group (with
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respect to matrix sum) called sp(l,R). If we identify the vector space of real 2l×2l
matrices with R4l2, the Hamiltonian matrices form a linear subspace, of dimension
l(2l + 1) (indeed, from what was previously discussed we may choose l(l + 1)/2
elements of the matrices b and c and, for example, l2 elements of the matrix a).
In addition, since the Lie product (or commutator) [ , ] preserves the group of
Hamiltonian matrices, sp(l,R) has a Lie algebra structure (see Arnol’d 1978a). �

Definition 10.2 A real 2l × 2l matrix A is called symplectic if

AT IA = I. (10.7)
�

Theorem 10.2 Symplectic 2l × 2l matrices form a group under matrix mul-
tiplication, denoted by Sp(l,R). The transpose of a symplectic matrix is
symplectic.

Proof
Evidently the 2l× 2l identity matrix is symplectic, and if A satisfies (10.7) then
it is necessarily non-singular, since from (10.7) it follows that

(det(A))2 = 1. (10.8)

In addition, it can be easily seen that

A−1 = −IAT I, (10.9)

so that

(A−1)T IA−1 = (AT )−1I(−IAT I) = (AT )−1AT I = I,

i.e. A−1 is symplectic. If C is another symplectic matrix, we immediately
have that

(AC)T IAC = CTAT IAC = CT IC = I.

In addition, AT = −IA−1I, from which it follows that

AIAT = AA−1I = I. �

Example 10.2
The group of symplectic 2× 2 matrices with real coefficients, Sp(1,R), coincides
with the group SL(2,R) of matrices with determinant 1. Indeed, if

A =
(
α β
γ δ

)
,

the symplecticity condition becomes

AT IA =
(

0 −αδ + βγ
−βγ + αδ 0

)
= I.
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Hence A is symplectic if and only if det(A) = αδ − βγ = 1. It follows that
every symplectic 2×2 matrix defines a linear transformation preserving area and
orientation. The orthogonal unit matrices (with determinant equal to 1) are a
subgroup of SL(2,R), and hence also of Sp(1,R). �

Remark 10.3
Let A be a symplectic 2l × 2l matrix. We write it as an l × l block matrix:

A =
(
a b
c d

)
. (10.10)

The condition that the matrix is symplectic then becomes

AT IA =
(−aT c+ cTa −aT d+ cT b
−bT c+ dTa −bT d+ dT b

)
=
(
0 −1
1 0

)
, (10.11)

and hence A is symplectic only if aT c and bT d are l × l symmetric matrices
and aT d − cT b = 1. The symplecticity condition is therefore more restrictive in
dimension l > 1 than in dimension l = 1, when it becomes simply det(A) = 1. It
is not difficult to prove (see Problem 1) that symplectic matrices have determinant
equal to 1 for every l (we have already seen that det(A) = ±1, see (10.8)). �

Remark 10.4
Symplectic matrices have a particularly simple inverse: from (10.9) and (10.10)
it follows immediately that

A−1 =
(

dT −bT

−cT aT

)
. (10.12)

�

Remark 10.5
If we identify the vector space of the 2l×2l matrices with R4l2 , the group Sp(l,R)
defines a regular submanifold of R4l2 of dimension l(2l+1) (this can be verified
immediately in view of the conditions expressed in Remark 10.3; indeed, starting
from the dimension of the ambient space, 4l2, we subtract 2(l(l − 1))/2, since
the matrices aT c and bT d must be symmetric, and l2 since aT d− cT b = 1.) �

Proposition 10.1 The tangent space to Sp(l,R) at 1 is the space of Hamiltonian
matrices:

T1Sp(l,R) = sp(l,R). (10.13)
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Proof
Let A(t) be a curve in Sp(l,R) passing through 1 when t = 0, and hence such
that

A(t)T IA(t) = I (10.14)

for every t and A(0) = 1.
By differentiating (10.14) with respect to t we find

ȦT IA+AT IȦ = 0,

from which, setting B = Ȧ(0) ∈ T1Sp(l,R)

BT I+ IB = 0,

and hence B ∈ sp(l,R). �

Conversely, to every Hamiltonian matrix there corresponds a curve in Sp(l,R),
as shown in the following.

Proposition 10.2 Let B be a Hamiltonian matrix. The matrix A(t) = etB is
symplectic for every t ∈ R.

Proof
We must show that A(t) satisfies (10.7) for every t, i.e.

(etB)T IetB = I.

It follows immediately from the definition

etB =
∞∑
n=0

tn

n!
Bn

that (etB)T = etB
T

, and (etB)−1 = e−tB .
Hence the condition for the matrix to be symplectic becomes

etB
T

I = Ie−tB .

But

etB
T

I =
∞∑
n=0

tn

n!
(
BT

)n−1
BT I =

∞∑
n=0

tn

n!
(
BT

)n−1
(−IB).

Iterating, we find

etB
T

I = I

∞∑
n=0

tn

n!
(−1)nBn = Ie−tB . �

Definition 10.3 The symplectic product on a real vector space V of dimension
2l is a skew-symmetric, non-degenerate bilinear form ω : V × V → R. The
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space V endowed with a symplectic product has a symplectic structure and V is
a symplectic space. �

We recall that a bilinear skew-symmetric form is non-degenerate if and only
if ω(v1, v2) = 0 for every v2 ∈ V implies v1 = 0. We note also that only
vector spaces of even dimension admit a symplectic structure. Indeed, all bilinear
skew-symmetric forms are necessarily degenerate in a space of odd dimension.
Consider the canonical basis e1, . . . , e2l in R2l. The symplectic product ω has

a matrix representation W obtained by setting

Wij = ω(ei, ej).

Evidently the representative matrix W is skew-symmetric and the non-degeneracy
condition is equivalent to det(W ) =/ 0. Moreover, for every x, y ∈ R2l We have

ω(x,y) =
2l∑

i,j=1
Wijxiyj = xTWy. (10.15)

By choosing the matrix W = I we obtain the so-called standard symplectic product
(henceforth simply referred to as symplectic product unless there is a possibility
of confusion) and correspondingly the standard symplectic structure.

Remark 10.6
The standard symplectic product has an interesting geometric characterisation.
Given two vectors x, y we have

xT Iy = −x1yl+1 − . . .− xly2l + xl+1y1 + . . .+ x2lyl

= (xl+1y1 − x1yl+1) + . . .+ (x2lyl − xly2l),

corresponding to the sum of the (oriented) areas of the projection of the par-
allelogram with sides x, y on the l planes (x1, xl+1), . . . , (xl, x2l). Hence, if p
is the vector constructed with the first l components of x, and q is the one
constructed with the remaining components, we have x = (p,q), and analogously
if y = (p′,q′), we have

ω(x,y) = xT Iy = (q1p′
1 − p1q

′
1) + . . .+ (qlp′

l − plq
′
l). (10.16)

Note that in R2 the symplectic product of two vectors coincides with the unique
non-zero scalar component of their vector product. �

Definition 10.4 Suppose we are given a symplectic product in R2l. A symplectic
basis is a basis of R2l with respect to which the symplectic product takes the
standard form (10.16), and hence it has as representative matrix the matrix I. �

Given a symplectic product ω, a symplectic basis e1, . . . , e2l =
ep1 , . . . , epl , eq1 , . . . , eql satisfies

ω(eqi , eqj ) = ω(epi , epj ) = 0, (10.17)
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for every i, j = 1, . . . , l and

ω(eqi , epj ) = δij . (10.18)

Remark 10.7
It follows that the choice of standard symplectic structure for R2l coincides
with the choice of the canonical basis of R2l as symplectic basis. �

Using a technique similar to the Gram–Schmidt orthonormalisation for the
basis in an inner product space, it is not difficult to prove the following theorem.

Theorem 10.3 In any space endowed with a symplectic product it is possible to
construct a symplectic basis. �

As for inner product spaces, it is possible to choose as the first vector of the
basis any non-zero vector.
Pursuing the analogy between an inner and a symplectic product, we can

define a class of transformations that preserve the symplectic product, taking as
a model the orthogonal transformations, which preserve the inner product.

Definition 10.5 Given two symplectic spaces V1, ω1 and V2, ω2, a linear map
S : V1 → V2 is symplectic if ω2(S(v), S(w)) = ω1(v,w) for every v, w ∈ V1. If
moreover S is an isomorphism, we say that S is a symplectic isomorphism. �

Remark 10.8
From Theorem 10.3 it follows, as an obvious corollary, that all symplectic spaces
of the same dimension are symplectically isomorphic. A ‘canonical’ isomorphism
can be obtained by choosing a symplectic basis in each space, and setting a
correspondence between the basis elements with the same index. In particular,
all symplectic spaces of dimension 2l are symplectically isomorphic to R2l with
its standard structure. �

Theorem 10.4 Let R2l be considered with its standard structure. A linear map
S : R2l → R2l is symplectic if and only if its representative matrix is symplectic.

Proof
This is a simple check: given x,y ∈ R2l we have

ω(Sx, Sy) = (Sx)T ISy = xTST ISy,

which is equal to

ω(x,y) = xT Iy

for every x, y if and only if

ST IS = I. �

We conclude this section with the definition and characterisation of Hamiltonian
vector fields (or symplectic gradient vector fields). These are useful in view of
the fact that the Hamilton equations can be written in the form (10.3).
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Definition 10.6 A vector field X(x, t) in R2l is Hamiltonian if there exists a
function f(x, t) in C2 such that

X(x, t) = I∇xf(x, t). (10.19)

In this case f is called the Hamiltonian corresponding to the field X and the
field X is called the symplectic gradient of f . If X is Hamiltonian, the system of
differential equations

ẋ = X(x, t) (10.20)

is called Hamiltonian. �

The system of Example 10.1 is Hamiltonian.

Remark 10.9
A Hamiltonian vector field determines the corresponding Hamiltonian f up to
an arbitrary function h(t) depending only on time t. This arbitrariness can
be removed by requiring that the Hamiltonian associated with the field X = 0
be zero. �

Remark 10.10
In R2 the vector w = Iv can be obtained by rotating v by π/2 in the positive
direction. It is easy to check that, in R2l, Iv is normal to v. It follows that
in a Hamiltonian field, for every fixed t, the Hamiltonian is constant along the
lines of the field (Fig. 10.1). If the field is independent of time the Hamilto-
nian is constant along its integral curves, i.e. along the Hamiltonian flow (recall
equation (8.26)). �

It is essential to characterise Hamiltonian vector fields. This is our next aim.

Theorem 10.5 A necessary and sufficient condition for a vector field X(x, t) in
R2l to be Hamiltonian is that the Jacobian matrix ∇xX(x, t) is Hamiltonian for
every (x, t).

Proof
The condition is necessary. Indeed, if f is the Hamiltonian corresponding to X
we have that

∂Xi

∂xj
=

l∑
k=1

Iik
∂2f

∂xk∂xj
,

and hence the matrix ∇xX can be written as the product of the matrix I and
the Hessian matrix of f , which is evidently symmetric.
The condition is also sufficient: if ∇xX(x, t) is Hamiltonian for every (x, t),

setting Y(x, t) = IX(x, t), by (3) of Theorem 10.1, we have that

∂Yi

∂xj
=

∂Yj

∂xi
.
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I=x f

=x f

f(x, t) = constant
t = constant

Fig. 10.1

Consequently, there exists a function f(x, t) such that

Y(x, t) = −∇xf(x, t).

From this it follows that

X(x, t) = −IY(x, t) = I∇xf(x, t). �

Example 10.3
Consider the system of differential equations

ṗ = −pα+1qδ, q̇ = pαqβ ,

and compute for which values of the real constants α, β and δ this is a
Hamiltonian system. Find the corresponding Hamiltonian H(q, p).
Consider the second equation; if there exists a Hamiltonian H(p, q) such that

q̇ = ∂H/∂p, by integrating with respect to p we find:

(a) H = qβ log p+ f(q) if α = −1;
(b) H = pα+1qβ/(α+ 1) + g(q) if α =/ −1.
By substituting in the equation ṗ = −∂H/∂q and comparing with the equation

given for p, we find that, if α = −1, necessarily β = 0 and

(a′) H = log p+ {qδ+1/(δ + 1) + c} if δ =/ −1, where c is an arbitrary constant;
(a′′) H = log p+ log q + c if δ = −1, where c is an arbitrary constant.
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If on the other hand α =/ −1 we find H = {(qp)α+1/(α+ 1)} + c, where as
usual c is an arbitrary integration constant. �

10.2 Canonical and completely canonical transformations

A method which can sometimes be applied to integrate differential equations is
to use an appropriate change of variables which makes it possible to write the
equation in a form such that the solution (or some property of the solution) can
be immediately obtained. The study of particular classes of coordinate trans-
formations in the phase space for the Hamilton equations is of great importance
and will be carried out in this and the next sections. In Chapters 11 and 12 we
will show how, through these transformations, it is possible to solve (exactly or
approximately) the Hamilton equations for a large class of systems.
Given a system of ordinary differential equations

ẋ = v(x, t), (10.21)

where x ∈ Rn (or a differentiable manifold of dimension n), consider an invertible
coordinate transformation (possibly depending on time t)

x = x(y, t), (10.22)

with inverse

y = y(x, t). (10.23)

If the function y(x, t) has continuous first derivatives, the system (10.21) is
transformed into

ẏ = w(y, t), (10.24)

where

w(y, t) = Jv +
∂y
∂t

,

J is the Jacobian matrix of the transformation, Jik = ∂yi/∂xk, and the right-
hand side is expressed in terms of the variables (y, t) using (10.22). Likewise
we consider the system of canonical equations with Hamiltonian H(x, t), where
x = (p,q) ∈ R2l,

ẋ = I∇xH(x, t), (10.25)

and make the coordinate transformation

x = x(X, t), (10.26)
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with X = (P,Q) ∈ R2l, subject to the invertibility condition

X = X(x, t), (10.27)

and to the condition of continuity of the first derivatives. Then the system of
canonical equations (10.25) is transformed into a new system of 2l differential
equations

Ẋ =W(X, t), (10.28)

where

W(X, t) = JI∇xH +
∂X
∂t

, (10.29)

J is the Jacobian matrix of the transformation, with components Jik = ∂Xi/∂xk,
and the right-hand side is expressed in terms of the variables X = (P,Q). In
general, the system (10.28) does not have the canonical structure (10.25), as it
is not necessarily true that a Hamiltonian K(X, t) exists such that

W = I∇XK. (10.30)

Example 10.4
We go back to Example 10.1 with H(x) = 1

2x
TSx, where S is a constant symmet-

ric matrix. Let us consider how the Hamilton equation ẋ = ISx is transformed
when passing to the new variables X = Ax, with A a constant invertible matrix.
We immediately find that Ẋ = AISA−1X and in order to preserve the canonical
structure we must have AISA−1 = IC, with C symmetric. It is important to
note that this must happen for every symmetric matrix S, and hence this is a
genuine restriction on the class to which A must belong. We can rewrite this
condition as AT IAIS = −ATCA. It follows that the existence of a symmetric
matrix C is equivalent to the symmetry condition

AT IAIS = SIAT IA, (10.31)

i.e. ΛT IS + SIΛ = 0 with Λ = AT IA = −ΛT , for every symmetric matrix
S. If A is symplectic then Λ = I and the condition is satisfied. The same is
true if Λ = aI (with a =/ 0 so that A is invertible). These conditions are also

necessary. Indeed, using the l × l block decomposition we have Λ =
(

λ µ
−µT ν

)
and S =

(
α β
βT γ

)
, with the conditions λT = −λ, νT = −ν, αT = α, γT = γ.

The equation Λ IS = SIΛ leads to the system

−λβT + µα = αµT + βλ,

−λγ + µβ = −αν + βµ,

µTβT + να = βTµT + γλ,

µT γ + νβ = −βT ν + γν.
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Considering the particular case α = γ = 0 we find that µ must commute with
every l× l matrix, and therefore µ = a1. Choosing α = β = 0 we find λ = 0. From
β = γ = 0 it follows that ν = 0. Hence Λ = aI, and in addition, from AT IA = aI
it follows that IAI = −a(A−1)T . We finally find that C = a(A−1)TSA−1 and
the new Hamiltonian is K(X) = 1

2X
TCX. If A is symplectic it holds that

K(X) = H(x), and if a =/ 1 we find K(X) = aH(x). �

The necessity to preserve the canonical structure of the Hamilton equations,
which has very many important consequences (see the following sections and
Chapter 11), justifies the following definition.

Definition 10.7 A coordinate transformation X = X(x, t) which is differentiable
and invertible (for every fixed t) preserves the canonical structure of Hamilton
equations if for any Hamiltonian H(x, t) there exists a corresponding function
K(X, t), the new Hamiltonian, such that the system of transformed equations
(10.28) coincides with the system of Hamilton equations (10.30) for K:

Ṗi = − ∂K

∂Qi
(Q,P, t), i = 1, . . . , l,

Q̇i =
∂K

∂Pi
(Q,P, t), i = 1, . . . , l.

(10.32)

�

Remark 10.11
The new Hamiltonian K(Q,P, t) is not necessarily obtained by substituting
into H(q,p, t) the transformation (10.26). This is illustrated in the following
examples. �

Example 10.5
The translations of R2l preserve the canonical structure of the Hamilton
equations. The rotations X = Rx, where R is an orthogonal matrix RT = R−1,
preserve the structure if and only if R is a symplectic matrix (see Theorem 10.6
below). This is always true for l = 1, if R preserves the orientation of the plane
(see Example 10.2), and hence if det(R) = 1. �

Example 10.6
The transformations

Pi = νipi, i = 1, . . . , l,

Qi = µiqi, i = 1, . . . , l,
(10.33)

where µ1, . . . , µl and ν1, . . . , νl are 2l real arbitrary non-zero constants satisfying
the condition µiνi = λ for every i = 1, . . . , l, are called scale transformations and
preserve the canonical structure of the Hamilton equations. Indeed, it can be
verified that the new Hamiltonian K is related to the old one H through

K(P,Q, t) = λH(ν−1
1 P1, . . . , ν

−1
l Pl, µ

−1
1 Q1, . . . , µ

−1
l Ql, t).
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Note that K is the transform of H only in the case that µiνi = 1, i = 1, . . . , l,
and hence if λ = 1 (in this case the Jacobian matrix of the transformation is
symplectic). When λ =/ 1 we say that the scale transformation is not natural.
Note that the Jacobian determinant of (10.33) is λl, and hence the transformation
(10.33) preserves the measure if and only if λ = 1. The scale transformations are
commonly used to change to dimensionless coordinates. �

Example 10.7
Let a(t) be a differentiable non-zero function. The transformation

Q = a(t)q, P =
1

a(t)
p

preserves the canonical structure of the Hamilton equations. Indeed, the Hamilton
equations become

Ṗ = − 1
a(t)

∇qH − ȧ(t)
a2(t)

p,

Q̇ = a(t)∇pH + ȧ(t)q,

corresponding to the Hamilton equations for the function

K(P,Q, t) = H

(
a(t)P,

Q
a(t)

, t

)
+

ȧ(t)
a(t)

P ·Q. �

Example 10.8
The transformation exchanging (up to sign) the coordinates qi with the corres-
ponding kinetic moments pi preserves the canonical structure of the Hamilton
equations

P = −q, Q = p. (10.34)

The new Hamiltonian is related to the old Hamiltonian through

K(P,Q, t) = H(Q,−P, t).
This transformation shows how, within the Hamiltonian formalism, there is no
essential difference between the role of the coordinates q and of the conjugate
momenta p. �

Example 10.9
The point transformations preserve the canonical structure of the Hamilton
equations. Indeed, let

Q = Q(q) (10.35)

be an invertible Lagrangian coordinate transformation. The generalised velocities
are transformed linearly:

Q̇i =
∂Qi

∂qj
(q)q̇j = Jij(q)q̇j ,
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where i = 1, . . . , l and we have adopted the convention of summation over repeated
indices. Here J(q) = (Jij(q)) is the Jacobian matrix of the transformation (10.35).
If L(q, q̇, t) is the Lagrangian of the system, we denote by

L̂(Q, Q̇, t) = L(q(Q), J−1(q(Q))Q̇, t)

the Lagrangian expressed through the new coordinates, and by P the corres-
ponding kinetic momentum, whose components are given by

Pi =
∂L̂

∂Q̇i

= J−1
ji

∂L

∂q̇j
= J−1

ji pj ,

for i = 1, . . . , l. The transformation (10.35) induces a transformation of the
conjugate kinetic momenta:

P = (JT )−1p, (10.36)

and Hamilton’s equations associated with the Hamiltonian H(p,q, t) become

Ṗi = −J−1
ji

∂H

∂qj
+ pj

∂J−1
ji

∂Qk
Jkn

∂H

∂pn
,

Q̇i = Jij
∂H

∂pj
,

(10.37)

where i = 1, . . . , l.
Point transformations necessarily preserve the canonical structure. For the

Hamiltonian systems originating from a Lagrangian, the proof is easy. Indeed,
starting from the new Lagrangian L̂(Q, Q̇, t) we can construct the Legendre
transform Ĥ(P,Q, t) to take the role of the Hamiltonian in the equations thus
obtained. It is easy to check that Ĥ is the transform of H:

Ĥ(P,Q, t) = H(JT (q(Q))P,q(Q), t).

Indeed, to obtain the Legendre transform (8.19) of L̂(Q, Q̇, t) we must compute

Ĥ(P,Q, t) = PT Q̇− L̂(Q, Q̇, t),

and reintroducing the variables (p,q) we note that L̂ goes to L, while PT Q̇ =
pTJ−1J q̇ = pT q̇. It follows that Ĥ(P,Q, t) = H(p,q, t). We leave it to the
reader to verify that (10.37) are the Hamilton equations associated with Ĥ. �

Definition 10.8 A differentiable and invertible coordinate transformation X =
X(x, t) (for every fixed t) is called canonical if the Jacobian matrix

J(x, t) = ∇xX(x, t)
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is symplectic for every choice of (x, t) in the domain of definition of the transform-
ation. A time-independent canonical transformation X = X(x) is called completely
canonical. �

We systematically assume in what follows that the matrix J is sufficiently
regular (at least C1). All arguments are local (i.e. are valid in an open connected
subset of R2l).

Example 10.10
It can immediately be verified that the transformation considered in Example 10.7
is canonical, and those considered in Examples 10.22, 10.25 and 10.26 are com-
pletely canonical. The scale transformations (Example 10.5) are not canonical,
except when λ = 1. �

Remark 10.12
Recall that symplectic matrices form a group under matrix multiplication. Then
we immediately deduce that the canonical transformations form a group. The com-
pletely canonical transformations form a subgroup, usually denoted by SDiff(R2l).
We also note that det J = 1, and hence canonical transformations preserve the
Lebesgue measure in phase space. �

Theorem 10.6 The canonical transformations preserve the canonical structure
of the Hamilton equations. �

Before proving Theorem 10.6 it is convenient to digress and introduce a short
lemma frequently used in the remainder of this chapter. We define first of all
a class of 2l × 2l matrices that generalises the class of symplectic matrices, by
replacing the equation JT IJ = I by

JT IJ = aI, (10.38)

where a is a constant different from zero. It is immediately verified that these
matrices have as inverse J−1 = −(1/a)IJT I. This inverse belongs to the analogous
class with a−1 instead of a. Therefore JT = −aIJ−1I and we can verify that
JT belongs to the same class of J , i.e. JIJT = aI. Obviously the class (10.38)
includes as a special case (for a = 1) the symplectic matrices. An important
property of the time-dependent matrices that satisfy the property (10.38) (with
a constant) is the following.

Lemma 10.1 If J(X, t) is a matrix in the class (10.38) then the matrix B =
(∂J/∂t)J−1 is Hamiltonian.

Proof
Recalling Theorem 10.1, it is sufficient to prove that the matrix

A = I
∂J

∂t
J−1 (10.39)
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is symmetric. Differentiating with respect to t the two sides of (10.38) we obtain

∂JT

∂t
IJ + JT I

∂J

∂t
= 0. (10.40)

Multiplying this on the left by (J−1)T and on the right by J−1 then yields

AT = −(J−1)T
∂JT

∂t
I = I

∂J

∂t
J−1 = A. �

We now turn to Theorem 10.6.

Proof of Theorem 10.6
Let X = X(x, t) be a canonical transformation.
By differentiating X with respect to t and using ẋ = I∇xH(x, t) we find

Ẋ =
∂X
∂t

+ JI∇xH. (10.41)

Setting

Ĥ(X, t) = H(x(X, t), t), (10.42)

we have that

∇xH = JT∇XĤ, (10.43)

from which it follows that equation (10.41) can be written as

Ẋ =
∂X
∂t

+ JIJT∇XĤ. (10.44)

But J is by hypothesis symplectic, and therefore we arrive at the equation

Ẋ =
∂X
∂t

+ I∇XĤ, (10.45)

which stresses the fact that the field I∇XĤ is Hamiltonian.
To complete the proof we must show that ∂X/∂t is also a Hamiltonian

vector field. By Theorem 10.5, a necessary and sufficient condition is that
B = ∇X((∂X(x(X, t), t))/∂t) is Hamiltonian.
We see immediately that

Bij =
∂

∂Xj

∂Xi

∂t
=

2l∑
n=1

∂2Xi

∂t∂xn

∂xn
∂Xj

,

and hence

B =
∂J

∂t
J−1. (10.46)

Now Lemma 10.1 ends the proof. �
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Remark 10.13
The new Hamiltonian K corresponding to the old Hamiltonian H is given by

K = Ĥ +K0, (10.47)

where Ĥ is the old Hamiltonian expressed through the new variables (see
(10.42)) and K0 is the Hamiltonian of the Hamiltonian vector field ∂X/∂t,
and hence satisfying

∂X
∂t

= I∇XK0. (10.48)

It follows that K0 depends only on the transformation X(x, t) and it is uniquely
determined by it, up to an arbitrary function h(t) which we always assume to be
identically zero (see Remark 10.9). Here K0 can be identified with the Hamiltonian
corresponding to H ≡ 0. If the transformation is completely canonical we have
that K0 ≡ 0, and the new Hamiltonian is simply obtained by expressing the old
Hamiltonian in terms of the new coordinates (consistent with the interpretation
of the Hamiltonian as the total mechanical energy of the system). �

We then have the following.

Corollary 10.1 For a completely canonical transformation the new Hamilto-
nian is simply the transformation of the original Hamiltonian. A time-dependent
canonical transformation X = X(x, t) is necessarily a Hamiltonian flow, governed
by the equation ∂X/∂t = I∇XK0(X, t). �

We shall see that to every Hamiltonian flow X = Stx we can associate a
canonical transformation. Hence we can identify the class of time-dependent
canonical transformations with the class of Hamiltonian flows.

Example 10.11
Consider the time-dependent transformation

p = P − at, q = Q+ Pt− 1
2
at2, (10.49)

where a is a fixed constant. We can immediately check that the transformation
is canonical, with inverse given by

P = p+ at, Q = q − pt− 1
2
at2.

The Hamiltonian K0 is the solution of (see (10.48))

∂P

∂t
= a = −∂K0

∂Q
,

∂Q

∂t
= −p− at = −P =

∂K0

∂P
,

from which it follows that

K0(P,Q) = −P 2

2
− aQ, (10.50)
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and the new Hamiltonian K(P,Q, t) corresponding to H(p, q, t) is:

K(P,Q, t) = H

(
P − at,Q+ Pt− 1

2
at2, t

)
+K0(P,Q) = Ĥ(P,Q, t)− P 2

2
− aQ.

�

The next theorem includes Theorem 10.6, and characterises the whole class of
transformations which preserve the canonical structure of the Hamilton equations.
Moreover, it characterises how these transformations act on the Hamiltonian.

Theorem 10.7 A necessary and sufficient condition for a differentiable and
invertible (for every fixed t) coordinate transformation X = X(x, t) to preserve
the canonical structure of the Hamilton equations is that its Jacobian matrix
belongs to the class (10.38), i.e.

JIJT = JT IJ = aI (10.51)

for some constant a different from zero. The transformation acts on the
Hamiltonian as follows:

K(X, t) = aĤ(X, t) +K0(X, t), (10.52)

where Ĥ(X, t) = H(x(X, t), t) is the transform of the original Hamiltonian and
K0 (corresponding to H = 0) is the Hamiltonian of the vector field ∂X/∂t. The
transformation is canonical if and only if a = 1. �

Corollary 10.2 The canonical transformations are the only ones leading to a
new Hamiltonian of the form K = Ĥ + K0, and the completely canonical ones
are the only ones for which K = Ĥ. �

In addition, note that when a =/ 1 the transformation can be made into a
canonical transformation by composing it with an appropriate scale change.
The proof of Theorem 10.7 makes use of a lemma. We present the proof of

this lemma as given in Benettin et al. (1991).

Lemma 10.2 Let A(x, t) be a regular function of (x, t) ∈ R2l+1 with values in
the space of real non-singular 2l×2l matrices. If for any regular function H(x, t),
the vector field A∇xH is irrotational, then there exists a function a : R → R
such that A = a(t)1.

Proof
If A∇xH is irrotational, for every i, j = 1, . . . , 2l, we have that

∂

∂xi
(A∇xH)j =

∂

∂xj
(A∇xH)i. (10.53)

Let H = xi. Then

∂

∂xi
Aji =

∂

∂xj
Aii (10.54)
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(note that we are not using the convention of summation over repeated indices!),
while if we let H = x2i then

∂

∂xi
(Ajixi) =

∂

∂xj
(Aiixi). (10.55)

It follows using (10.54) that

Aji = Aiiδij ,

i.e. the matrix A is diagonal. From (10.54) it also follows that

∂Aii

∂xj
= 0, if j =/ i,

and therefore A has the form

Aij(x, t) = ai(xi, t)δij ,

for suitable functions ai. Using (10.53) we find that

aj
∂2H

∂xi∂xj
= ai

∂2H

∂xi∂xj
, for j =/ i,

from which it follows that aj = ai = a(t). �

Proof of Theorem 10.7
Suppose that the transformation preserves the canonical structure, so that

Ẋ = I∇XK(X, t). (10.56)

Comparing (10.56) with the general form (10.44) of the transformed equation

Ẋ =
∂X
∂t

+ JIJT∇XĤ (10.57)

we deduce

∂X
∂t

= I∇XK − JIJT∇XĤ. (10.58)

We also know (by hypothesis) that to H = 0 there corresponds a Hamiltonian
K0, for which (10.58) becomes

∂X
∂t

= I∇XK0. (10.59)

By substituting (10.59) into (10.58) and multiplying by I we find

∇X(K −K0) = −IJIJT∇XĤ. (10.60)
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Hence the matrix −IJIJT satisfies the assumptions of Lemma 10.2 (because Ĥ
is arbitrary). It follows that there exists a function a(t) such that

−IJIJT = a(t)1. (10.61)

Equation (10.61) shows clearly that J satisfies equation (10.51), with a possibly
depending on time. To prove that a is constant we note that, since ∂X/∂t is a
Hamiltonian vector field (see (10.59)), its Jacobian matrix

B = ∇X
∂X
∂t

=
∂J

∂t
J−1

is Hamiltonian (see Theorem 10.5 and equation (10.46)). Therefore we can write
(Definition 10.1) (

∂J

∂t
J−1

)T

I+ I
∂J

∂t
J−1 = 0. (10.62)

This is equivalent to the statement that (∂/∂t)(JT IJ) = 0, yielding a = constant.
Now from (10.57) and (10.59), we can deduce the expression (10.52) for the new
Hamiltonian K.
Conversely, suppose that the matrix J satisfies the condition (10.51). Then

(Lemma 10.1) (∂J/∂t)J−1 = ∇X∂X/∂t is a Hamiltonian matrix. Therefore, the
field ∂X/∂t is Hamiltonian, and we can conclude that equation (10.57) takes the
form

Ẋ = I∇X(K0 + aĤ).

It follows that the transformation preserves the canonical structure, and the new
Hamiltonian K is given by (10.52). �

For the case l = 1, Theorem 10.7 has the following simple interpretation.

Corollary 10.3 For l = 1 the condition of Theorem 10.7 reduces to

det J = constant =/ 0. (10.63)

Proof
It is enough to note that for l = 1 we have JT IJ = Idet J . �

Example 10.12
The transformation

p = α
√
P cos γQ, q = β

√
P sin γQ, αβγ =/ 0,

with α, β, γ constants, satisfies condition (10.63), since det J = 1
2αβγ. It is

(completely) canonical if and only if 1
2αβγ = 1. �
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It is useful to close this section with a remark on the transformations which are
inverses of those preserving the canonical structure. These inverse transformations
clearly have the same property. If X = X(x, t) is a transformation in the class
(10.51), its inverse x = x(X, t) has Jacobian matrix J−1 = −(1/a)IJT I, such that
(J−1)T IJ−1 = (1/a)I (as we have already remarked). The inverse transformation
reverts the Hamiltonian (10.52) to the original Hamiltonian H. For the case of
the inverse transformation, the same relation (10.52) is then applied as follows:

H(x, t) = K ′
0(x, t) +

1
a

[
K̂0(x, t) + aH(x, t)

]
, (10.64)

where K̂0(x, t) denotes the transform of K0(X, t), and K ′
0(x, t) is the Hamiltonian

of the inverse flow ∂x/∂t. Equation (10.64) shows that K ′
0 and K̂0 are related by

K ′
0(x, t) = −1

a
K̂0(x, t). (10.65)

Hence in the special case of the canonical transformations (a = 1) we have

K ′
0(x, t) = −K̂0(x, t). (10.66)

This fact can easily be interpreted as follows. To produce a motion that
is retrograde with respect to the flow ∂X/∂t = I∇XK0(X, t) there are two
possibilities:

(a) reverse the orientation of time (t → −t), keeping the Hamiltonian fixed;
(b) keep the time orientation, but change K0 into −K0.

The condition (10.66) expresses the second possibility.

Example 10.13
The transformation

P = αp cosωt+ βq sinωt, Q = − a

β
p sinωt+

a

α
q cosωt, (10.67)

with α, β, ω, a non-zero constants, preserves the canonical structure of the
Hamilton equations (check that det J = a). It is canonical if and only if a = 1.
In this case, it is the composition of a rotation with a ‘natural’ change of scale.
The inverse of (10.67) is given by

p =
1
α
P cosωt− β

a
Q sinωt, q =

α

a
Q cosωt+

1
β
P sinωt. (10.68)

By differentiating (10.67) with respect to time, and inserting (10.68) we find
the equations for the Hamiltonian flow X = X(x, t):

∂P

∂t
=

αβω

a
Q,

∂Q

∂t
= −aω

αβ
P, (10.69)
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with which we associate the Hamiltonian

K0 = −1
2
αβω

a
Q2 − 1

2
aω

αβ
P 2. (10.70)

Performing the corresponding manipulations for the inverse transformation (10.68)
we find the equations for the retrograde flow:

∂p

∂t
= −βω

α
q,

∂q

∂t
=

αω

β
p, (10.71)

which is derived from the Hamiltonian

K ′
0 =

1
2
βω

α
q2 +

1
2
αω

β
p2. (10.72)

Expressing K0 in the variables (p, q) we obtain

K̂0 = −aK ′
0, (10.73)

which is in agreement with equation (10.65). �

10.3 The Poincaré–Cartan integral invariant. The Lie condition

In this section we want to focus on the geometric interpretation of canonical
transformations. In the process of doing this, we derive a necessary and sufficient
condition for a transformation to be canonical. This condition is very useful in
practice, as we shall see in the next section.
Let us start by recalling a few definitions and results concerning differential

forms.

Definition 10.9 A differential form ω in R2l+1

ω =
2l+1∑
i=1

ωi(x) dxi, (10.74)

is non-singular if the (2l + 1)× (2l + 1) skew-symmetric matrix A(x), defined by

Aij =
∂ωi

∂xj
− ∂ωj

∂xi
, (10.75)

has maximal rank 2l. The kernel of A(x), characterised by {v ∈ R2l+1|A(x)v = 0},
as x varies determines a field of directions in R2l+1 called characteristic directions.
The integral curves of the field of characteristic directions are called characteristics
of ω. �
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Remark 10.14
For l = 1, setting ω = (ω1, ω2, ω3) the matrix A(x) is simply

A(x) =

⎛⎝ 0 −(ω)3 (ω)2
(ω)3 0 −(ω)1
−(ω)2 (ω)1 0

⎞⎠
and A(x)v = ω(x) × v. Therefore the characteristics of the form ω can be
indentified with those of the field ω. �

Example 10.14
The form ω = x2 dx1 + x3 dx2 + x1 dx3 in R3 is non-singular. The associated
characteristic direction is constant and is determined by the line x1 = x2 = x3. �

Example 10.15
The form ω = x1 dx2 + 1

2 (x
2
1 + x22) dx3 is non-singular. The associated field of

characteristic directions is (x2,−x1, 1). �

Remark 10.15
The reader familiar with the notion of a differential 2-form (see Appendix 4)
will recognise in the definition of the matrix A the representative matrix of the
2-form

−dω =
2l+1∑
i,j=1

∂ωi

∂xj
dxi ∧ dxj . �

The following result can be easily deduced from Definition 10.9.

Proposition 10.3 Two non-singular forms differing by an exact form have the
same characteristics. �

Consider any regular closed curve γ. The characteristics of ω passing through
the points of γ define a surface in R2l+1 (i.e. a regular submanifold of dimension
2) called the tube of characteristics. The significance of non-singular differential
forms, and of the associated tubes of characteristics, is due to the following
property.

Theorem 10.8 (Stokes’ lemma) Let ω be a non-singular differential form, and
let γ1 and γ2 be any two homotopic closed curves belonging to the same tube of
characteristics. Then ∮

γ1

ω =
∮
γ2

ω. (10.76)

�

Equation (10.76) expresses the invariance of the circulation of the field X(x),
whose components are the ωi, along the closed lines traced on a tube of
characteristics.
The previous theorem is a consequence of Stokes’ lemma, discussed in

Appendix 4. Note that this is natural generalisation of the Stokes formula,
well known from basic calculus (see Giusti 1989).
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We now consider a system with Hamiltonian H(p,q, t) and its ‘extended’
phase space, where together with the canonical coordinates we consider the time
t : (p,q, t) ∈ R2l+1.

Theorem 10.9 The differential form

ω =
l∑

i=1
pi dqi −H(p,q, t) dt (10.77)

in R2l+1 is non-singular and it is called the Poincaré–Cartan form. Its charac-
teristics are the integral curves of the system of Hamilton’s equations associated
with the Hamiltonian H.

Proof
The matrix associated with the form ω is

A(p,q, t) =

⎛⎝ 0 −1 ∇pH
1 0 ∇qH

−(∇pH)T −(∇qH)T 0

⎞⎠ .

Evidently the rank of the matrix A is equal to 2l for every (p,q, t) (note that
one of its 2l × 2l submatrices coincides with the matrix I). It follows that the
form ω is non-singular. Moreover, the vector

v(p,q, t) = (−∇qH,∇pH, 1)

is in the kernel of A for every (p,q, t), and therefore it determines the
characteristics of ω. The integral curves of v are the solutions of

ṗ = −∇qH,

q̇ = ∇pH,

ṫ = 1,

and hence they are precisely the integral curves of Hamilton’s system of equations
for H, expressed in the extended phase space R2l+1. �

The application of Stokes’ lemma to the Poincaré–Cartan form (10.77) has a
very important consequence.

Theorem 10.10 (Integral invariant of Poincaré–Cartan) Let γ1 and γ2 be any
two homotopic closed curves in R2l+1 belonging to the same tube of characteristics
relative to the form (10.77). Then

∮
γ1

(
l∑

i=1
pi dqi −H(p,q, t) dt

)
=
∮
γ2

(
l∑

i=1
pi dqi −H(p,q, t) dt

)
. (10.78)

�



10.3 Analytical mechanics: canonical formalism 355

Remark 10.16
Denote by γ0 a closed curve belonging to the same tube of characteristics as γ,
lying in the plane t = t0, for fixed t0. Then the result of Theorem 10.10 yields
as a consequence the fact that∮

γ

(
l∑

i=1
pi dqi −H(p,q, t) dt

)
=
∮
γ0

l∑
i=1

pi dqi. (10.79)

We shall see how the integral (10.79) completely characterises the canonical
transformations, highlighting the relation with the geometry of the Hamiltonian
flow (i.e. of the tubes of characteristics of the Poincaré–Cartan form). Indeed,
starting from a system of Hamilton’s equations for a Hamiltonian H and going
to a new system of Hamilton’s equations for a new Hamiltonian K, the canonical
transformations map the tubes of characteristics of the Poincaré–Cartan form
(10.77) associated with H onto the tubes of characteristics of the corresponding
form associated with K. �

We can state the following corollary to Theorem 10.12.

Corollary 10.4 A canonical transformation maps the tubes of characteristics
of the Poincaré–Cartan form (10.80) into the tubes of characteristics of the
corresponding form

Ω =
l∑

i=1
PidQi −K(P,Q, t) dt. (10.80)

�

Example 10.16
Consider the transformation of Example 10.12, which we rewrite as

p = α
√
P cos γQ, q = β

√
P sin γQ.

For αβγ = 2 this transformation is completely canonical. We compare the
Poincaré–Cartan forms written in the two coordinate systems:

ω = p dq −H(p, q, t) dt, Ω = P dQ− Ĥ(P,Q, t) dt.

The difference is

ω − Ω = p dq − P dQ.

Expressing it in the variables P,Q we obtain

ω − Ω = d
(

1
2γ

P sin 2γQ
)
.

Since ω and Ω differ by an exact differential, they have the same tubes of
characteristics. �
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We now want to show that the result discussed in the previous example
(ω−Ω = df) is entirely general and constitutes a necessary and sufficient condition
for a transformation to be canonical. We start by analysing the difference ω−Ω
when we ‘fix time’ (freezing the variable t).
Consider a differentiable, invertible transformation X = X(x, t) from the

coordinates x = (p,q) to X = (P,Q):

pi = pi(P,Q, t), qi = qi(P,Q, t), (10.81)

where i = 1, . . . , l. Consider the differential form

ω̃ =
l∑

i=1
pi(P,Q, t) d̃qi(P,Q, t), (10.82)

where, given any regular function f(P,Q, t), we set

d̃f = df − ∂f

∂t
dt =

l∑
i=1

(
∂f

∂Pi
dPi +

∂f

∂Qi
dQi

)
. (10.83)

Here d̃ is the so-called ‘virtual differential’ or ‘time frozen differential’ (see Levi-
Civita and Amaldi 1927).

Theorem 10.11 (Lie condition) The transformation (10.81) is canonical if and
only if the difference between the differential forms ω̃ and Ω̃ is exact, and hence
if there exists a regular function f(P,Q, t) such that

ω̃ − Ω̃ =
l∑

i=1
(pi d̃qi − Pi d̃Qi) = d̃f. (10.84)

Proof
Consider the difference

ϑ̃ = ω̃ − Ω̃

and write it as

2ϑ̃ =
l∑

i=1

(
pi d̃qi − qi d̃pi

)
−

l∑
i=1

(
Pi d̃Qi −Qi d̃Pi

)
+ d̃

l∑
i=1

(piqi − PiQi)

= η̃ + d̃
l∑

i=1
(piqi − PiQi).

The form η̃ can be rewritten as

η̃ = XT I d̃X− xT I d̃x.

Recalling that d̃X = J d̃x, we see that

η̃ =
(
XT IJ − xT I

)
d̃x = gT d̃x,
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with g = −JT IX + Ix. Therefore, the form η̃ is exact if and only if ∂gi/∂xj =
∂gj/∂xi. We now compute (using the convention of summation over repeated
indices)

∂gi
∂xj

= Iij − ∂Jki
∂xj

IkhXh − JkiIkhJhj ,

∂gj
∂xi

= Iji − ∂Jkj
∂xi

IkhXh − JkjIkhJhi,

and note that

∂Jki
∂xj

=
∂2Xk

∂xi∂xj
=

∂Jkj
∂xi

,

and hence

∂gi
∂xj

− ∂gj
∂xi

= (I − JT IJ)ij − (I − JT IJ)ji = 2(I − JT IJ)ij ,

where I−JT IJ is skew-symmetric. We can conclude that the form η̃, and therefore
ω̃ − Ω̃, is exact if and only if J is symplectic, or equivalently if and only if the
transformation is canonical. �

Remark 10.17
If the transformation is completely canonical, it is immediate to check that
in the expression (10.84) d̃ = d, and f can be chosen to be independent of t. �

Example 10.17
Using the Lie condition it is easy to prove that point transformations
(Example 10.9) are canonical. It follows from (10.35), (10.36) that

l∑
i=1

(pi d̃qi − Pi d̃Qi) =
l∑

i=1
pi d̃qi −

l∑
i,j,k=1

J−1
ji pjJik d̃qk

=
l∑

i=1
pi d̃qi −

l∑
j,k=1

pjδjk d̃qk = 0. �

Example 10.18
Using the Lie condition let us check that the transformation (see Gallavotti 1986)

q1 =
P1P2 −Q1Q2

P 2
1 +Q2

2
, q2 =

P2Q2 + P1Q1

P 2
1 +Q2

2
,

p1 = −P1Q2, p2 =
P 2
1 −Q2

2

2

is completely canonical. Setting

P = p1 + ip2, Q = q1 + iq2,
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where i =
√−1, note that

P =
i
2
(P1 + iQ2)2, Q =

P2 + iQ1

P1 − iQ2
,

from which it follows that

p1 dq1 + p2 dq2 = Re(P dQ) = P1 dQ1 + P2 dQ2 − 1
2
d(P1Q1 + P2Q2);

hence the Lie condition is satisfied with f = − 1
2 (P1Q1 + P2Q2). �

Remark 10.18
We can see that the Lie condition (10.84) is equivalent to the statement that
there exists a regular function f(P,Q, t), defined up to an arbitrary function of
time, such that, for every i = 1, . . . , l,

∂f

∂Pi
(P,Q, t) =

l∑
j=1

pj(P,Q, t)
∂qj
∂Pi

(P,Q, t),

∂f

∂Qi
(P,Q, t) =

l∑
j=1

pj(P,Q, t)
∂qj
∂Qi

(P,Q, t)− Pi.

(10.85)

�

The Lie condition has as a corollary an interesting result that characterises
the canonical transformations through the Poincaré–Cartan integral invariant.

Corollary 10.5 The transformation (10.81) is canonical if and only if, for
every closed curve γ0 in R2l+1 made of simultaneous states (p,q, t0), if Γ0 is
its image under the given transformation (in turn made of simultaneous states
(P,Q, t0)), then

∮
γ0

l∑
i=1

pi dqi =
∮
Γ0

l∑
i=1

Pi dQi. (10.86)

Proof
From the definition of a fixed time differential, it follows that

∮
γ0

l∑
i=1

pi dqi =
∮
Γ0

ω̃,

∮
Γ0

l∑
i=1

Pi dQi =
∮
Γ0

Ω̃,

where ω̃ and Ω̃ are computed fixing t = t0. Note that on Γ0 we assume that ω̃ is
expressed in the new variables. Therefore the condition is necessary. Indeed, if
the transformation is canonical, by the Lie condition the difference ω̃ − Ω̃ is an
exact form, whose integral along any closed path vanishes.
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Evidently the condition is also sufficient. Indeed, if∮
Γ0

(ω̃ − Ω̃) = 0

along any closed path Γ0 then the form ω̃ − Ω̃ is exact (see Giusti 1989,
Corollary 8.2.1). �

For l = 1 equation (10.86) is simply the area conservation property, which we
already know (in the form det J = 1) to be the characteristic condition for a
transformation to be canonical.
We can now prove the important result, stated previously: the conservation

of the Poincaré–Cartan integral invariant is exclusively a property of canonical
transformations.

Theorem 10.12 If the transformation (10.81) is canonical, denote by

Ω =
l∑

i=1
Pi dQi −K(P,Q, t) dt (10.87)

the new Poincaré–Cartan form. Then there exists a regular function F(P,Q, t)
such that

l∑
i=1

(pi dqi − Pi dQi) + (K −H) dt = ω − Ω = dF. (10.88)

Hence the difference between the two Poincaré–Cartan forms is exact. Conversely,
if (10.81) is a coordinate transformation such that there exist two functions
K(P,Q, t) and F(P,Q, t) which, for Ω defined as in (10.87), satisfy (10.88), then
the transformation is canonical and K is the new Hamiltonian.

Proof
We prove that if the transformation is canonical, then condition (10.88) is satis-
fied. Consider any regular closed curve γ in R2l+1, and let Γ be its image under
the canonical transformation (10.81).
Since the transformation is canonical the tube of characteristics of ω through

γ is mapped to the tube of characteristics of Ω through Γ (Corollary 10.74).
Therefore it is possible to apply Stokes’ lemma to write

∮
Γ
(ω − Ω) =

∮
Γ0

(ω − Ω) =
∮
γ0

l∑
i=1

pi dqi −
∮
Γ0

l∑
i=1

Pi dQi = 0,

where γ0,Γ0 are the intersections of the respective tubes of characteristics with
t = t0 (Fig. 10.2). It follows that the integral of ω − Ω along any closed path in
R2l+1 is zero, and therefore the form is exact.
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We now prove the second part of the theorem. Since the difference ω − Ω is
exact we have

∮
γ0

l∑
i=1

pi dqi −
∮
Γ0

l∑
i=1

Pi dQi =
∮
Γ0

(ω − Ω) = 0,

and the transformation is canonical. Therefore the characteristic directions of
the form ω coincide, after the transformation, with those of the form Ω′ =∑l

i=1 Pi dQi −K ′ dt, where K ′ is the new Hamiltonian. On the other hand, the
characteristic directions of ω coincide with those of Ω+dF, and hence of Ω. In
addition Ω′ −Ω = (K ′ −K) dt and the coincidence of characteristics implies that
K ′ −K may depend only on t. Hence, following our convention, K ′ = K. �

Example 10.19
We consider again Example 10.11 in the light of the results of this section. By
equation (10.49), the Lie condition (10.84) can be written as

p d̃q − P d̃Q = (P − at)(dQ+ t dP )− P dQ = d̃f(P,Q, t),

from which it follows that

f(P,Q, t) = t
P 2

2
− at2P − atQ+ f1(t),

where f1 is an arbitrary function of time.
The condition (10.88) for the transformation (10.49), taking into account

(10.50), can be written as

(P − at)(dQ+ P dt+ t dP − at dt)− P dQ+
(
−P 2

2
− aQ

)
dt = dF(P,Q, t),
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and after some simple manipulations we find

F(P,Q, t) =
1
2
tP 2 − at2P − atQ+

1
3
a2t3. �

We conclude this section by proving that the Hamiltonian flow defines a
canonical transformation.
Let H(p,q, t) be a Hamiltonian function, and consider the associated

Hamiltonian flow x = StX:

pi = pi(P,Q, t), qi = qi(P,Q, t), (10.89)

where i = 1, . . . , l. Equations (10.89) are therefore the solutions of the system of
equations

∂pi
∂t

= −∂H

∂qi
,

∂qi
∂t

=
∂H

∂pi
, (10.90)

with initial conditions pi(0) = Pi, qi(0) = Qi, i = 1, . . . , l. By the theorem of
existence, uniqueness and continuous dependence on the initial data for ordinary
differential equations (see Appendix 1) equation (10.89) defines a coordinate
transformation which is regular and invertible.

Theorem 10.13 The Hamiltonian flow (10.89) is a time-dependent canonical
transformation, that at every time instant t maps X to StX. In addition, the new
Hamiltonian associated with H in the variables X is K ≡ 0.

Proof
We verify that the Lie condition (10.84) is satisfied, with

f(P,Q, t) =
∫ t

0

[
l∑

j=1
pj(P,Q, τ)

∂qj
∂t

(P,Q, τ)−H(p(P,Q, τ),q(P,Q, τ), τ)

]
dτ.

(10.91)

By Remark 10.18, it is enough to show that for every i = 1, . . . , l we have

∂f

∂Pi
(P,Q, t) =

l∑
j=1

pj(P,Q, t)
∂qj
∂Pi

(P,Q, t),

∂f

∂Qi
(P,Q, t) =

l∑
j=1

pj(P,Q, t)
∂qj
∂Qi

(P,Q, t)− Pi.

We prove the second relation. The first one can be shown in an analogous manner.
We have

∂f

∂Qi
=
∫ t

0

l∑
j=1

[
∂pj
∂Qi

∂qj
∂t

+ pj
∂2qj
∂t∂Qi

− ∂H

∂pj

∂pj
∂Qi

− ∂H

∂qj

∂qj
∂Qi

]
dτ,
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but since (10.89) is the transformation generated by the Hamiltonian flow, it
follows from equations (10.90) that

∂f

∂Qi
=
∫ t

0

l∑
j=1

[
∂pj
∂Qi

∂qj
∂t

+ pj
∂2qj
∂t∂Qi

− ∂qj
∂t

∂pj
∂Qi

+
∂pj
∂t

∂qj
∂Qi

]
dτ

=
∫ t

0

∂

∂t

l∑
j=1

pj
∂qj
∂Qi

dτ

=
l∑

j=1
pj(P,Q, t)

∂qj
∂Qi

(P,Q, t)−
l∑

j=1
pj(P,Q, 0)

∂qj
∂Qi

(P,Q, 0)

=
l∑

j=1
pj(P,Q, t)

∂qj
∂Qi

(P,Q, t)−
l∑

j=1
Pjδji

=
l∑

j=1
pj(P,Q, t)

∂qj
∂Qi

(P,Q, t)− Pi.

By what we have just computed,

d̃f =
l∑

i=1

(
pi d̃qi − Pi dQi

)
,

while from (10.83) it obviously follows that

df = d̃f +
∂f

∂t
dt =

l∑
i=1

(
pi d̃qi − Pi d̃Qi

)
+

[
l∑

j=1
pj

∂qj
∂t

−H

]
dt

=
l∑

i=1
(pi dqi − Pi dQi)−H dt.

Taking into account Theorem 10.6, it follows from this that the new Hamiltonian
associated with H is exactly K ≡ 0. �

Remark 10.19
From the expression (10.91) for f , since ṗi = ∂pi/∂t and q̇i = ∂qi/∂t, we see
that f(P,Q, t) is the Hamiltonian action A(P,Q, t) (see (9.43)) computed by an
integration along the Hamiltonian flow (10.89), i.e. the natural motion. �

Recalling the result of Corollary 10.1, we can now state that the canonical
transformations depending on time are all and exclusively the Hamiltonian flows. If
we apply the canonical transformation x = x(x∗, t) generated by the Hamiltonian
H(x, t), to a system with Hamiltonian H∗(x∗, t), we obtain the new Hamiltonian
K∗(x, t) = Ĥ∗(x, t) +H(x, t) (here H plays the role of the function indicated by
K0 in the previous section). Consider now the Hamiltonian flow x = StX, with
Hamiltonian H(x, t). The inverse transformation, mapping StX in X for every t,
corresponds to the retrograde motion (with Hamiltonian −H) and it is naturally
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canonical. For the canonical transformation x = StX the variables X play the
role of constant canonical coordinates (Ẋ = 0). In agreement with this fact, we
note that the composition of the two flows yields the Hamiltonian K(X, t) = 0
and therefore precisely constant canonical coordinates. As an example, note that
the transformation (10.49) is the flow with Hamiltonian H = p2/2 + aq. This is
independent of time, and hence it is a constant of the motion, implying that
p2/2+aq = P 2/2+aQ. This is the equation for the trajectories, travelled ‘forwards’
(P,Q) → (p, q) through the flow with Hamiltonian H(p, q), and ‘backwards’
(p, q) → (P,Q) with Hamiltonian (10.50), i.e. −H(P,Q). The superposition of
the two yields (P,Q) → (P,Q) for every t, and hence Ṗ = Q̇ = 0 (corresponding
to the null Hamiltonian).

Remark 10.20
The apparent lack of symmetry between the condition

l∑
i=1

(pi dqi − Pi dQi) = dF,

where F is independent of t, for a transformation to be completely canonical,
and the relation

l∑
i=1

(pi dqi − Pi dQi) + (K −H) dt = dF,

where F depends also on t, for a time-dependent transformation to be canonical,
can be eliminated by using a significant extension of the Hamiltonian formalism.
Indeed, given a non-autonomous Hamiltonian system H(p,q, t), we consider,

in addition to the canonical equations (10.90), the equations (see (8.26))

−Ḣ = −dH
dt

= −∂H

∂t
, ṫ = 1. (10.92)

The system of equations (10.90), (10.92) corresponds to the canonical equations
for the Hamiltonian H : R2l+2 → R,

H(p, π,q, τ) = H(p,q, τ) + π, (10.93)

where

π = −H, τ = t, (10.94)

and hence the Hamiltonian and time are considered as a new pair of canonically
conjugate variables. This is possible since ∇pH = ∇pH, ∇qH = ∇qH and

π̇ = −∂H

∂τ
= −∂H

∂t
, τ̇ =

∂H

∂π
= 1.
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By (10.94) we also have that H = 0, and the Poincaré–Cartan form (10.77)
becomes

l∑
i=1

pi dqi −H dt =
l∑

i=1
pi dqi + π dτ =

l+1∑
i=1

pi dqi, (10.95)

where we set pl+1 = π, ql+1 = τ .
The canonical transformations (10.81) are therefore always completely canon-

ical in R2l+2, and they associate with the variables (p, π,q, τ) new variables
(P,Π,Q, T ), with the constraint T = τ . The Hamiltonian H is always zero.
Conversely, transformations such as

τ = a(T ), π =
1

a′(T )
Π (10.96)

can be included in the canonical formalism, since

π dτ =
1

a′(T )
Π a′(T ) dT = Π dT.

The effect of equation (10.96) is a re-parametrisation of time, and by using the
fact that it is canonical one can show that the canonical structure of Hamilton’s
equations is preserved, by appropriately rescaling the Hamiltonian H = −π. �

10.4 Generating functions

In the previous sections we completely described the class of canonical trans-
formations. We now study a procedure to generate all canonical transformations.
As we saw in the previous section, the Lie condition (10.84), or its equival-

ent formulation (10.88), is a necessary and sufficient condition for a coordinate
transformation to be canonical. In the form (10.88), it allows the introduction of
an efficient way to construct other canonical transformations.
Assume that

p = p(P,Q, t), q = q(P,Q, t) (10.97)

defines a canonical transformation in an open domain of R2l, with inverse

P = P(p,q, t), Q = Q(p,q, t). (10.98)

A canonical transformation of the type (10.97) satisfying

det
(
∂qi
∂Pj

)
=/ 0 (10.99)

is called free. Applying the implicit function theorem to the second of equations
(10.97), the condition (10.99) ensures that the variables P can be naturally
expressed as functions of the variables q, Q, as well as of time. Therefore, if

P = P̂(q,Q, t), (10.100)
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by substituting this relation into the first of equations (10.97) we find

p = p̂(q,Q, t). (10.101)

The condition (10.88)

l∑
i=1

pi dqi −H dt−
(

l∑
i=1

Pi dQi −K dt

)
= dF

can therefore be written

l∑
i=1

p̂i(q,Q, t) dqi −H(q, p̂(q,Q, t), t) dt

−
(

l∑
i=1

P̂i(q,Q, t) dQi −K(P̂(q,Q, t),Q, t) dt

)
= dF (q,Q, t), (10.102)

where the variables (q,Q) are considered to be independent and F (q,Q, t) is
obtained from F(P,Q, t) through equation (10.100). From (10.102) it follows that

pi =
∂F

∂qi
, (10.103)

Pi = − ∂F

∂Qi
, (10.104)

K = H +
∂F

∂t
, (10.105)

where i = 1, . . . , l.
Equation (10.104) shows that the matrix − (∂qi/∂Pj) is the inverse matrix of(

∂2F/(∂qi∂Qj)
)
. Therefore the condition (10.99) is clearly equivalent to requiring

that

det
(

∂2F

∂qi∂Qj

)
=/ 0. (10.106)

We now follow the converse path, starting from the choice of a function of the
type (10.106).

Definition 10.10 A function F (q,Q, t) satisfying condition (10.106) is called a
generating function (of the first kind, and it is often denoted by F = F1) of the
canonical transformation defined implicitly by equations (10.103)–(10.105). �

Remark 10.21
Given the generating function F , equations (10.103)–(10.105) define the canon-
ical transformation implicitly. However the condition (10.106) ensures that the
variables Q can be expressed as functions of (q,p) and of time t, by invert-
ing equation (10.103). The expression of P as a function of (q,p) and of the
time t can be obtained by substituting the relation Qi = Qi(q,p, t) into equation
(10.104). The invertibility of the transformation thus obtained is again guaranteed
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by the implicit function theorem. Indeed, equation (10.106) also ensures that it
is possible to express q = q(Q,P, t) by inverting (10.104). Substituting these into
equation (10.103) we finally find p = p(Q,P, t). �

Example 10.20
The function F (q,Q) = mω/2q2cot Q generates a canonical transformation

p =
√
2Pωm cosQ, q =

√
2P
ωm

sinQ,

which transforms the Hamiltonian of the harmonic oscillator

H(p, q) =
p2

2m
+

mω2q2

2

into

K(P,Q) = ωP. �

Example 10.21
The identity transformation p = P , q = Q is not free. Hence it does not admit
a generating function of the first kind. �

After setting x = (p,q) and X = (P,Q), we see that a generating function can
also depend on xm1 , . . . , xml

, Xn1 , . . . , Xnl for an arbitrary choice of the indices
mi and ni (all different). We quickly analyse all possible cases.

Definition 10.11 A function F (q,P, t) satisfying the condition

det
(

∂2F

∂qi∂Pj

)
=/ 0 (10.107)

is called a generating function of the second kind (and it is often denoted by
F = F2) of the canonical transformation implicitly defined by

pi =
∂F

∂qi
, i = 1, . . . , l, (10.108)

Qi =
∂F

∂Pi
, i= 1, . . . , l. (10.109)

�

Example 10.22
Point transformations (see Example 10.9)

Q = Q(q, t)
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are generated by

F2(q,P, t) =
l∑

i=1
PiQi(q, t).

Setting Q = q we find that F2 =
∑l

i=1 Piqi is the generating function of the
identity transformation. �

Definition 10.12 A function F (p,Q, t) which satisfies the condition

det
(

∂2F

∂pi∂Qj

)
=/ 0 (10.110)

is called a generating function of the third kind (and it is often denoted by
F = F3) of the canonical transformation implicitly defined by

qi = −∂F

∂pi
, i = 1, . . . , l, (10.111)

Pi = − ∂F

∂Qi
, i = 1, . . . , l. (10.112)

�

Example 10.23
It is immediate to check that the function F (p,Q) = −p(eQ − 1) generates the
canonical transformation

P = p(1 + q), Q = log(1 + q). �

Definition 10.13 A function F (p,P, t) which satisfies the condition

det
(

∂2F

∂pi∂Pj

)
=/ 0 (10.113)

is called a generating function of the fourth kind (and it is often denoted by
F = F4) of the canonical transformation implicitly defined by

qi = −∂F

∂pi
, i = 1, . . . , l, (10.114)

Qi =
∂F

∂Pi
, i = 1, . . . , l. (10.115)

�

Example 10.24
The canonical transformation of Example 10.8, exchanging the coordinates and
the kinetic momenta, admits as generating function F (p,P) =

∑l
i=1 piPi. �
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Theorem 10.14 The generating functions of the four kinds F1, F2, F3 and F4
satisfy, respectively,

l∑
i=1

(pi dqi − Pi dQi) + (K −H) dt = dF1(q,Q, t), (10.116)

l∑
i=1

(pi dqi +Qi dPi) + (K −H) dt = dF2(q,P, t), (10.117)

l∑
i=1

(−qi dpi − Pi dQi) + (K −H) dt = dF3(p,Q, t), (10.118)

l∑
i=1

(−qi dpi +Qi dPi) + (K −H) dt = dF4(p,P, t). (10.119)

If a canonical transformation admits more than one generating function of the
previous kinds, then these are related by a Legendre transformation:

F2 = F1 +
l∑

i=1
PiQi,

F3 = F1 −
l∑

i=1
piqi,

F4 = F1 −
l∑

i=1
piqi +

l∑
i=1

PiQi = F2 −
l∑

i=1
piqi = F3 +

l∑
i=1

PiQi.

(10.120)

Proof
The first part of the theorem is a consequence of Definitions 10.10–10.13. The
proof of the second part is immediate, and can be obtained by adding or
subtracting

∑l
i=1 PiQi and

∑l
i=1 piqi from (10.116). �

Remark 10.22
At this point it should be clear how, in principle, there exist 2(2ll ) different
kinds of generating functions, each corresponding to a different arbitrary choice
of l variables among q, p and of l variables among Q, P. However, it is always
possible to reduce it to one of the four previous kinds, by taking into account
that the exchanges of Lagrangian coordinates and kinetic momenta are canonical
transformations (see Example 10.8). �

The transformations associated with generating functions exhaust all canonical
transformations.

Theorem 10.15 It is possible to associate with every canonical transformation
a generating function, and the transformation is completely canonical if and only
if its generating function is time-independent. The generating function is of one
of the four kinds listed above, up to possible exchanges of Lagrangian coordinates
with kinetic moments.
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Proof
Consider a canonical transformation, and let F the function associated with it
by Theorem 10.12. If it is possible to express the variables p, P as functions
of q, Q, and hence if (10.99) holds, then, as we saw at the beginnning of this
section, it is enough to set

F1(q,Q, t) = F(P̂(q,Q, t),Q, t)

and the conditions of Definition 10.10 are satisfied.
If, on the other hand, we have

det
(

∂qi
∂Qj

)
=/ 0, (10.121)

we can deduce Q = Q̂(q,P, t) from the second of equations (10.97) and, by
substitution into the first of equations (10.97), we find that the variables p can
also be expressed through q, P. Hence we set

F2(q,P, t) = F(P, Q̂(q,P, t), t) +
l∑

i=1
PiQ̂i(q,P, t).

The condition (10.107) is automatically satisfied, since
(
∂2F/∂qi∂Pj

)
is the

inverse matrix of (∂qi/∂Qj).
Analogously, if

det
(
∂pi
∂Pj

)
=/ 0, (10.122)

the variables q, P can be expressed through p, Q, and we set

F3(p,Q, t) = F(P̂(p,Q, t),Q, t)−
l∑

i=1
piq̂i(p,Q, t).

Then the conditions of Definition 10.12 are satisfied.
Finally, if

det
(

∂pi
∂Qj

)
=/ 0, (10.123)

by expressing q, Q as functions of p, P, we find that the generating function is
given by

F4(p,P, t) = F(P, Q̂(p,P, t), t)−
l∑

i=1
piq̂i(p,P, t) +

l∑
i=1

PiQ̂i(p,P, t).

It is always possible to choose l variables among p, q and l variables among P,
Q as independent variables. As a matter of fact, the condition that the Jacobian
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matrix of the transformation is symplectic, and therefore non-singular, guarantees
the existence an l× l submatrix with a non-vanishing determinant. If the selected
independent variables are not in any of the four groups already considered, we
can proceed in a similar way, and obtain a generating function of a different
kind. On the other hand, it is always possible to reduce to one of the previous
cases by a suitable exchange of variables. �

Remark 10.23
An alternative proof of the previous theorem, that is maybe more direct and
certainly more practical in terms of applications, can be obtained simply by
remarking how conditions (10.99), (10.121)–(10.123) ensure that the Lie condi-
tion can be rewritten in the form (10.116)–(10.119), respectively. The functions
F1, . . . , F4 can be determined by integration along an arbitrary path in the
domain of definition and the invertibility of the transformation. �

Example 10.25
Consider the canonical transformation

p = 2et
√
PQ logP, q = e−t

√
PQ,

defined in D = {(P,Q) ∈ R2|P > 0, Q ≥ 0} ⊂ R2. Evidently it is possible to
choose (q, P ) as independent variables and write

p = 2e2tq logP, Q =
e2tq2

P
.

The generating function F2(q, P, t) can be found, for example, by integrating
the differential form

p̂(q, P, t) dq + Q̂(q, P, t) dP

along the path γ = {(x, 1)|0 ≤ x ≤ q} ∪ {(q, y)|1 ≤ y ≤ P} in the plane (q, P ).
Since along the first horizontal part of the path γ one has p(x, 1, t) ≡ 0 (this
simplification motivates the choice of the integration path γ), we have

F2(q, P, t) = e2tq2
∫ P

1

dy
y

+ F̃2(t) = e2tq2 logP + F̃2(t),

where F̃2 is an arbitrary function of time. �

Remark 10.24
Every generating function F is defined up to an arbitrary additive term, a
function only of time. This term does not change the transformation gener-
ated by F , but it modifies the Hamiltonian (because of (10.105)) and it arises
from the corresponding indetermination of the difference between the Poincaré–
Cartan forms associated with the transformation (see Remark 10.18). Similarly
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to what has already been seen, this undesired indetermination can be overcome
by requiring that the function F does not contain terms that are only functions
of t. �

We conclude this section by proving a uniqueness result for the generating
function (once the arbitrariness discussed in the previous remark is resolved).

Proposition 10.4 All the generating functions of a given canonical transform-
ation, depending on the same group of independent variables, differ only by a
constant.

Proof
Consider as an example the case of two generating functions F (q,Q, t) and
G(q,Q, t). The difference F −G satisfies the conditions

∂

∂qi
(F −G) = 0,

∂

∂Qi
(F −G) = 0,

for every i = 1, . . . , l. Hence, since by Remark 10.24 we have neglected additive
terms depending only on time, F −G is necessarily constant. �

10.5 Poisson brackets

Consider two funtions f(x, t) and g(x, t) defined in R2l × R with sufficient
regularity, and recall the definition (10.16) of a standard symplectic product.

Definition 10.14 The Poisson bracket of the two functions, denoted by {f, g}, is
the function defined by the symplectic product of the gradients of the two functions:

{f, g} = (∇xf)T I∇xg. (10.124)
�

Remark 10.25
If x = (p,q), the Poisson bracket of two functions f and g is given by

{f, g} =
l∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

)
. (10.125)

�

Remark 10.26
Using the Poisson brackets, Hamilton’s equations in the variables (p,q) can
be written in a perfectly symmetric form as

ṗi = {pi, H}, q̇i = {qi, H}, i = 1, . . . , l. (10.126)
�

Remark 10.27
From equation (10.125) we derive the fundamental Poisson brackets

{pi, pj} = {qi, qj} = 0, {qi, pj} = −{pi, qj} = δij . (10.127)
�
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Example 10.26
If we consider the phase space R6 of a free point particle, if L1, L2 and L3 are
the three components of its angular momentum, and p1, p2, p3 are the kinetic
momenta, conjugate with the Cartesian cordinates of the point, we have:

{p1, L3} = −p2, {p2, L3} = p1, {p3, L3} = 0,

and similarly for L1 and L2. Using the Ricci tensor εijk, the previous relations
take the more concise form

{pi, Lj} = εijkpk

(εijk = 0 if the indices are not all different, otherwise εijk = (−1)n, where n is
the number of permutations of pairs of elements to be performed on the sequence
{1, 2, 3} to obtain {i, j, k}). It can be verified in an analogous way that

{Li, Lj} = εijkLk,

and that

{Li, L
2} = 0,

where

L2 = L21 + L22 + L23. �

The Poisson brackets are an important tool, within the Hamiltonian formalism,
for the analysis of the first integrals of the motion (also, as we shall see, to
characterise the canonical transformations). Indeed, let H : R2l ×R → R, H =
H(x, t) be a Hamiltonian function and consider the corresponding canonical
equations

ẋ = I∇xH, (10.128)

with initial conditions x(0) = x0. Suppose that the solution of Hamilton’s
equations can be continued for all times t ∈ R, for any initial condition. In
this case, the Hamiltonian flow x(t) = St(x0) defines an evolution operator U t

acting on the observables of the system, i.e. on every function f : R2l ×R → R,
f = f(x, t):

(U tf)(x0, 0) = f(Stx0, t) = f(x(t), t). (10.129)

Definition 10.15 A function f(x, t) is a first integral for the Hamiltonian flow
St if and only if for every choice of x0 ∈ R2l and t ∈ R, it holds that

f(Stx0, t) = f(x0, 0). (10.130)
�
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The total derivative of f with respect to time t, computed along the
Hamiltonian flow St, is given by

df
dt

=
∂f

∂t
+ (∇xf)T ẋ =

∂f

∂t
+ (∇xf)T I∇xH.

Then using equation (10.124) we have

df
dt

=
∂f

∂t
+ {f,H}, (10.131)

which yields the following.

Theorem 10.16 A function f(x), independent of time, is a first integral for
the Hamiltonian flow St if and only if its Poisson bracket with the Hamiltonian
vanishes. �

This characterisation of first integrals is one of the most important properties
of the Poisson brackets. However, since Definition 10.14 is made with reference to
a specific coordinate system, while a first integral depends only on the Hamilto-
nian flow and is evidently invariant under canonical transformations, we must
consider the question of the invariance of the Poisson brackets under canonical
transformations.

Theorem 10.17 The following statements are equivalent.

(1) The transformation

x = x(X, t), (10.132)

is canonical.
(2) For every pair of functions f(x, t) and g(x, t), if F (X, t) = f(x(X, t), t) and

G(X, t) = g(x(X, t), t) are the corresponding transforms, then

{f, g}x = {F,G}X (10.133)

at every instant t. Here {f, g}x indicates the Poisson bracket computed with
respect to the original canonical variables x = (p,q), and {F,G}X indicates
that computed with respect to the new variables X = (P,Q).

(3) For every i, j = 1, . . . , l and at every instant t it holds that

{Pi, Pj}x = {Qi, Qj}x = 0,

{Qi, Pj}x = δij ,
(10.134)

i.e. the transformation (10.132) preserves the fundamental Poisson brackets.

Proof
We start by checking that (1) ⇒ (2). We know that a transformation is canonical
if and only if its Jacobian matrix

J = ∇xX
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is at every instant a symplectic matrix. Using equation (10.124) and recalling
the transformation rule for the gradient, we find ∇xf = JT∇XF ,

{f, g}x = (∇xf)T I∇xg = (JT∇XF )T IJT∇XG = (∇XF )TJIJT∇XG = {F,G}X.

That (2) ⇒ (3) is obvious ((3) is a special case of (2)). To conclude, we prove
then that (3) ⇒ (1). For this it is enough to note that equations (10.134) imply
that the Jacobian matrix J is symplectic. Indeed, it is immediate to verify that,
for any transformation, the matrix JIJT has an l × l block representation

JIJT =
(
A B
C D

)
,

where A,B,C,D have as entries

Aij = {Pi, Pj}, Bij = {Pi, Qj}, Cij = {Qi, Pj}, Dij = {Qi, Qj}.
Note that if l = 1, then {Q,P} = det J and equations (10.134) reduce to

det J = 1. �

The formal properties of the Poisson brackets will be summarised at the end
of the next section.

10.6 Lie derivatives and commutators

Definition 10.16 A Lie derivative associates with the vector field v the
differentiation operator

Lv =
N∑
i=1

vi
∂

∂xi
. (10.135)

�

Evidently the Lie derivative is a linear operator and it satisfies the Leibniz
formula: if f and g are two functions on RN with values in R then

Lv(fg) = fLvg + gLvf. (10.136)

Consider the differential equation

ẋ = v(x), (10.137)

associated with the field v, and denote by gt(x0) the solution passing through
x0 at time t = 0, i.e. the flow associated with v. The main property of the Lie
derivative is given by the following proposition. This proposition also justifies the
name ‘derivative along the vector field v’ that is sometimes used for Lv.

Proposition 10.5 The Lie derivative of a function f : RN → R is given by

(Lvf)(x) =
d
dt
f ◦ gt(x)|t=0. (10.138)
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Proof
This fact is of immediate verification: since gt(x) is the solution of (10.137)
passing through x for t = 0,

d
dt

∣∣∣∣
t=0

f ◦ gt(x) =
N∑
i=1

∂f

∂xi
ġ0i (x) =

N∑
i=1

∂f

∂xi
vi(x) = v · ∇f. (10.139)

�
From the previous proposition it follows that a function f(x) is a first integral

of the motion for the flow gt associated with the equation (10.137) if and only
if its Lie derivative is zero.
If v = I∇xH is a Hamiltonian field, then, as we saw, Lvf = {f,H}. Suppose

now that two vector fields v1 and v2 are given, and denote by gt
1 and gs

2 the
respective flows. In general, the flows of two vector fields do not commute, and
hence

gt
1g

s
2(x) =/ gs

2g
t
1(x).

Example 10.27
Consider the flows

gt1(x) = (x1 cos t− x2 sin t, x1 sin t+ x2 cos t),

gt2(x) = (x1 + t, x2),

associated with the two vector fields in R2 given by

v1(x) = (−x2, x1),

v2(x) = (1, 0).

One can immediately verify in this case that they do not commute (Fig. 10.3).
In addition, the function f1(x1, x2) = 1

2 (x
2
1 + x22), such that I∇f1 = v1, is a first

integral of the motion for gt
1, and its Lie derivative is Lv1f1 = 0, while it is not

constant along gt
2 and Lv2f1 =/ 0. By symmetry, for f2(x1, x2) = −x2, such that

I∇f2 = v2, we have Lv2f2 = 0 and Lv1f2 =/ 0. �

Using the Lie derivative it is possible to measure the degree of non-
commutativity of two flows. To this end, we consider any regular function f ,
defined on RN and we compare the values it assumes at the points gt

1g
s
2(x) and

gs2g
t
1(x). The lack of commutativity is measured by the difference

(∆ f)(t, s,x) = f(gs
2g

t
1(x))− f(gt

1g
s
2(x)). (10.140)

Clearly (∆ f)(0, 0,x) ≡ 0 and it is easy to check that the first non-zero term
(with starting-point s = t = 0) in the Taylor series expansion of ∆ f with respect
to s and t is given by

∂2(∆ f)
∂t∂s

(0, 0,x)st,
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x2

B

s
t

t

x

x1

s

A

O
A = gs

2 gt
1 (x), B = gt

1gs
2 (x)

Fig. 10.3

while the other terms of degree 2 are zero. We now seek an explicit expression
for it.

Definition 10.17 The commutator of two vector fields v1, v2 is the vector field
w, denoted by w = [v1,v2], with components

wi =
N∑
j=1

(
(v1)j

∂(v2)i
∂xj

− (v2)j
∂(v1)i
∂xj

)
= Lv1(v2)i − Lv2(v1)i. (10.141)

�

For the fields of Example 10.26 the commutator is [v1,v2] = (0,−1).
Remark 10.28
For any function f we find:

Lv1Lv2f − Lv2Lv1f = (vT
1 ∇x)vT

2 ∇xf − (vT
2 ∇x)vT

1 ∇xf

=
N∑

i,j=1
(v1)j

∂

∂xj

[
(v2)i

∂f

∂xi

]
− (v2)j

∂

∂xj

[
(v1)i

∂f

∂xi

]

=
N∑

i,j=1

[
(v1)j(v2)i

∂2f

∂xi∂xj
+ (v1)j

∂(v2)i
∂xj

∂f

∂xi

− (v2)j
∂(v1)i
∂xj

∂f

∂xi
− (v2)j(v1)i

∂2f

∂xi∂xj

]
= w · ∇f,

(10.142)
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since the terms containing the second derivatives cancel each other. Hence we
obtain the important result

[Lv1 , Lv2 ] = Lw = L[v1,v2], (10.143)

so that the commutator of the Lie derivatives Lv1, Lv2 is the Lie derivative Lw

associated with the commutator [v1,v2]. �

Proposition 10.6 Let (∆ f)(t, s,x) be defined as in (10.140). Then

∂2(∆ f)
∂t∂s

(0, 0,x) = (L[v1,v2]f)(x). (10.144)

Proof
From equation (10.138) it follows that

(Lv1f)(g
s
2(x)) =

∂

∂t

∣∣∣∣
t=0

f(gt
1g

s
2(x)).

Therefore, applying (10.138) to the function (Lv1f) we find

(Lv2(Lv1f))(x) =
∂2

∂t∂s

∣∣∣∣
t=s=0

f(gt
1g

s
2(x)).

Interchanging the order of gt1 and gs
2 and subtracting we reach the

conclusion. �

For the fields of Example 10.26, we have L[v1,v2]f = −∂f/∂x2.
To define the degree of non-commutativity δ we can now apply the operator

Lw to the functions xi and set δ = sup
i=1,...,2l

|Lwxi|.

Remark 10.29
Two flows commute if and only if their commutator is zero (see Arnol’d 1978a,
section 39e). �

We now seek a characterisation of a pair of Hamiltonian flows which commute.
This analysis has important consequences, which will be considered in the next
chapter. To this end, we define

Df = {f, ·}, (10.145)

the first-order differential operator which to each function g : R2l → R, g = g(x)
associates its Poisson bracket with f : R2l → R:

Dfg = {f, g}.
If vf denotes a Hamiltonian vector field associated with f , i.e.

vf = I∇xf,
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we have

Lvf = (I∇xf)T∇x = −(∇xf)T I∇x = −Df . (10.146)

We can now prove our main result.

Theorem 10.18 Consider two Hamiltonian fields vi = I∇xfi, i = 1, 2. The
respective Hamiltonian flows gti , i = 1, 2, commute if and only if {f1, f2} =
constant.

Proof
Compute the commutator w of the two Hamiltonian fields. Following the
definition (10.141) and applying equation (10.145), we obtain

wi = (∇x{f1, f2})i+l, 1 ≤ i ≤ l, (10.147)

wi = −(∇x{f1, f2})i−l, l + 1 ≤ i ≤ 2l, (10.148)

and hence

w = −I∇x{f1, f2}. (10.149)

From (10.149) and Remark 10.29 the conclusion follows immediately. �

Definition 10.18 Two regular functions f1, f2 : R2l → R such that

{f1, f2} = 0 (10.150)

are said to be in involution. �

Remark 10.30
From Theorem 10.18 it follows in particular that pairs of Hamiltonians in invol-
ution generate commuting flows. If {f1, f2} = 0 then not only w = 0 but also
Lv1f2 = Lv2f1 = 0. �

Note that in Example 10.26 the two non-commuting flows have Hamiltonians
that satisfy {f1, f2} = x1, which is non-constant. For two uniform rectilinear
motions in orthogonal directions in R2, generated by f1 = x1, f2 = x2, we have
{f1, f2} = 0 and hence commutativity.
To conclude, we summarise the main properties of the Poisson brackets.

Theorem 10.19 The Poisson brackets satisfy the following properties:

(1) they define a bilinear skew-symmetric form on functions, i.e. (f, g) → {f, g}
is linear in both arguments and {f, g} = −{g, f};

(2) Leibniz’s rule:

{f1f2, g} = f1{f2, g}+ f2{f1, g}; (10.151)

(3) the Jacobi identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0; (10.152)
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(4) if Df and Dg are operators associated with f and g by equation (10.145) then

[Df , Dg] = D{f,g}; (10.153)

(5) non-degeneration: if a point x0 ∈ R2l is not a critical point of f , there exists
a function g such that {f, g}(x0) =/ 0.

Proof
Properties (1) and (2) have a trivial verification, left to the reader. The Jacobi
identity can be shown without any lengthy calculation, by noting that if we
take the expansion of (10.152) we find a sum of terms each containing a second
derivative of one of the functions f , g and h multiplied by the first derivatives of
the other two. If we prove that in the expansion of (10.152) no second derivative
of any of the three functions appear, than we prove that all these terms cancel
out, and their sum is then equal to zero. On the other hand, if we consider
for example the terms containing the second derivatives of h, we note that they
necessarily come from the first two terms of (10.152). However,

{f, {g, h}}+ {g, {h, f}} = {f, {g, h}} − {g, {f, h}} = DfDgh−DgDfh

= [Df , Dg]h = [Lvf , Lvg ].
(10.154)

Remark 10.28 ensures that the commutator of two Lie derivatives is again a Lie
derivative, and hence it does not contain second derivatives. The Jacobi identity
is then proved.
The property (4) is an immediate consequence of the Jacobi identity. Indeed,

from (10.152) and (10.154) it follows that for any h we have

D{f,g}h = {{f, g}, h} = {f, {g, h}}+ {g, {h, f}} = [Df , Dg]h.

Finally, the non-degeneration property is an obvious consequence of the non-
degeneration of the symplectic product. �

The Jacobi identity yields another interesting result.

Corollary 10.6 If f and g are two first integrals then the same holds for
{f, g}. �

Proof
If in equation (10.152) we set h = H, it follows from {f,H} = {g,H} = 0 that
{{f, g}, H} = 0. �

Example 10.28
Recall the formula {Li, Lj} = εijkLk of Example 10.25. Then Corollary 10.6
guarantees that if two components of the angular momentum of a point are
constant, then the third component must also be constant. �
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10.7 Symplectic rectification

The canonical transformations are a powerful tool, allowing the construction of
new canonical variables with the aim of writing the Hamiltonian in some desired
form. A significant example of such an application is given by the following
theorem.

Theorem 10.20 (Symplectic rectification) Let f(x) be a function C1 in R2l

and x0 a point which is not critical for f , so that ∇xf(x0) =/ 0. Then there exists
a completely canonical transformation X = X(x), defined in a neighbourhood of
x0, such that f̂(X) = f(x(X)) = Xi for some i. �

To understand the meaning of this theorem, and the technique of its proof,
we start by analysing a simple non-trivial example.

Example 10.29 rectification of the harmonic oscillator
Consider the Hamiltonian H = 1

2p
2 + ω2/2q2 and the flow that it generates,

given by

ṗ = −ω2q, q̇ = p.

Endowed with the initial conditions p(0) = η, q(0) = ξ this gives

p = η cosωt− ωξ sinωt, q =
η

ω
sinωt+ ξ cosωt. (10.155)

The retrograde flow (with Hamiltonian − 1
2η

2 − ω2/2ξ2) with initial conditions
η(0) = p, ξ(0) = q is

η = p cosωt+ ωq sinωt, ξ = − p

ω
sinωt+ q cosωt. (10.156)

Our goal is to find a completely canonical transformation (in an open set excluding
the origin), such that the new coordinate P is given by

P =
1
2
p2 +

ω2

2
q2. (10.157)

Since the transformation is completely canonical, P is also the new Hamiltonian,
so that the Hamilton equations yield the solution

P = constant, Q = t− t0. (10.158)

After imposing equation (10.157), the problem is reduced to making a correct
choice for Q = Q(p, q). Its value along the motion must coincide with time (up to
translations). Hence in the plane (ξ, η) we take a regular curve ϕ(ξ, η) = 0, with
{ϕ,− 1

2η
2− 1

2ω
2ξ2} =/ 0 (so that the curve cannot be a trajectory of (10.156)). Fix

a point (q, p) such that the trajectory (10.156) intersects the curve and denote
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by t(p, q) the time of impact. If we denote the functions (10.156) by ξ(p, q, t),
η(p, q, t), then the function t(p, q) is defined implicitly by

ϕ[ξ(p, q, t), η(q, p, t)] = 0. (10.159)

We now complete the transformation (10.157), that is independent of time, with

Q = t(p, q) (10.160)

and check that the variables P,Q are canonical. Let us compute the Poisson
bracket {

t(p, q),
1
2
(p2 + ω2q2)

}
=

∂t

∂q
p− ∂t

∂p
ω2q. (10.161)

Equation (10.159) yields for the derivatives of t:

∂t

∂p
= −

(
∂ϕ

∂ξ

∂ξ

∂p
+

∂ϕ

∂η

∂η

∂p

)
1
D
,

∂t

∂q
= −

(
∂ϕ

∂ξ

∂ξ

∂q
+

∂ϕ

∂η

∂η

∂q

)
1
D
,

where

D =
∂ϕ

∂ξ

∂ξ

∂t
+

∂ϕ

∂η

∂η

∂t
= {ϕ(ξ, η),−H(η, ξ)} =/ 0.

Now it is easy to note that

∂t

∂q
p− ∂t

∂p
ω2q = − 1

D

{
∂ϕ

∂ξ

(
p
∂ξ

∂q
− ω2q

∂ξ

∂p

)
+

∂ϕ

∂η

(
p
∂η

∂q
− ω2q

∂η

∂p

)}
= − 1

D

[
∂ϕ

∂ξ
{ξ(p, q, t), H(p, q)}+ ∂ϕ

∂η
{η(p, q, t), H(p, q)}

]
.

Since the transformation (p, q) � (η, ξ) is canonical and the Poisson brackets are
preserved,

−{ξ(p, q, t), H(p, q)} = {ξ,−H(η, ξ)} = ∂ξ

∂t
,

−{η(p, q, t), H(p, q)} = {η,−H(η, ξ)} = ∂η

∂t
.

We finally find {
t(p, q),

1
2
(p2 + ω2q2)

}
= 1, (10.162)

which shows that the transformation is completely canonical. The time t(p, q) is
also equal to the time, on the direct flow, necessary to reach the point (p, q)
starting from the curve ϕ(ξ, η) = 0. Note that the curve ϕ(ξ, η) = 0 in this
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procedure is arbitrary. Therefore there exist infinitely many transformations of
the kind sought. For example, for ϕ(ξ, η) = ξ we find Q = (1/ω)arccot(p/ωq),
for ϕ(ξ, η) = η we find Q = −(1/ω)arccot(ωq/p), for ϕ(ξ, η) = ωξ + η we find
Q = (1/ω)arccot[(p− ωq)/(p+ ωq)], and finally for ϕ(ξ, η) = ωξ− η we have Q =
−(1/ω)arccot[(p+ ωq)/(p− ωq)]. Each of these formulae, together with (10.157),
gives a symplectic of the harmonic oscillator. Verify that in all cases, knowledge
of integrals (10.158) leads, through the transformation, to the known integral of
the harmonic motion. �

Proof of Theorem 10.14
By hypothesis, in a neighbourhood of x0 at least one of the first derivatives of f
is different from zero. We can assume without loss of generality that ∂f/∂p1 =/ 0.
As in the example, we consider the direct flow ṗ = −∇qf , q̇ = ∇pf with initial
conditions p = η, q = ξ and the inverse flow with Hamiltonian −f(η, ξ) and
initial conditions η = p, ξ = q. The condition ∂f/∂p1 =/ 0 can be interpreted as
∂ξ1/∂t = −∂f/∂η1 =/ 0 in the retrograde flow. Hence it is possible to express the
function t(p,q) explicitly from the equation

ξ1(p,q, t) = 0. (10.163)

As in the example, the function t(p,q) can also be defined in alternative ways,
but for simplicity we consider only (10.163), keeping in mind that for every
different choice of t(p,q) we obtain a different transformation. From (10.163) we
deduce

∂t

∂pi
= − ∂ξ1

∂pi

/
∂ξ1
∂t

,
∂t

∂qi
= − ∂ξ1

∂qi

/
∂ξ1
∂t

, with
∂ξ1
∂t

= −∂f(η, ξ)
∂η1

,

and hence

{t, f}(p,q) = 1
∂f/∂η1

{ξ1, f}(ξ,η) = 1

(we used the invariance of {ξ1, f} passing from (p,q) to (η, ξ) and in addition
{ξ1,−f} = ∂ξ1/∂t). Hence also on the direct flow the function t takes the values
of time t. Therefore, if l = 1, the transformation

P = f(p, q), Q = t(p, q)

is the one we were seeking, and the theorem is proved. If l > 1, we set

P1 = f(p,q), Q1 = t(p,q) (10.164)

and complete the transformation (independent of time) by defining

Pi = Xi = ηi(p,q, t(p,q)), Qi = Xi+l = ξi(p,q, t(p,q)), i = 2, . . . , l.
(10.165)
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To verify that the transformation is canonical we must compute all the
fundamental Poisson brackets. We start with {Pi, Pj}, with i, j =/ 1:

{Pi, Pj} =
l∑

k=1

(
∂ηi
∂qk

+
∂ηi
∂t

∂t

∂qk

)(
∂ηj
∂pk

+
∂ηj
∂t

∂t

∂pk

)

−
l∑

k=1

(
∂ηj
∂qk

+
∂ηj
∂t

∂t

∂qk

)(
∂ηi
∂pk

+
∂ηi
∂t

∂t

∂pk

)
= {ηi, ηj} − 1

∂ξ1/∂t

[
∂ηi
∂t

{ξ1, ηj} − ∂ηj
∂t

{ξ1, ηi}
]
.

Since (η, ξ) are canonical variables, then {ηi, ηj} = 0 for every i, j and {ξ1, ηi} = 0
for i > 1. Therefore {Pi, Pj} = 0 for i, j =/ 1. The expression for {Qi, Qj} for
i, j =/ 1 is analogous, with ξi and ξj in place of ηi, ηj ; the conclusion is the
same. The evaluation of {Pi, f} and {Qi, f} with i > 1 is made easy by the
fact that these are the derivatives of the functions ηi(p(t),q(t), t), ξi(p(t),q(t), t)
in the direct Hamiltonian flow, along which the functions ηi, ξi are all constant.
The Poisson brackets are again zero. It is not difficult to check that

{Q1, Pi} = {t, Pi} = − 1
∂ξ1/∂t

{ξ1, ηi} = 0, for i > 1,

and similarly

{Q1, Qi} = {t, Qi} = − 1
∂ξ1/∂t

{ξ1, ξi} = 0.

We must finally check that {Qi, Pj} = δij for i, j =/ 1. Proceeding as usual, we
find

{Qi, Pj} = {ξi, ηj} − 1
∂ξ1/∂t

[
∂ξi
∂t

{ξ1, ηj} − ∂ηj
∂t

{ξ1, ξi}
]
= δij , i, j =/ 1.

This concludes the proof of the theorem. �

Remark 10.31
Symplectic rectification leads to a pair of conjugate variables taking respect-
ively the values of the Hamiltonian (constant) and of time, while (for l > 1) the
remaining coordinates are all first integrals of the motion. �

Example 10.30
We seek a symplectic rectification of the system with Hamiltonian

f(p,q) = p1q2 − p2q1.

Considering directly the equations of the retrograde motion, with Hamiltonian
−f(η, ξ) = −η1ξ2+ η2ξ1, and initial values ηi(0) = pi, ξi(0) = qi, i = 1, 2, we find

ξ1(p,q, t) = q1 cos t− q2 sin t, ξ2(p,q, t) = q2 cos t+ q1 sin t,

η1(p,q, t) = p1 cos t− p2 sin t, η2(p,q, t) = p2 cos t+ p1 sin t.
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Assuming, for example, that q2 =/ 0, we find that the transformation we seek
(setting ξ1 = 0) is

P1 = p1q2 − p2q1, Q1 = arccot
q1
q2
,

P2 = p2 cos
(
arccot

q1
q2

)
+ p1 sin

(
arccot

q1
q2

)
,

Q2 = q2 cos
(
arccot

q1
q2

)
+ q1 sin

(
arccot

q1
q2

)
.

Therefore, possible expressions for P2, Q2 are

P2 =
p1q1 + p2q2√

q21 + q22
, Q2 =

√
q21 + q22 .

The new coordinates characterise the first integrals P1 (constant Hamiltonian),
P2, Q2. Since the motion generated in the space (p,q) is a uniform rotation in
the plane q1, q2 together with a uniform rotation in the plane p1, p2, it is clear
that q21+q22 = R2 = constant (and also p21+p22), while P2 = constant is equivalent
to p · q = constant. �

10.8 Infinitesimal and near-to-identity canonical
transformations. Lie series

The canonical transformations that are ‘near’ (in a sense to be made precise)
to the identity transformation have great importance. Indeed, as we shall see
in Chapter 12 when we treat the canonical theory of perturbations, using these
nearly identical transformations one can study the dynamics of many interesting
mechanical systems. For most applications, we only use completely canonical
transformations ‘near to identity’. Hence in this and the following sections we
study only time-independent transformations. Due to Remark 10.20 this is not
a real restriction.

Definition 10.19 Let f and g be two functions of class C∞ defined on an open
set A ⊂ R2l, with values in Rl. Consider ε ∈ R, |ε| � 1. An infinitesimal
coordinate transformation can be expressed as

p = P+ εf(P,Q),

q = Q+ εg(P,Q).
(10.166)

�

Theorem 10.21 If ε is sufficiently small, then the transformation defined by
(10.166) is invertible, i.e. for every open bounded subset C of A, with C ⊂ A,
there exists ε0 > 0 such that for every ε ∈ R, |ε| < ε0, the transformation (10.166)
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restricted to C is invertible. The inverse transformation is given, to first order in
ε, by

P = p− εf(p,q) + O(ε2),

Q = q− εg(p,q) + O(ε2).
(10.167)

Proof
The Jacobian matrix of the transformation (10.166) is

∂(p,q)
∂(P,Q)

= 1+ ε

(∇Pf ∇Qf
∇Pg ∇Qg

)
,

where 1 indicates the 2l×2l identity matrix. Since f and g are in C∞, their first
derivatives are uniformly bounded on each compact subset of A. Therefore there
exists a constant M > 0 such that∣∣∣∣det ∂(p,q)

∂(P,Q)

∣∣∣∣ > 1− εM

on C. It follows that if |ε| < ε0 = 1/M , the Jacobian is non-singular and the
transformation is invertible. Since in addition

f(P,Q) = f(p,q) + O(ε), g(P,Q) = g(p,q) + O(ε),

from (10.166) we can immediately deduce (10.167). �

Definition 10.20 An infinitesimal transformation (10.166) defines a canonical
infinitesimal transformation if

{pi, pj} = {qi, qj} = O(ε2),

{qi, pj} = δij + O(ε2),
(10.168)

where i, j = 1, . . . , l, and the Poisson brackets are computed with respect to the
variables (P,Q). �

The infinitesimal canonical transformations are the transformations which
preserve the fundamental Poisson brackets, up to terms of order O(ε2).

Theorem 10.22 The infinitesimal transformation (10.166) is canonical if and
only if there exists a function K : A → R of class C∞ such that

fi(P,Q) = − ∂K

∂Qi
,

gi(P,Q) =
∂K

∂Pi
,

(10.169)

where i = 1, . . . , l. We say that K is the Hamiltonian associated with the
infinitesimal canonical transformation (10.166).
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Proof
The Jacobian matrix of the system (10.166) is J̃ = 1+ εJ , where

J =
(∇Pf ∇Qf
∇Pg ∇Qg

)
is the matrix ∇Xφ(X), where φ is the vector field (f(X),g(X)). The condition
that the transformation is canonical can be written as

(1+ εJT )I(1+ εJ) = I+ O(ε2),

which is equivalent to

JT I+ IJ = 0,

and hence to the fact that J is Hamiltonian (Definition 10.1). It follows from
Theorem 10.5 that the transformation is canonical if and only if the field (f ,g)
is Hamiltonian, i.e. if it is generated by a Hamiltonian K(P,Q). �

Hamiltonian matrices are sometimes also called infinitesimally symplectic
matrices. This is due to the property just seen, that if J is Hamiltonian then
1 + εJ is symplectic to first order in ε. Due to (10.169) we note that, by inter-
preting ε as an infinitesimal ‘time’, the transformation (10.166) is a canonical
infinitesimal transformation if and only if (up to terms of order O(ε2)) it has the
structure of a Hamiltonian flow with respect to the parameter ε.

Example 10.31
The infinitesimal transformation

qi = Qi + εQi, pi = Pi − εPi, i = 1, . . . , l (10.170)

is canonical. Indeed {qi, qj} = {pi, pj} = 0 and

{qi, pj} = {Qi + εQi, Pj − εPj} = {Qi, Pj} − ε2{Qi, Pj} = δij(1− ε2).

The inverse transformation is

Qi =
qi

1 + ε
= qi − εqi + O(ε2), Pi =

pi
1− ε

= pi + εpi + O(ε2),

and the function K is K =
∑l

i=1 PiQi. �

Example 10.32
The infinitesimal transformation

p = P + 2εQ(1 + cosP ), q = Q+ εQ2 sinP (10.171)

is canonical. Indeed,

{q, p} = (1 + 2εQ sinP )(1− 2εQ sinP )− ε(Q2 cosP )2ε(1 + cosP )

= 1− 2ε2Q2(1 + cosP + sin2 P ),
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and since l = 1, the Poisson bracket {q, p} is equal to the Jacobian determinant of
the transformation. Therefore, if (P,Q) ∈ C, where C is the rectangle (−π, π)×
(−1, 1), the condition ε < 1/

√
6 is sufficient to ensure the invertibility of the

transformation. Evidently the associated Hamiltonian is

K = −Q2(1 + cosP ). (10.172)
�

While the infinitesimal canonical transformations are canonical in the approx-
imation O(ε2), the near-to-identity canonical transformations which we are about
to define depend on a small parameter ε, but are exactly canonical as ε varies.

Definition 10.21 A one-parameter family of completely canonical transforma-
tions x = x(X, ε) from the variables x = (p,q) to X = (P,Q) is near to identity
if it has the form

p = P+ εf(P,Q, ε),

q = Q+ εg(P,Q, ε),
(10.173)

where ε is a parameter that varies in an open interval I = (−ε0, ε0), with
0 < ε0 � 1, the functions f , g, A × I → Rl are of class C∞ in all their
arguments, and A is an open set in R2l. �

Theorem 10.23 Let C be a compact subset of R2l. Every near-to-identity canon-
ical transformation defined in an open neighbourhood of C admits a generating
function F (q,P, ε) of the form

F (q,P, ε) =
l∑

i=1
qiPi + εF(q,P, ε), (10.174)

and vice versa. Here F is a function of class C∞ in all its arguments, for every
ε ∈ (−ε0, ε0), where ε0 is a sufficiently small positive constant.

Proof
From the second of equations (10.173) it follows that

∂qi
∂Qj

= δij + ε
∂gi
∂Qj

,

and therefore as (P,Q) ∈ C varies, the condition (10.121), i.e. det(∇Qq) =/ 0, is
certainly satisfied, if ε0 is sufficiently small. Hence there exists a regular function
Q(q,P, ε) such that

Q = q+ εQ(q,P, ε).

Substituting it into the first of equations (10.173) we find

p = P+ εP(q,P, ε),
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where P(q,P, ε) = f(P,q+εQ(q,P, ε), ε). We now recall that if the transformation
(10.173) is canonical, the form

∑l
i=1(pi dqi +Qi dPi) can be integrated to find

the generating function (10.175) (see (10.117)).
Conversely, since (q,P) varies in a compact subset of R2l, if ε0 is sufficiently

small then

det
(

∂2F

∂qi∂Pj

)
= det

(
δij + ε

∂2F

∂qi∂Pj

)
> 0,

and the equations

p = ∇qF = P+ ε∇qF, Q = ∇PF = q+ ε∇PF (10.175)

generate a near-to-identity canonical transformation. �

Example 10.33
Consider the function

F (q, P, ε) = qP + εq2(1 + cosP ). (10.176)

Since ∂2F/∂q∂P = 1 − 2εq sinP , as (q, P ) varies in a compact subset, if |ε| <
ε0 is sufficiently small, the function F generates a near-to-identity canonical
transformation. For example if (q, P ) ∈ [−a, a] × [−π, π] we set ε0 < 1/2a. The
transformation generated by F is defined implicitly by

Q = q − εq2 sinP, p = P + 2εq(1 + cosP ).

Solving the first equation for q we find

q =
1

2ε sinP

(
1−

√
1− 4εQ sinP

)
,

where the choice of negative sign for the determination of the square root is
fixed by the requirement that q → Q when ε → 0. Taking the Taylor series of
the square root:

−√
1− x = −1 + x

2
+

∞∑
n=2

(2n− 3)!!
2nn!

xn,

and taking into account that x = 4εQ sinP we find

q = Q+ εQ2 sinP +
∞∑
j=2

(2j − 1)!!
(j + 1)!

2jεj(sinP )jQj+1. (10.177)

The same result is obtained by an application of Lagrange’s formula (see
Theorem 5.5):

q = Q+ εQ2 sinP +
∞∑
j=2

εj

j!
(sinP )j

dj−1

dQj−1Q
2j ,
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considering that

dj−1

dQj−1Q
2j =

2j(2j − 1)!!
j + 1

Qj+1,

as is easily verified by induction. Substituting the expression for q into the
expression for p we arrive at

p = P + 2ε(1 + cosP )

(
Q+ εQ2 sinP +

∞∑
j=2

(2j − 1)!!
(j + 1)!

2jεj(sinP )jQj+1

)
.

(10.178)
�

The comparison between Examples 10.32 and 10.33 sheds light on the differ-
ence between infinitesimal canonical transformations and near-identical canonical
transformations. Clearly, the transformation (10.171) coincides with equations
(10.177), (10.178) up to terms of order O(ε2). Since the Hamiltonian associated
with (10.171) is K = −Q2(1 + cosP ), comparing this with (10.176) suggests
that by setting F(q,P) = −K(q,P) in Theorem 10.17 we obtain the generating
function of a near-to-identity canonical transformation starting from an infinites-
imal canonical transformation. This is precisely the conclusion of the following
theorem.

Theorem 10.24 To every infinitesimal canonical transformation (10.166) with
associated Hamiltonian K (see (10.169)) there corresponds a near-to-identity
canonical transformation. The latter coincides with (10.166) up to terms of order
O(ε2). The transformation can be obtained starting from the generating function
(10.174) by setting F = −K(q,P). Conversely, to every near-to-identity canonical
transformation (10.173) there corresponds an infinitesimal canonical transform-
ation (10.166) obtained by neglecting terms of order O(ε2) in (10.173). The
associated Hamiltonian is given by K = −F(Q,P, 0).

Proof
To prove the first statement it is enough to note that from equation (10.176),
setting F = −K(q,P), it follows that

p = P− ε∇qK, Q = q− ε∇PK,

and hence

p = P− ε∇QK + O(ε2), q = Q+ ε∇PK.

The second part of the theorem has an analogous proof. �
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We saw in Theorem 10.13 that the Hamiltonian flow is canonical. Considering
time as a parameter and setting ε = t in an interval (−ε0, ε0), this flow gives an
example of a near-to-identity canonical transformation, while neglecting terms of
order O(ε2) it provides an example of an infinitesimal canonical transformation.
Indeed, consider the canonical equations (10.90) for a Hamiltonian H(p,q), where
(P,Q) denote the initial conditions (at time t = ε = 0) and (p,q) denote the
solutions of (10.90) at time t = ε. An integration of equations (10.90) that is
accurate to first order in ε yields

p = P− ε∇QH(P,Q) + O(ε2),

q = Q+ ε∇PH(P,Q) + O(ε2),
(10.179)

and hence equations (10.169) are satisfied with K = H.
We now show how it is always possible, at least in principle, to formally

construct a near-to-identity transformation associated with a given Hamiltonian
H.
Let

(p,q) = St(P,Q) = (p(P,Q, t),q(P,Q, t)) (10.180)

be the Hamiltonian flow associated with H. As we saw in Section 10.5, St defines
an evolution operator U t acting on the observables of the system. If the Hamilto-
nian H(p,q) is independent of time, and we consider the action of U t on the
functions f(P,Q) ∈ C∞(R2l), then we have

d
dt
(U tf)(P,Q) = ({f,H} ◦ St)(P,Q) = {f,H}(p,q) = (−DHf)(p,q), (10.181)

where DH = {H, ·} (see (10.145)) is called an infinitesimal generator of U t.

Theorem 10.25 For every t ∈ R we formally have that

U t = e−tDH , (10.182)

i.e.

(U tf)(P,Q) =
∞∑
j=0

(−t)j

j!
(Dj

Hf)(P,Q) (10.183)

as long as the series converges. �

Remark 10.32
Here Dj

H denotes the operator DH applied j times if j ≥ 1, and the iden-
tity operator D0

Hf = f if j = 0. The series expansion (10.183) for the evolution
operator U t is called the Lie series. �

Proof of Theorem 10.25
By the theorem of the existence and uniqueness for ordinary differential equations,
the Hamiltonian flow is uniquely determined and it is a one-parameter group
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of diffeomorphisms. Therefore it is sufficient to check that the series (10.183)
solves equation (10.181). Formally, this has an immediate verification: indeed, by
differentiating the series (10.183) term by term we find

d
dt

∞∑
j=0

(−t)j

j!
(Dj

Hf)(P,Q)

= −
∞∑
j=1

(−t)j−1

(j − 1)!
(Dj

Hf)(P,Q)

= −DH

( ∞∑
j=1

(−t)j−1

(j − 1)!
(Dj−1

H f)(P,Q)

)

= −DH

( ∞∑
n=0

(−t)n

n!
(Dn

Hf)(P,Q)

)
= −DH(e−tDHf)(P,Q) = {f,H}(p,q),

where we set n = j − 1. �

Example 10.34
Let l = 1, H(q, p) = qp. The Hamiltonian flow is clearly given by

p = e−tP, q = etQ.

Consider the functions f1(p, q) = q and f2(p, q) = p and apply equations (10.183),
to obtain

p = U tf2 =
∞∑
j=0

(−t)j

j!
(Dj

Hp)|(p,q)=(P,Q),

q = U tf1 =
∞∑
j=0

(−t)j

j!
(Dj

Hq)|(p,q)=(P,Q).

On the other hand, −DHq = {q,H} = q, D2
Hq = −DH(−DHq) = q, and hence

(−DH)jq = q for every j ≥ 1. In addition (−DH)jp = (−1)jp, and substituting
into the series we find

p = P

∞∑
j=0

(−t)j

j!
= e−tP, q = Q

∞∑
j=0

tj

j!
= etQ.

�

Example 10.35
Let l = 1, H(p, q) = (q2 + p2)/2. The associated Hamiltonian flow is

p = −Q sin t+ P cos t, q = Q cos t+ P sin t.
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Applying (10.183) to q and p, and observing that −DHq = p, D2
Hq = −DHp = −q,

−D3
Hq = = −D2

Hp = −p and D4
Hq = −D3

Hp = q, we find

p =
∞∑
j=0

tj

j!
(−DH)jp = P

∞∑
j=0

(−1)jt2j
(2j)!

−Q

∞∑
j=0

(−1)jt2j+1
(2j + 1)!

= P cos t−Q sin t,

q =
∞∑
j=0

tj

j!
(−DH)jq = Q

∞∑
j=0

(−1)jt2j
(2j)!

+ P

∞∑
j=0

(−1)jt2j+1
(2j + 1)!

= Q cos t+ P sin t.

For example, if we consider a function f(p, q) = qp, on the one hand, we have

(U tf)(P,Q) = (Q cos t+ P sin t)(−Q sin t+ P cos t)

= (P 2 −Q2) sin t cos t+ PQ(cos2 t− sin2 t),

while, on the other, from −DHf = {qp,H} = p2 − q2, D2
Hf = −4pq and from

equation (10.183) it follows that

(U tf)(P,Q) =
∞∑
j=0

tj

j!
(−DH)

j
f = PQ+ t(P 2 −Q2)

+
t2

2
(−4PQ) + t3

3!
(−4) (P 2 −Q2)+ · · · .

This coincides with the series expansion of (P 2 − Q2) sin t cos t + PQ
(cos2 t− sin2 t). �

Example 10.36
Let l = 1, H = p2/2. Then

p = P,

q = Pt+Q.

If f(p, q) = pnqm, with n and m non-negative integers, then (U tf)(P,Q) =
(Pt+Q)mPn. On the other hand, (−DH)jf = m(m− 1) . . . (m− j +1)pn+jqm−j

for j = 1, . . . ,m, and (−DH)jf = 0 for all j > m. Applying equations (10.183)
we find

(U tf)(P,Q) =
m∑
j=0

tj

j!
m(m− 1) . . . (m− j + 1)Pn+jQm−j

= Pn

m∑
j=0

(
m

j

)
tjP jQm−j = Pn(Pt+Q)m

(in the last equality we used Newton’s binomial formula). �

Example 10.37
Let H = (q2p2)/2. Since pq =

√
2E is constant, the canonical equations can

immediately be integrated:

p = P e−PQt, q = QePQt.
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On the other hand, (−DH)jp = (−1)jqjpj+1, (−DH)jq = pjqj+1, and hence by
equations (10.183) we have

p =
∞∑
j=0

(−t)j

j!
QjP j+1 = P e−PQt,

q =
∞∑
j=0

tj

j!
Qj+1P j = QePQt.

�

10.9 Symmetries and first integrals

In this section we briefly consider the relations between the invariance properties
of the Hamiltonian for groups of canonical transformations and the first integrals.
For a more detailed study of this important topic in analytical mechanics, see
Arnol’d (1979a) (Appendix 5).
Let H : R2l → R be a regular Hamiltonian.

Definition 10.22 A completely canonical transformation x = x̃(X) of R2l is a
symmetry of H if the Hamiltonian is invariant for the transformation, and hence
if

H(x̃(X)) = H(X). (10.184)
�

Example 10.38
If H has one cyclic coordinate xi (note that xi can be either a coordinate q or
a kinetic momentum p), H is invariant for the translations xi → xi + α. �

Example 10.39
The rotations around the origin in R2:

p = P cosα+Q sinα, q = −P sinα+Q cosα,

are a symmetry of H = (p2 + q2)/2. �

Another class of interesting examples is given by the following proposition.

Proposition 10.7 If H(p,q) is the Legendre transform of the Lagrangian
L(q, q̇), and the point transformation q = q̃(Q) is admissible for L (see
Definition 9.1), the associated completely canonical transformation

q = q̃(Q),

p = (JT (Q))−1P,
(10.185)

where J = (Jij) = (∂q̃i/∂Qj), is a symmetry of the Hamiltonian H.
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Proof
In the new variables the Hamiltonian Ĥ(P,Q) is obtained as the transform of
H(p,q) and it is also the Legendre transform of the Lagrangian L̃(Q, Q̇) =
L(q̃(Q), J(Q)Q̇), i.e.

Ĥ(P,Q) = H((JT )−1P, q̃(Q)) = P · Q̇− L̃(Q, Q̇).

We now satisfy the hypothesis L̃(Q, Q̇) = L(Q, Q̇); hence to compare the
new with the old Hamiltonian we must compare P · Q̇ with p · q̇. We already
know that they take the same values (see Section 10.2), but we want to see
that if p · q̇ = F (p,q) then P · Q̇ = F (P,Q). Obviously it is enough to show
that if q̇ = f(p,q) then Q̇ = f(P,Q). This holds because q̇ = f(p,q) can be
obtained by inverting the system p = ∇q̇L(q, q̇). Because of the admissibility
of the tramsformation, this sytem is formally identical to P = ∇Q̇L(Q, Q̇). In
conclusion Ĥ(P,Q) = H(P,Q). �

Definition 10.23 A one-parameter family s ∈ R of completely canonical trans-
formations x = x̃(X, s) of R2l is called a one-parameter group (of completely
canonical transformations) if it possesses the following properties:

(1) x̃(X, 0) = X for all X ∈ R2l;
(2) x̃(x̃(X, s1), s2) = x̃(X, s1 + s2) for every s1, s2 ∈ R and for every X ∈ R2l.

If for every s ∈ R the transformation x̃(X, s) is a symmetry of H, the group
is a one-parameter group of symmetries of H. �

Remark 10.33
For the groups of point transformations see Problem 9 of Section 10.14. �

We now examine how it is possible to interpret any one-parameter group of
completely canonical transformations as a Hamiltonian flow.

Definition 10.24 Let x̃(X, s) be a one-parameter group of completely canonical
transformations of R2l. The vector field

v(x) =
∂x̃
∂s

(x, 0) (10.186)

is called an infinitesimal generator of the group of transformations. �

The following theorem clarifies the role of the infinitesimal generator.

Theorem 10.26 The infinitesimal generator v(x) of a one-parameter group
x̃(X, s) of completely canonical transformations is a Hamiltonian field. In addition
the group of transformations coincides with the corresponding Hamiltonian flow,
and hence it is a solution of the system

ẋ(t) = v(x(t)), x(0) = X. (10.187)
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Proof
We first check that x̃(X, t) is a solution of equations (10.187). Because of the
group properties we have, setting x(t) = x̃(X, t), that

ẋ(t) = lim
∆ t→0

x̃(X, t+∆ t)− x̃(X, t)
∆ t

= lim
∆ t→0

x̃(x(t),∆ t)− x̃(x(t), 0)
∆ t

= v(x(t)).

Since by the hypothesis, the Jacobian matrix J = ∇Xx̃(X, t) is symplectic
for every t, we deduce by Lemma 10.1 that the matrix B = (∂J/∂t)J−1 is
Hamiltonian. Now note that we can write

∂J

∂t
=

∂

∂t
∇Xx̃(X, t) = ∇Xv(x̃(X, t)) = (∇xv)J.

Using the fact that x̃(X, t) solves equations (10.187), it follows that ∇xv(x) =
= (∂J/∂t)J−1 and hence the field v(x) is Hamiltonian (Theorem 10.5). �

We can now prove the following extension of Noether’s theorem. Recall how
in the Lagrangian formulation (Theorem 4.4) the validity of this theorem was
limited to symmetry groups associated to point transformations.

Theorem 10.27 (Noether, Hamiltonian formulation) If a system with Hamilto-
nian H(x) has a one-parameter group of symmetries x̃(X, t), the Hamiltonian
K(x) of which the group is the flow is a first integral for the flow associated
with H.

Proof
The invariance of H can be interpreted as its being constant along the flow
generated by K. Therefore LvH = {H,K} = 0.
Conversely this implies that K is a first integral for the flow generated by H.

�

In summary, if f(x), g(x) are in involution, recalling Remark 10.30 we
see that:

(i) the Hamiltonian flow generated by f(x) has g(x) as first integral and vice
versa ;

(ii) the two flows associated with f and g commute;
(iii) the flow generated by f(x) represents a symmetry for the Hamiltonian g(x)

and vice versa.

10.10 Integral invariants

In this section, which can be omitted at a first reading, we want to character-
ise the canonical transformations using the language of differential forms (see
Appendix 4). For simplicity, we limit the exposition to the case of differential
forms in R2l, while in the next section we introduce the notion of a symplectic
manifold which allows us to extend the Hamiltonian formalism to a wider context.
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Theorem 10.28 A transformation (p,q) = (p(P,Q),q(P,Q)) is completely
canonical if and only if

l∑
i=1

dpi ∧ dqi =
l∑

i=1
dPi ∧ dQi. (10.188)

�

Remark 10.34
A transformation satisfying (10.188) is also called a symplectic diffeomorphism
as it preserves the symplectic 2-form1

ω =
l∑

i=1
dpi ∧ dqi. (10.189)

�

Proof of Theorem 10.28
The proof follows from an immediate application of the Lie condition (10.190).
From

l∑
i=1

pi dqi −
l∑

i=1
Pi dQi = df (10.190)

(note that, since the transformation is independent of time, d̃ = d), if we perform
an external differentiation of both sides and take into account d2f = 0 we find
(10.188). Conversely, since (10.188) is equivalent to

d

(
l∑

i=1
pi dqi −

l∑
i=1

Pi dQi

)
= 0, (10.191)

we immediately deduce (10.190) because of Poincaré’s lemma (Theorem 2.2,
Appendix 4): every closed form in R2l is exact. �

From Theorem 10.188 we easily deduce some interesting corollaries.

Corollary 10.7 A canonical transformation preserves the differential 2k-forms:

ω2k =
∑

1≤i1<i2<...<ik≤l
dpi1 ∧ . . . ∧ dpik ∧ dqi1 ∧ . . . ∧ dqik , (10.192)

where k = 1, . . . , l.

Proof
If the transformation is canonical, it preserves the 2-form ω, and hence it also
preserves the external product of ω with itself k times (see (A4.20)):

Ωk = ω ∧ . . . ∧ ω =
∑

i1,...,ik
dpi1 ∧ dqi1 ∧ . . . ∧ dpik ∧ dqik , (10.193)

1 Be careful: in spite of the same notation, this is not to be confused with the Poincaré–
Cartan form.
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which is proportional to ω2k:

Ωk = (−1)k−1k!ω2k. (10.194)
�

Evidently Corollary 10.21 for k = l can be stated as follows.

Corollary 10.8 A canonical transformation preserves the volume form

ω2l = dp1 ∧ . . . ∧ dpl ∧ dq1 ∧ . . . ∧ dql. (10.195)
�

Remark 10.35
The forms ω2k have a significant geometrical interpretation. If k = 1, the integral
of the form ω on a submanifold S of R2l is equal to the sum of the areas
(the sign keeps track of the orientation) of the projections of S onto the planes
(pi, qi). Analogously, the integral of ω2k is equal to the sum of the measures (with
sign) of the projections of S onto all the hyperplanes (pi1 , . . . , pik , qi1 , . . . , qik),
with 1 ≤ i1 < . . . < ik ≤ l. It follows that a completely canonical transformation
preserves the sum of the measures of the projections onto all coordinate planes
and hyperplanes (pi1 , . . . , pik , qi1 , . . . , qik).

10.11 Symplectic manifolds and Hamiltonian dynamical systems

Definition 10.25 A differentiable manifold M of dimension 2l is a symplectic
manifold if there exists a closed non-degenerate differential 2-form2 ω, i.e. such
that dω = 0 and, for every non-zero vector v ∈ TmM tangent to M at a point m,
there exists a vector w ∈ TmM such that ω(v, w) =/ 0. �

Example 10.40
As seen in Section 10.1, every real vector space of even dimension can be endowed
with a symplectic structure which makes it into a symplectic manifold. An
example is R2l with the standard structure ω =

∑l
i=1 dpi ∧ dqi. �

Example 10.41
The tori of even dimension T2l with the 2-form ω =

∑l
i=1 dφi ∧ dφi+l are

symplectic manifolds. This is an interesting case. Indeed, because of the particular
topology (the tori are not simply connected) it is easy to construct examples of
vector fields which are locally Hamiltonian, but not globally a Hamiltonian. For
example, the infinitesimal generator of the one-parameter group of translations
φi → φi + αit, where α ∈ R2l is fixed, is evidently v = α and it is a locally,
but not globally, a Hamiltonian vector field, since every function H : T2l → R
necessarily has at least two points where the gradient, and hence the field I∇φH,
vanishes. �

2 Be careful: not to be confused, in spite of the same notation, with the Poincaré–Cartan
form, which is a 1-form on M × R.
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Example 10.42
A natural Lagrangian system is a mechanical system subject to ideal constraints,
frictionless, fixed and holonomous, and subject to conservative forces. Its space of
configurations is a differentiable manifold S of dimension l (the number of degrees
of freedom of the system) and the Lagrangian L is a real function defined on the
tangent bundle of S, L : TS → R. The kinetic energy T (q, q̇) = 1

2

∑l
i,j=1 aij q̇iq̇j

defines a Riemannian metric on S:(ds)2 =
∑l

i,j=1 aijqidqj , and the Lagrangian
can be written then as L = 1

2 |ds/dt|2 − V (q), where V is the potential energy
of the conservative forces. The Hamiltonian H is a real function defined on the
cotangent bundle M = T ∗S of the space of configurations H : M → R, through
a Legendre transformation applied to the Lagrangian L : H = p · q̇ − L. If A
denotes the matrix aij of the kinetic energy, H(p,q) = 1

2p · A−1p + V (q). The
cotangent bundle M = T ∗S has a natural symplectic manifold structure with the
symplectic Z-from ω = d

(∑l
i=1 pidqi

)
. �

Remark 10.36
The 2-form ω induces an isomorphism between the tangent space TsS and the
cotangent space T ∗

s S to S at any point s ∈ S. Indeed, it is enough to associate
with every vector v ∈ TsS the covector ω(v, ·). If the chosen system of local
coordinates (p,q) of T ∗

s S is such that ω =
∑l

i=1 dpi ∧ dqi, the representative
matrix of the isomorphism is the matrix I given by (10.1). �

It is possible to construct an atlas of M in which the symplectic 2-form ω
has a particularly simple structure (just as in a vector space endowed with a
symplectic product, there exists a symplectic basis with respect to which the
product takes the standard form (10.16)).

Theorem 10.29 (Darboux) Let M be a symplectic manifold. There always exists
an atlas of M , called the symplectic atlas, with respect to which the 2-form ω is
written as ω =

∑l
i=1 dpi ∧ dqi. �

For the proof see Abraham and Marsden (1978) or Arnol’d (1978a).
In analogy with Definition 10.8 of a completely canonical transformation in

R2l, we have the following.

Definition 10.26 A local coordinate transformation of M is called (completely)
canonical if its Jacobian matrix is at every point a symplectic matrix. �

Remark 10.37
The transformations from one chart to another chart of the symplectic atlas,
whose existence is guaranteed by the theorem of Darboux, are automatically
canonical transformations. �

Definition 10.27 Let g : M → M be a diffeomorphism of a symplectic manifold.
Then g is a symplectic diffeomorphism if g∗ω = ω. �
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Remark 10.38
The symplectic diffeomorphisms of a symplectic manifold M constitute a subgroup
SDiff(M) of the group Diff(M) of diffeomorphisms of M . �

Definition 10.28 A Hamiltonian dynamical system is the datum of a symplectic
manifold M endowed with a 2-form ω and of a function H : M → R, the
Hamiltonian, inducing the Hamilton equations

ẋ = I dH(x), (10.196)

where x = (p,q) ∈ M , and I denotes the isomorphism between the cotangent
bundle T ∗

xM and the space tangent to TxM . �

Remark 10.39
Theorem 3.6 regarding a canonical Hamiltonian flow, together with the previous
definitions, guarantees that the one-parameter group of symplectic diffeomorph-
isms St, solutions of (10.196), is a group of symplectic diffeomorphisms of M ,
and hence that for every t ∈ R we have

(St)∗ω = ω. (10.197)

In constrast with the case when M = R2l, in general it is not true that
every one-parameter group of diffeomorphisms is the Hamiltonian flow of a
Hamiltonian H : M → R (see Theorem 9.1). Example 11.2 provides a significant
counterexample to the extension of Theorem 9.1 to any symplectic manifold. �

10.12 Problems

1. Find the conditions ensuring that the linear transformation of R4 given
by ⎛⎜⎜⎝

P1
P2
Q1
Q2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a11 a12 a13 0
a21 a22 0 a24
0 a32 a33 0
a41 0 a43 0

⎞⎟⎟⎠
⎛⎜⎜⎝
p1
p2
q1
q2

⎞⎟⎟⎠
(a) preserves orientation and volume;
(b) is symplectic.

2. Let A be a symplectic matrix, A ∈ Sp(l,R). Prove that the characteristic
polynomial of A:

PA(λ) = det(A− λ1)

is reciprocal, and hence that it satisfies the condition

PA(λ) = λ2lPA(λ−1).
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Deduce that if λ is an eigenvalue of A, λ−1 is also an eigenvalue of A (see
Arnol’d 1978b).
Analogously prove that the characteristic polynomial of a Hamiltonian matrix

is even.
3. Let B be a Hamiltonian matrix and let λ, µ be two of its eigenvalues such

that λ + µ =/ 0. Prove that the corresponding eigenspaces are I-orthogonal (i.e.
if Bv = λv and Bw = µw then vT Iw = 0).

4. Assume that the Hamiltonian matrix B has 2n distinct eigenvalues
λ1, . . . , λn,−λ1, . . . . . . ,−λn (see Problem 2). Prove that there exists a symplectic
matrix S (possibly complex) such that S−1BS = diag(λ1, . . . , λn,−λ1, . . . ,−λn).

5. Prove that a real 2l × 2l matrix P is symmetric, positive definite and

symplectic if and only if P = exp(B), where the matrix B is
(
a b
b −a

)
, a = aT

and b = bT .
6. Prove Theorem 10.3.
7. Find the completely canonical linear transformation which maps the

Hamiltonian H = 1
2 (P1Q1 + P2Q2)2 into H = 1

8 (p
2
1 − q21 + p22 − q22)

2.
8. Prove that the transformation

q1 =
Q2
1 −Q2

2

2
,

q2 = Q1Q2,

p1 =
P1Q1 − P2Q2

Q2
1 +Q2

2
,

p2 =
P2Q1 + P1Q2

Q2
1 +Q2

2

is completely canonical, and check that it transforms the Hamiltonian H =
1/2m(p21 + p22)− k/

√
q21 + q22 to K = 1/2m(Q2

1 +Q2
2)(P

2
1 + P 2

2 − 4mk).
9. Let B and C be two Hamiltonian matrices. Prove that if [B,C] = 0, for

every s, t ∈ R, the symplectic matrices etB and esC commute:

etBesC = etB+sC = esCetB .

10. Let a ∈ R be fixed. Prove that the following transformation of R2:

x′
1 = a− x2 − x21, x′

2 = x′
1,

is invertible and preserves the standard symplectic structure of R2. Compute the
inverse transformation.
11. Consider the transformation P = P(p) with non-singular Jacobian mat-

rix J . How can it be completed to obtain a canonical transformation? (Answer:
Q = (JT )−1q.)
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12. Prove that the transformation

P =
p√

1 + q2p2
, Q = q

√
1 + q2p2

is completely canonical and find a generating function F (q, P ). (Answer:
F (q, P ) = arcsinPq.) Compute all other admissible generating functions.
13. Let P = pα, where α =/ 0 is a real parameter. Determine Q as a function

of (q, p) in such a way that the transformation (q, p) → (Q,P ) thus obtained is
completely canonical and find a generating function for it. (Answer: Q = p1−αq+
g(p), where g is an arbitrary regular function; F (q, P ) = qP 1/α +

∫ P

0 ĝ(P ′) dP ′,
where ĝ(P ) = g(P 1/α).)
14. Determine the real parameters k, l, m, n such that the transformation

P = pkql, Q = pmqn

is completely canonical and find all generating functions. (Answer: k = 1 − m,
l = −m, n = 1+m; F1(q,Q) = −m (Q/q)1/m with the condition m �= 0, F2(q, P ) =
(1−m)(qP )1/(1−m) if m �= 1, F3(p,Q) = −(1+m)(pQ)1/(1+m) with the condition
m �= −1 and F4(p, P ) = −m (p/P )1/m if m �= 0.)
15. Prove that the transformation

P = qcotp, Q = log
(
sin p
q

)
is completely canonical. Determine the generating functions F1(q,Q) and F2(q, P ).
(Answer: F1(q,Q) = q arcsin p(qeQ) + (e−2Q − q2)1/2, F2(q, P ) = q arctan (q/P ) +
P [1− 1

2 log(q
2 + P 2)].)

16. Determine which among the following transformations is canonical (k is a
real parameter):

Q =
q2

2
, P =

p

q
, (10.198)

Q = tan q, P = (p− k) cos2 q, (10.199)

Q = sin q, P =
p− k

cos q
, (10.200)

Q =
√
2qet cos p, P =

√
2qe−t sin p, (10.201)

and find the generating functions corresponding to each transformation.
17. Determine the real parameters α, β, γ, δ such that the transformation

P1 = αq1 + βp1, P2 = γq2 + δp2, Q1 = p1, Q2 = p2

is completely canonical. Find a generating function.
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18. Consider the transformation

P = −q −
√
p+ q2, Q = −q2 − aq

√
q2 + p.

Find its domain of definition and determine for which values of the real parameter
a the transformation is completely canonical. Compute the generating function
F (q, P ). (Answer: a = 2, F (q, P ) = qP (q + P ).)
19. Consider the transformation

P = −pαqβ , Q = γ log p.

Determine for which values of the parameters α, β, γ the transformation is
completely canonical and compute the generating function F (q,Q). (Answer:
α = β = γ = 1, F (q,Q) = qeQ.)
20. Prove that the transformation

Q = log(1 +
√
q cos p), P = 2(1 +

√
q cos p)

√
q sin p

is completely canonical and find the generating functions.
21. Consider the transformation

p = a(eαP (1+βQ) − 1), q = b log(1 + βQ)e−αP (1+βQ),

where a, b, α, β are real parameters.
(a) Determine the domain of definition of the transformation, and compute

the inverse transformation and its domain.
(b) Determine the conditions on the parameters a, b, α, β that ensure that

the transformation is completely canonical and compute the generating
function F (p,Q).

22. Prove that the completely canonical transformations of R2 admitting a
generating function of the form

F (q, P ) =
1
2
(aq2 + 2bqP + cP 2)

are not a subgroup of Sp(1,R).
23. Given the transformation

p = tan(αP )eδt, q =
βQ

1 + (tan(γP ))2
eηt,

where α, β, γ, δ, η are real parameters:
(a) determine the domain of the transformation, compute the inverse

transformation and its domain;
(b) determine the conditions on the parameters α, β, γ, δ, η ensuring that

the transformation is canonical and compute the generating function
F (q, P, t).
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24. Consider the transformation

q = e−t(PQ)α, p = 2et(PQ)γ logP β ,

where α, β and γ are real positive constants.
(a) Determine for which values of α, β and γ the transformation is

canonical.
(b) If α = 1

2 , compute the generating function F (q, P ).
(c) For α = 1

2 , how is the Hamiltonian H(q, p) = −qp transformed?
25. Prove that the transformation

q1 =
√

2Q1

λ1
cosP1 +

√
2Q2

λ2
cosP2,

q2 = −
√

2Q1

λ1
cosP1 +

√
2Q2

λ2
cosP2,

p1 =
1
2

√
2Q1λ1 sinP1 +

1
2

√
2Q2λ2 sinP2,

p2 = −1
2

√
2Q1λ1 sinP1 +

1
2

√
2Q2λ2 sinP2

is completely canonical and that it transforms the Hamiltonian

H = p21 + p22 +
1
8
λ21(q1 + q2)2 +

1
8
λ22(q1 + q2)2

to K = λ1Q1 + λ2Q2. Use this transformation to find the solution of Hamilton’s
equations in the variables (q1, q2, p1, p2).
26. Prove that the transformation

q1 =
1√
mω

(√
2P1 sinQ1 + P2

)
, q2 =

1√
mω

(√
2P1 cosQ1 +Q2

)
,

p1 =
√
mω

2

(√
2P1 cosQ1 −Q2

)
, p2 =

√
mω

2

(
−
√
2P1 sinQ1 + P2

)
is completely canonical.
27. Using the method of Lie series, compute the flow associated with the

Hamiltonian H(p1, p2, q1, q2) = p1q2 + pn2 , where n ∈ N.
28. Given two Hamiltonians H and K, prove that

e−tDH e−sDK = e−sDK e−tDH + stD{H,K} + O(3),

where O(3) denotes terms of order s3, s2t, st2, t3 or higher.
29. Prove that the transformation

x′ = [x+ y + f(x)]mod(2π), y′ = y + f(x),

where (x, y) ∈ S1 × R, and f : S1 → R is a regular function, preserves the
symplectic 2-form dy ∧ dx on the cylinder T ∗S1 = S1 ×R.
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10.13 Additional remarks and bibliographical notes

In this chapter we started the study of the canonical formalism of analytical
mechanics. This formalism will prove to be a powerful tool for solving the
equations of motion, as we shall see in the next two chapters.
Our exposition adopts the viewpoint and general influence of the beautiful

book of Arnol’d (1978a), which is to be considered the fundamental reference
for any further study. We differ from Arnol’d in the initial definition of the
transformations that preserve the canonical structure of Hamilton’s equations, as
we prefer to stress the importance of the latter rather than the geometric aspect.
Indeed, we believe that to fully appreciate the geometric picture, one needs a
good knowledge of the techniques of modern differential geometry, going beyond
the scope of the present exposition. Another useful text is the book by Abraham
and Marsden (1978), which is encyclopaedic in character.
However, Theorems 10.6 and 10.7 indicate that there is a substantial equivalence

between the two methods, as they identify the canonical transformations as the
natural transformations that leave the canonical structure of Hamilton’s equations
invariant.
We recommend as supplementary reading, at approximately the same level as

the present book, the texts by Cercignani (1976a, 1976b) and Benettin et al.
(1991).
The book by Levi-Civita and Amaldi (1927), although quite old, is still very

useful for depth and clarity, as well as for the reasonable mathematical level
required of the reader. The section on Pfaffian systems (non-singular differential
forms) and their use in the canonical formalism is especially recommended.
The reading of the text of Gallavotti (1980) is more difficult, but certainly

useful, also because of the many interesting problems which stimulate the reader
to critically study the material.
Another reference text is Meyer and Hall (1992), which adopts from the begin-

ning a ‘dynamical systems’ point of view, and considers only transformations
that are independent of time.
It has not been possible to introduce the study of symplectic geometry and

topology, both active research fields with rich interesting results. The most serious
consequence is the extreme conciseness of our section on Hamiltonian systems
with symmetries, and the lack of a discussion on the so-called reduction of phase
space, and hence of the practical use of first integrals in reducing the order of the
equations of motion. The book by Arnol’d et al. (1983) is full of examples and
applications, although it may be hard to follow as a first reading. The symmetry
argument and the so-called ‘momentum map’, which yields a formulation of
Noether’s theorem in the more general context of symplectic manifolds, are also
discussed in depth in Abraham and Marsden (1978).
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10.14 Additional solved problems

Problem 1
Prove that the determinant of a symplectic matrix is equal to +1.

Solution
This result can be obtained in various ways. We give here a proof which only
uses the definition of a symplectic matrix and an elementary knowledge of linear
algebra. Every real m × m invertible matrix A can be uniquely written as the
product of a symmetric positive definite matrix and of an orthogonal matrix
(polar decomposition):

A = P1O1 = O2P2, with Pi = PT
i > 0, OT

i = O−1
i , i = 1, 2. (10.202)

Indeed, note that the matrices AAT and ATA are both symmetric and pos-
itive definite. Then, using the results of Chapter 4, Section 4.10, we set
P1 =

√
AAT , P2 =

√
ATA, O1 = P−1

1 A, O2 = AP−1
2 . It is immediately veri-

fied that O1 and O2 are orthogonal: for example O1O
T
1 = P−1

1 AAT (P−1
1 )T =

(
√
AAT )−1AAT (

√
AAT )−1 = 1. We leave it for the reader to verify that the

polar decomposition is unique. If the matrix A is symplectic, then the matrices
P1, P2, O1, O2 are also symplectic. Indeed, from A−1 = −IAT I it follows that

O−1
1 P−1

1 = −IOT
1 P

T
1 I = (I−1OT

1 I)(ITPT
1 I). (10.203)

On the other hand, I−1OT
1 I is an orthogonal matrix: I−1OT

1 I(I−1OT
1 I)T =

−IOT
1 (O

T
1 )

−1I = 1. The matrix ITPT
1 I is symmetric and positive definite:

(ITPT
1 I)T = ITP1I = ITPT

1 I for any vector v, and because P1 is positive definite,
we have

ITPT
1 Iv · v = PT

1 Iv · (Iv) ≥ a2Iv · Iv = a2v · v,
for some constant a =/ 0.
The uniqueness of the polar decomposition applied to (10.203) implies that

O1, P1 are symplectic. Since we already know that the determinant of a real
symplectic matrix is ±1, the fact that the polar decomposition is symplectic
shows that to deduce that the determinant is +1 it is not restrictive to assume
that the given matrix A is symplectic and orthogonal. Since A−1 = −IAT I,

denoting by a, b, c, d the l× l blocks that constitute A =
(
a b
c d

)
, and requiring

that A−1 = AT we find that A must be of the form A =
(

a b
−b a

)
, with aT b a

symmetric matrix and

aTa+ bT b = 1 (10.204)

(see Remarks 10.3 and 10.4). Consider a complex 2l× 2l matrix Q, whose block

structure is Q =
1√
2

(
1 i1
1 −i1

)
. Then Q is unitary, i.e. Q−1 = Q∗, where Q∗
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denotes the conjugate transpose matrix of Q. On the other hand, QAQ−1 =(
a− bi 0
0 a+ bi

)
and since the determinant is invariant under conjugation, we

find

det A = det(QAQ−1) = det(a− bi)det(a+ bi) = |det(a− bi)|2 > 0,

contradicting det A = −1. We note that the proof also shows that the group
Sp(l,R) ∩O(2l,R) is isomorphic to the group U(l,C) of unitary matrices: from
(10.204) it follows that the matrix a − ib is unitary and, conversely, given a
unitary matrix U we can associate with it a symplectic orthogonal matrix A,
whose blocks a and b are the real and imaginary parts, respectively. We leave to
the reader the verification that this is indeed a group isomorphism.

Problem 2
Let (V, ω) be a symplectic vector space. Show that the map : V → V ∗, v �→ v� =
ω(v, ·), is an isomorphism whose inverse we denote by # : V ∗ → V . Let U be a
linear subspace of V ; its orthogonal symplectic complement is

U⊥,ω = {v ∈ V | ω(v, U) = 0}.
We say that a linear subspace U of V is a Lagrangian subspace if dimU = dimV /2
and ω|U ≡ 0, and a symplectic subspace if ω|U ≡ 0 is non-degenerate.
Clearly, if U is a symplectic subspace then its dimension is even and (U, ω|U )

is a linear symplectic subspace. Two linear subspaces U1 and U2 of V provide
a symplectic decomposition or a Lagrangian decomposition of V if V = U1 ⊕ U2
and U1, U2 are a symplectic or Lagrangian subspace, respectively. Prove the
following.

(i) If U is a symplectic subspace, then V = U ⊕U⊥,ω is a symplectic decompos-
ition. Conversely, if V = U1 ⊕U2 and ω(U1, U2) = 0 then the decomposition
is symplectic.

(ii) For every Lagrangian subspace U1 of V there exists at least one Lagrangian
decomposition of V = U1 ⊕ U2.

(iii) Let V = U1 ⊕ U2 be a Lagrangian decomposition. For every basis
(e1, . . . , en) of U1 there exists a basis (en+1, . . . , e2n) of U2 such that
(e1, . . . , en, en+1, . . . , e2n) is a symplectic basis of V .

Solution
The map is an isomorphism because ω is non-degenerate. To prove (i): if x ∈
U ∩U⊥,ω then ω(x, y) = 0 for every u ∈ U . Since U is a symplectic subspace, the
form ω|U is non-degenerate. Therefore x = 0. Hence U ∩U⊥,ω = {0}, from which
it follows that V = U ⊕U⊥,ω. Conversely, if V = U1 ⊕U2 and ω(U1, U2) = 0 it is
possible to prove by contradiction that ω|U1 is necessarily non-degenerate. Hence
U1 and U2 are symplectic subspaces and the decomposition is symplectic. The
proof of (ii) is immediate: for example IU1 is also a Lagrangian subspace and
V = U1⊕IU1. Finally, to prove (iii): let f1, . . . , fn be the n elements of U∗

2 defined



10.14 Analytical mechanics: canonical formalism 407

by fi(y) = ω(ei, y) for every y ∈ U2. It is easy to check that (f1, . . . , fn) is a basis
of U∗

2 : we denote by (en+1, . . . , e2n) the dual basis in U2. If 1 ≤ i ≤ n < j ≤ 2n
we have by construction that ω(ei, ej) = fi(ej) = δi,j−n, while ω(ei, ej) = 0 if
1 ≤ i, j ≤ n or n+1 ≤ i, j ≤ 2n, and therefore the basis (e1, . . . , e2n) is symplectic.

Problem 3
Consider a system of canonical coordinates (p,q) ∈ R2l and the transformation

P = f(p,q), Q = q.

Determine the structure f must have for the transformation to be canonical and
find a generating function of the transformation.

Solution
If the transformation is canonical then

{fi, fj} = 0, {qi, fj} = δij , ∀ i, j.

Since {qi, fj} = ∂fj/∂pi, we find that fj = pj+gj(q), and the conditions {fi, fj} =
0 yield ∂gj/∂qi = ∂gi/∂qj , then g(q) = ∇qU(q). In conclusion, we must have

f(p,q) = p+∇qU(q).

A generating function is F (P,q) = P · q+ U(q).

Problem 4
Consider a group of orthogonal matrices A(s) commuting with the matrix I, with
A(0) being the identity matrix.

(i) Prove that the matrices A(s) are symplectic.
(ii) Find the infinitesimal generator of the group of canonical transformations

x = A(s)X.
(iii) Find the Hamiltonian of the group of transformations.

Solution
(i) AT IA = ATAI = I.
(ii) ∂/∂sA(s)X|s=0 = A′(0)x = v(x), the infinitesimal generator.
(iii) The matrix A′(0) is Hamiltonian. Setting A′(0) = IS, with S symmetric,

the Hamiltonian generating the group of transformations is such that ISx =
I∇xH(x). Hence H = 1

2x
TSx.

Problem 5
Determine the functions f, g, h in such a way that the transformation

Q = g(t)f(p− 2q), P = h(t)(2q2 − qp)

is canonical. Write down the generating function F (q,Q, t). Use it to solve
Hamilton’s equations associated with H(p, q) = G(2q2 − pq), where G is a
prescribed function (all functions are assumed sufficiently regular).
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Solution
The condition {Q,P} = 1 can be written

(p− 2q)ghf ′ = 1.

This implies that the product gh must be constant. Setting gh = 1/c and
ξ = p − 2q, we arrive at the equation ξf ′(ξ) = c, and hence f(ξ) = c log(|ξ|/ξ0)
with ξ0 > 0 constant. Therefore the transformation is of the form

Q = c g(t) log
|p− 2q|

ξ0
, P =

−q

c g(t)
(p− 2q). (10.205)

The function g(t) is arbitrary. To find the generating function F (q,Q, t) we set

p =
∂F

∂q
, P = −∂F

∂Q
.

Since p = 2q + ξ0eQ/(c g(t)) (assuming p − 2q > 0), integrating with respect
to q we find F (q,Q, t) = q2 + qξ0eQ/(c g(t)) + ϕ(Q), and differentiating with
respect to Q we arrive, after requiring that the result is equal to −P , at
the conclusion that ϕ′(Q) = 0, or ϕ = 0. The generating function is therefore
F (q,Q, t) = q2+qξ0eQ/(c g(t)). We consider now the Hamiltonian H = G(2q2−pq).
Applying to it the transformation (10.205) with c g(t) = −1 (completely canonical
transformation) we find the new Hamiltonian K = G(P ), and hence the solutions
of Hamilton’s equations are

P = P0, Q = G′(P0)t+Q0, (10.206)

with constant P0, Q0. Now it is sufficient to invert (10.205), written as (p−2q > 0):

Q = − log
p− 2q
ξ0

, P = q(p− 2q),

and hence

q =
1
ξ0
P eQ, p =

2
ξ0
P eQ + ξ0e−Q.

From equations (10.205) we arrive at

q =
P0
ξ0
eG

′(P0)t+Q0 , p =
P0
2ξ0

eG
′(P0)t+Q0 + ξ0e−(G′(P0)t+Q0).

We can determine the constants P0, Q0 so that the initial conditions for p, q
(compatible with p− 2q > 0, otherwise substitute ξ0 with −ξ0) are satisfied.
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Problem 6
Find a symmetry for the Hamiltonian

H(p1, p2, q1, q2) =
p21 + q21p2q2

2

and the corresponding first integral of the motion. Use the result to integrate
Hamilton’s equations.

Solution
We seek a one-parameter group of completely canonical transformations which
leaves the coordinates p1, q1 and the product p2q2 invariant. We try the
transformation

p1 = P1, q1 = Q1, p2 = f(s)P2, q2 =
1

f(s)
Q2,

which is canonical for every f(s), requiring that f(0) = 1 and f(s1)f(s2) =
f(s1 + s2). This forces the choice f(s) = eαs, with α constant. The infinitesimal
generator of the group is

v(x) =
∂x(X, s)

∂s

∣∣∣∣
s=0

,

and hence v(p1, p2, q1, q2) = (0, αp2, 0,−αq2). The corresponding Hamiltonian
K(p1, p2, q1, q2) must be such that −∂K/∂q1 = 0, −∂K/∂q2 = αp2, ∂K/∂p1 = 0,
∂K/∂p2 = −αq2, yielding K = −αp2q2. Hence this is a constant of the flow
generated by H. It is easy to check that {H,K} = 0. Since p2q2 = c we can
integrate Hamilton’s equations for p1, q1 and then for p2, q2.

Problem 7
In R2 consider the flow

ẋ = ∇ξ(x), (10.207)

with ξ(x) a regular function and ∇ξ =/ 0. In which cases is this flow Hamiltonian?

Solution
We must have

∇ · ∇ξ = ∇2ξ = 0. (10.208)

The operator ∇2 = ∂2/∂x21+∂2/∂x22 is called the Laplacian, and equation (10.208)
is Laplace’s equation. Its solutions are called harmonic functions. There is a vast
literature on them (see for example Ladyzenskaya and Ural’ceva (1968), Gilbar
and Trudinger (1977)).
If the system (10.207) is Hamiltonian, then it can be written in the form

ẋ = −I∇η(x), (10.209)
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with I =
(
0 −1
1 0

)
, where the Hamiltonian −η is determined by ∇ξ = −I∇η,

i.e.

∂ξ

∂x1
= +

∂η

∂x2
,

∂ξ

∂x2
= − ∂η

∂x1
, (10.210)

which are the celebrated Cauchy–Riemann equations.
The trajectories orthogonal to ξ = constant are identified with η = constant

(Problem 1.15). Symmetrically, −ξ plays the role of Hamiltonian (∇η = −I∇ξ)
for the flow orthogonal to η = constant. Clearly the function η is harmonic. It is
called the conjugate harmonic of ξ.
Equations (10.210) are of central importance in the theory of complex

holomorphic functions.
Indeed, it can be shown that if ξ, η are C1 functions satisfying the Cauchy–

Riemann equations, then the function f : C → C

f(z) = ξ(x1, x2) + iη(x1, x2) (10.211)

of the complex variable z = x1 + ix2 is holomorphic (i.e. the derivative f ′(z)
exists).
Holomorphic functions have very important properties (for example they admit

a power series expansion, are C∞, and so on, see Lang (1975)).
The converse is also true: if f(z) is holomorphic then its real and imaginary

parts are conjugate harmonic functions.
A simple example is given by ξ = log r, r = (x21 + x22)

1/2, whose harmonic
conjugate is η = arctan(x2/x1), as is easily verified. The curves ξ = constant are
circles centred at the origin, η = constant are the radii. Because of the Cauchy–
Riemann conditions, for any holomorphic f(z), the curves Re f = constant
intersect orthogonally the curves Im f = constant. This fact can be exploited to
determine the plane fields satisfying special conditions. For example, if seeking
a field of the form E = −∇φ with the property div E = 0 (i.e. ∇2φ = 0),
we can view the field lines as orthogonal trajectories of the equipotential lines
φ = constant, and hence as the level sets of the conjugate harmonic ψ. This is
the case of a plane electrostatic field in a region without charges. If we require
that the circle r = 1 be equipotential (φ = 0) and that at infinity the field be
E0e2, then it is easy to verify that φ, ψ are the real and imaginary parts of the
function −iE0fJ(z), where fJ(z) is the Jukowski function

fJ(z) = z +
1
z
. (10.212)

Problem 8
Consider the harmonic conjugate Hamiltonians ξ(p, q), η(p, q), generating flows
with mutually orthogonal trajectories (see Problem 7). Do the respective flows
commute?
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Solution
The answer is in general negative. Indeed, using the Cauchy–Riemann equations
we find that {ξ, η} = |∇ξ|2 = |∇η|2 is not constant.
The case ∇ξ = a(constant), corresponding to f(z) = a1z−ia2z, is an exception.

The reader can complete the discussion by considering the case |∇ξ|2 = constant.

Problem 9
Let q = q̃(Q, s) be a group of point transformations. Consider the corresponding
group of canonical transformations and find its infinitesimal generator and the
corresponding Hamiltonian.

Solution
The group under study is p = [JT (Q, s)]−1P, q = q̃(Q, s), with J = ∇Qq̃. The
infinitesimal generator is the field

v(p,q) =
(

∂

∂s
(JT )−1

∣∣∣∣
s=0

p,
∂q̃
∂s

∣∣∣∣
s=0

)
.

The corresponding Hamiltonian is K = p · ∂q̃/∂s∣∣
s=0. It is sufficient to note

that ∇qK = ∂JT /∂s
∣∣
s=0p and that ∂JT /∂s

∣∣
s=0 = −∂/∂s(JT )−1

∣∣
s=0, since

(JT )−1JT = 1 and J
∣∣
s=0 = 1. Note that if the group is a symmetry for

some Hamiltonian H(p,q) then K = constant along the corresponding flow,
in agreement with (4.123).
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11 ANALYTIC MECHANICS: HAMILTON–JACOBI
THEORY AND INTEGRABILITY

11.1 The Hamilton–Jacobi equation

We have discussed (see Theorem 10.13) how the Hamiltonian flow corresponding
to a Hamiltonian H is a canonical transformation which associates with H a new
Hamiltonian K that is identically zero. We now consider essentially the question
of finding the corresponding generating function.
The problem of the integration of the equations of motion in a Hamiltonian

system described by the Hamiltonian H(p,q, t) can be reduced to the following:
find a canonical transformation from the variables (p,q) to new variables (P,Q),
generated by a function F (q,P, t) in such a way that the new Hamiltonian
K(P,Q, t) is identically zero:

K(P,Q, t) = 0. (11.1)

Indeed, in this case the canonical equations can immediately be integrated: for
every t ∈ R we have

Pj(t) = ηj , Qj(t) = ξj , j = 1, . . . , l, (11.2)

where (η, ξ) are constant vectors that can be determined starting from the
initial conditions. From equations (11.2) we can then reconstruct the integrals
of the canonical equations in terms of the original variables through the inverse
transformation:

p = p(η, ξ, t), q = q(η, ξ, t). (11.3)

Note that the Hamiltonian flow associated with H is not the only canonical
transformation leading to (11.1): for example, by composing the Hamiltonian
flow with any completely canonical transformation the new Hamiltonian is still
zero.
Suppose that ∇xH=/ 0, and hence that we are not near a singular point. Since

the transformation which interchanges pairs of the variables (p,q) is canonical
there is no loss of generality in assuming that ∇pH =/ 0 (the latter condition
is automatically satisfied by the Hamiltonians of systems with fixed holonomic
constraints far from the subspace p = 0).
Recalling equations (10.105), (10.107)–(10.109) of Chapter 10, we know that

to realise such a transformation we need to find a generating function

S = S(q,η, t), (11.4)
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solving identically the equation

H(∇qS,q, t) +
∂S

∂t
= 0, (11.5)

as η varies in an appropriate open subset of Rl, and satisfying the condition

det
(

∂2S

∂qi∂ηj

)
=/ 0. (11.6)

Equation (11.5) is known as the Hamilton–Jacobi equation. It is a non-linear
partial differential equation of the first order. The independent variables are
q1, . . . , ql, t. We do not need to find its general integral (i.e. a solution depending
on an arbitrary function); we are interested instead in ensuring that the equation
admits a complete integral, i.e. a solution depending on as many constants as the
number of independent variables, that is l+1. A solution of the type S(q,η, t)+η0
(with S satisfying the invertibility condition (11.6)) is a complete integral of the
Hamilton–Jacobi equation. One of the arbitrary constants is always additive,
because S appears in (11.5) only through its derivatives, and hence if S is
a solution of (11.5) then S + η0 is also a solution.

Theorem 11.1 (Jacobi) Given the Hamiltonian H(q,p, t), let S(q,η, t) be a
complete integral of the Hamilton–Jacobi equation (11.5), depending on l arbitrary
constants η1, . . . , ηl and satisfying the condition (11.6). Then the solutions of the
system of Hamilton’s equations for H can be deduced from the system

pj =
∂S

∂qj
, ξj =

∂S

∂ηj
, j = 1, . . . , l, (11.7)

where ξ1, . . . , ξl are constants.

Proof
The function S meets the requirements of Definition 10.11, and hence the system
of new coordinates (η, ξ) is canonical. Equation (11.5) implies that the new
Hamiltonian is identically zero, and hence that Hamilton’s equations are

η̇j = 0, ξ̇j = 0, j = 1, . . . , l.

Inverting the relations (11.7) (this is possible because of (11.6) and of the
implicit function theorem) we deduce equations (11.3) for (p,q). �

The function S is known as Hamilton’s principal function.

Remark 11.1
Every time that the Hamiltonian flow is known, it is possible to compute
Hamilton’s principal function: since K = 0 it is enough to compute the gen-
erating function F2(q,P, t) using (10.117), in which we substitute p = p̂(q,P, t)
and Q = Q̂(q,P, t) deduced from equation (10.89) (which we suppose to be
explicitly known). This procedure is possible away from the singular points of
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H and for sufficiently small times t. Indeed, for t = 0 the Hamiltonian flow
is reduced to the identical transformation, admitting F2 = q · P as generating
function.
It is interesting to remark that the function S has a physical meaning.

Computing the derivative along the motion, we find

dS
dt

=
l∑

j=1

∂S

∂qj
q̇j +

∂S

∂t
=

l∑
j=1

pj q̇j −H = L.

It follows that S|t1t0 =
∫ t1
t0

L dt is the Hamiltonian action, and hence the values
taken on by S in correspondence with the natural motion are those of the
Hamiltonian action. �

Remark 11.2
Theorem 11.1 shows how the knowledge of a complete integral of the Hamilton–
Jacobi equation ensures the integrability of Hamilton’s equations ‘by quadratures’:
the solution can be obtained by a finite number of algebraic operations, functional
inversions and the computation of integrals of known functions.
On the other hand, the Hamilton–Jacobi equation does not always admit

a complete integral: for example, this is the case in a neighbourhood of an
equilibrium point.
The study of non-linear first-order partial differential equations (such as

equation (11.5)) is rather difficult and cannot be considered here. There exists a
very elegant and well-developed classical theory (see Courant and Hilbert 1953
and Arnol’d 1978b, Chapter 6), which highlights even more clearly the link
between the existence of a solution of the Hamilton–Jacobi equation and of a
solution of Hamilton’s system. �

If the Hamiltonian H does not depend explicitly on time, we can seek a solution
S of (11.5) in the form

S = −E(α)t+W (q,α), (11.8)

where α = (α1, . . . , αl) denotes the vector of l arbitrary constants on which the
solution depends (we neglect the additive constant), and E(α) is a function of
class at least C2 such that ∇αE =/ 0 (note that ∇pH

T (∂2W/∂q∂α) = ∇αE).
Equation (11.5) is then reduced to

H(∇qW,q) = E(α). (11.9)

Hence E is identified with the total energy. Equation (11.9) is also called the
Hamilton–Jacobi equation.
The function W is called Hamilton’s characteristic function. Note also that(

∂2S

∂qi∂αj

)
=
(

∂2W

∂qi∂αj

)
,
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and thus W is the generating function of a completely canonical transformation
in the new variables (α,β). With respect to these variables, the new Hamiltonian,
as seen in (11.9), is E(α). Since the new generalised coordinates β1, . . . , βl are
cyclic, we have

α̇j = 0, (11.10)

and the new kinetic momenta α1, . . . , αl are first integrals of the motion. In
addition, Hamilton’s equations for βj , namely

β̇j =
∂E

∂αj
= γj(α), j = 1, . . . , l, (11.11)

are immediately integrable:

βj(t) = γj(α)t+ βj(0), j = 1, . . . , l. (11.12)

It can be checked that the transformation βj − γjt = ξj , αj = ηj is canonical,
highlighting the relation between the variables (η, ξ) used previously and (α,β).
We have proved the following theorem, analogous to Theorem 11.1.

Theorem 11.2 Given the Hamiltonian H(p,q), let W (q,α) be a complete integ-
ral of the Hamilton–Jacobi equation (11.9), depending on l arbitrary constants
α = (α1, . . . , αl) and satisfying the condition

det
(

∂2W

∂qi∂αj

)
=/ 0. (11.13)

Then W is the generating function of a completely canonical transformation. The
new Hamiltonian E(α) has l cyclic coordinates, which are linear functions of time,
given by (11.12), while the new kinetic momenta α1, . . . , αl are first integrals of
the motion. �

Remark 11.3
The condition (11.13) guarantees the invertibility of the transformation gen-
erated by W , and hence the solution of Hamilton’s equations associated with H
have the form

pj(t) = pj(α1, . . . , αl, γ1t+ β1(0), . . . , γlt+ βl(0)), j = 1, . . . , l,

qj(t) = qj(α1, . . . , αl, γ1t+ β1(0), . . . , γlt+ βl(0)), j = 1, . . . , l,

and can be obtained from the relations

βj =
∂W

∂αj
, pj =

∂W

∂qj
, j = 1, . . . , l.

The initial values of the variables (p,q) are in one-to-one correspondence with
the constants (α,β(0)). �
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Remark 11.4
If the Hamiltonian H is independent of time and has n < l cyclic coordinates
(q1, . . . , qn), equation (11.9) becomes

H

(
∂W

∂q1
, . . . ,

∂W

∂ql
, qn+1, . . . , ql

)
= E(α1, . . . , αl). (11.14)

From this we can deduce that W is linear in the n cyclic variables:

W =
n∑

i=1
αiqi +W0(qn+1, . . . , ql, α1, . . . , αl),

and (11.14) reduces to one equation in l− n variables. The constants α1, . . . , αn

coincide with the momenta p1, . . . , pn conjugate to the cyclic coordinates. �

Remark 11.5
A specific version of the method just described (known as Poincaré’s method)
consists of assuming that, for example, E(α1, . . . , αl) = α1 (Jacobi’s method). It
then follows from equations (11.11) that the coordinates βj , conjugate to αj , are
constant for every j = 2, . . . , l, while the coordinate conjugate to α1, i.e. to the
energy, is β1 = t− t0 with t0 constant. The equations

βj =
∂W

∂αj
(q1, . . . , ql, E, α2, . . . , αl), j = 2, . . . , l

represent the trajectory of the system in the configuration space. �

Remark 11.6
The transformation described in the previous remark is just a symplectic recti-
fication. We knew that this was possible (Theorem 10.20), although the explicit
computation assumed that the Hamiltonian flow be known.
From the corresponding system of coordinates (α,β), with respect to which

the Hamiltonian is K = α1, we can transform to another system in which the
Hamiltonian has the generic form K = K(α′), using a completely canonical
transformation (see Problem 11 of Section 10.12):

α′ = α′(α), β′ = (J−1(α))Tβ,

where J = ∇αα′. Note that the new variables β′
i are linear functions of time

(which becomes identified with β1). �

Example 11.1: a free point particle
Starting from the Hamiltonian

H =
1
2m

(p2x + p2y + p2z),

we obtain the equation

1
2m

[(
∂S

∂x

)2
+
(
∂S

∂y

)2
+
(
∂S

∂z

)2]
+

∂S

∂t
= 0.
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It is natural to proceed by separation of variables, and look for a solution in
the form

S(x, y, z, t) = X(x) + Y (y) + Z(z) + T (t).

The equation becomes

1
2m

[(
dX
dx

)2
(x) +

(
dY
dy

)2
(y) +

(
dZ
dz

)2
(z)

]
+

dT
dt

(t) = 0,

and hence

dX
dx

= η1,
dY
dy

= η2,
dZ
dz

= η3,
dT
dt

= −η21 + η22 + η23
2m

,

where η1, η2, η3 are arbitrary integration constants. By integration, we obtain
the solution

S(x, y, z, η1, η2, η3, t) = η1x+ η2y + η3z − η21 + η22 + η23
2m

t,

which clearly satisfies condition (11.6) and generates the transformation (11.7):

px = η1, py = η2, pz = η3,

ξx = x− η1
m
t, ξy = y − η2

m
t, ξz = z − η3

m
t.

�

Example 11.2: the harmonic oscillator
The Hamiltonian of the harmonic oscillator is

H(p, q) =
1
2m

(p2 +m2ω2q2),

from which it follows that the Hamilton–Jacobi equation (11.5) takes the form

1
2m

[(
∂S

∂q

)2
+m2ω2q2

]
+

∂S

∂t
= 0.

We set

S = S(q, E, t) = W (q, E)− Et.

The Hamilton–Jacobi equation (11.9) then becomes

1
2m

[(
∂W

∂q

)2
+m2ω2q2

]
= E,
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and hence

W (q, E) =
√
2mE

∫ q

q0

√
1− mω2x2

2E
dx.

It is possible to choose q0 = 0. Then we find

W (q, E) =
1
2

√
2mE

[
q

√
1− mω2q2

2E
+

√
2E
mω2

arcsin

(√
mω2

2E
q

)]
.

It follows that

β =
∂W

∂E
=

1
2

√
2m
E

∫ q

0

dx√
1−mω2x2/2E

=
1
ω
arcsin

(√
mω2

2E
q

)
,

and by inverting the relation between β and q we find

p =
∂W

∂q
=

√
2mE

√
1− mω2q2

2E
=

√
2mE cos(ωβ),

q =

√
2E
mω2

sin(ωβ),

(11.15)

illustrating how the Hamilton–Jacobi method yields the solution of the equations
of motion. Indeed, since α = E, from (11.11) it follows that β = t+ β(0) and by
imposing the initial conditions we find

2mE = p(0)2 +m2ω2q(0)2,

tan(ωβ(0)) = mω
q(0)
p(0)

.

We thus obtain the well-known solution (p(t), q(t)). Substituting q(t) into W ,
and after some manipulations we find that along the motion the function S takes
the value

S = 2E
∫ t

0

[
cos2(ωx+ ωβ(0))− 1

2

]
dx.

This coincides with the integral of the Lagrangian

L =
1
2
mq̇2 − 1

2
mω2q2 = 2E

[
cos2 ω(t+ β(0))− 1

2

]
,

computed along the natural motion.
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On the other hand, the problem of the motion can be solved starting from the
function S(q, E, t):

S(q, E, t) = W (q, E)− Et.

Indeed, the equations

p =
∂S

∂q
=

∂W

∂q
, ξ =

∂S

∂E
=

∂W

∂E
− t

are equivalent to equations (11.15). In particular, the second one gives the
equation of motion in the form

q =

√
2E
mω2

sin[ω(t+ ξ)].

�

Example 11.3: conservative autonomous systems in one dimension
Consider a point particle of mass m in motion along a line, and subject to
a conservative force field with potential energy V (x). The Hamiltonian of the
system is

H =
p2

2m
+ V (x),

and the associated Hamilton–Jacobi equation is

1
2m

(
∂W

∂x

)2
+ V (x) = E.

This can immediately be integrated:

W (x,E) =
√
2m

∫ x

x0

√
E − V (ξ) dξ.

The canonical transformation generated by it is

p =
∂W

∂x
=
√
2m[E − V (x)],

β =
∂W

∂E
=
√

m

2

∫ x

x0

dξ√
E − V (ξ)

.

Recall that β = t− t0. Hence we have again derived equation (3.4). �
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11.2 Separation of variables for the Hamilton–Jacobi equation

The technique of separation of variables is a technique that often yields an
explicit complete integral of the Hamilton–Jacobi equation. The method is very
well described in the book by Landau and Lifschitz (1976, Section 48). We shall
closely follow their description.
Consider the particularly simple case that the Hamiltonian H of the system

is independent of time and is given by the sum of l functions, each depending
only on a pair of variables (pj , qj):

H = h1(p1, q1) + · · ·+ hl(pl, ql). (11.16)

The Hamilton–Jacobi equation (11.9) clearly admits a solution

W =
l∑

j=1
Wj(qj , αj), (11.17)

where each function Wj is determined by solving the equation

hj

(
∂W

∂qj
, qj

)
= ej(αj), (11.18)

with ej an arbitrary (regular) function. From this it follows that

E(α1, . . . , αl) =
l∑

j=1
ej(αj). (11.19)

An example of a system satisfying (11.16) is a free point particle (see
Example 11.1); in a similar way one can consider the harmonic oscillator in
space, with Hamiltonian

H =
p21 + p22 + p23

2m
+

m

2
(ω21q

2
1 + ω22q

2
2 + ω23q

2
3),

or any sum of uncoupled one-dimensional systems.
An immediate generalisation of (11.16) is given by Hamiltonians of the kind

H = H(h1(p1, q1), . . . , hl(pl, ql)). (11.20)

The characteristic function W has the form (11.17) and can be computed by
solving the system of equations (11.18), but the energy E is now given by

E(α1, . . . , αl) = H(e1(α1), . . . , el(αl)). (11.21)

These simple observations lead us to consider a more general case, very significant
for interesting physical applications.
Suppose that one coordinate, e.g. q1, and its corresponding derivative ∂S/∂q1

enter the Hamilton–Jacobi equation (11.5) only as a combination of the form
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h1(∂S/∂q1, q1), not depending on other coordinates or on time, or on the other
derivatives. This happens if the Hamiltonian is of the form

H = H(h1(p1, q1), p2, . . . , pl, q2, . . . , ql, t), (11.22)

so that the Hamilton–Jacobi equation is written as

H

(
h1

(
∂S

∂q1
, q1

)
,
∂S

∂q2
, . . . ,

∂S

∂ql
, q2, . . . , ql, t

)
+

∂S

∂t
= 0. (11.23)

In this case, we seek a solution of the form

S = S1(q1, α1) + S′(q2, . . . , ql, α1, α2, . . . , αl, t), (11.24)

and (11.23) is transformed into the system

h1

(
∂S

∂q1
, q1

)
= e1(α1),

H

(
e1(α1),

∂S′

∂q2
, . . . ,

∂S′

∂ql
, q2, . . . , ql, t

)
+

∂S′

∂t
= 0.

(11.25)

The first of equations (11.25) is a first-order ordinary differential equation from
which we can compute S1 via quadratures. The second is still a Hamilton–Jacobi
equation, but in l rather than l + 1 variables.
If this procedure can be iterated l+1 times, successively separating the coordin-

ates and time, the computation of the complete integral of the Hamilton–Jacobi
equation is reduced to l + 1 quadratures, and the Hamiltonian system under
consideration is said to be separable. For this to be possible, the Hamiltonian we
started with must be independent of the time t and S must be of the form

S = W1(q1, α1) +W2(q2, α1, α2) + · · ·+Wl(ql, α1, . . . , αl)− E(α1, . . . , αl)t.
(11.26)

To this category belong the Hamiltonian systems such that

H = hl(hl−1(. . . (h2(h1(p1, q1), p2, q2) . . .), pl−1, ql−1), pl, ql). (11.27)

For these systems, the Hamilton–Jacobi equation becomes

hl

(
hl−1

(
. . .

(
h2

(
h1

(
∂W

∂q1
, q1

)
,
∂W

∂q2
, q2

)
. . .

)
,
∂W

∂ql−1
, ql−1

)
,
∂W

∂ql
, ql

)
= E(α1, . . . , αl). (11.28)

For separation of variables to be possible, it is often necessary to choose
appropriately the Lagrangian coordinate system to be used.
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Example 11.4: systems that are separable with respect to spherical coordinates

Consider a point particle of mass m moving in Euclidean three-dimensional
space, under the action of external conservative forces with potential energy V .
Its Hamiltonian is

H =
1
2m

(p2x + p2y + p2z) + V. (11.29)

Introducing spherical coordinates:

x = r sinϑ cosϕ, y = r sinϑ sinϕ, z = r cosϑ,

where r > 0, 0 ≤ ϕ ≤ 2π and 0 < ϑ < π, the Hamiltonian (11.29) can be written
as

H =
1
2m

(
p2r +

p2ϑ
r2

+
p2ϕ

r2 sin2 ϑ

)
+ V (r, ϑ, ϕ).

Suppose now that the potential V expressed with respect to spherical
coordinates has the following form:

V (r, ϑ, ϕ) = a(r) +
b(ϑ)
r2

+
c(ϕ)

r2 sin2 ϑ
· (11.30)

The Hamilton–Jacobi equation for this system

1
2m

((
∂S

∂r

)2
+

1
r2

(
∂S

∂ϑ

)2
+

1
r2 sin2 ϑ

(
∂S

∂ϕ

)2)
+ V (r, ϑ, ϕ) +

∂S

∂t
= 0 (11.31)

can be separated by choosing

S(r, ϑ, ϕ, αr, αϑ, αϕ, t)

= W1(ϕ, αϕ) +W2(ϑ, αϑ, αϕ) +W3(r, αr, αϑ, αϕ)− E(αϕ, αϑ, αr)t. (11.32)

Indeed, by substituting (11.32) into the Hamilton–Jacobi equation, we find

1
2m

(
∂W3

∂r

)2
+ a(r) +

1
2mr2

{(
∂W2

∂ϑ

)2
+ 2mb(ϑ)

+
1

sin2 ϑ

[(
∂W1

∂ϕ

)2
+ 2mc(ϕ)

]}
= E,
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and the separation of the equation can be obtained by solving the system(
∂W1

∂ϕ

)2
+ 2mc(ϕ) = e1(αϕ),(

∂W2

∂ϑ

)2
+ 2mb(ϑ) +

e1(αϕ)
sin2 ϑ

= e2(αϕ, αϑ),

1
2m

(
∂W3

∂r

)2
+ a(r) +

e2(αϕ, αϑ)
2mr2

= E(αϕ, αϑ, αr).

(11.33)

The solutions of the system (11.33) are clearly given by

W1 =
∫ √

e1(αϕ)− 2mc(ϕ) dϕ,

W2 =
∫ √

e2(αϕ, αϑ)− 2mb(ϑ)− e1(αϕ)
sin2 ϑ

dϑ,

W3 =
∫ √

2m
[
E(αϕ, αϑ, αr)− a(r)− e2(αϕ, αϑ)

2mr2

]
dr.

(11.34)

An important example of a system that satisfies the condition (11.30) is the
motion of a point particle subject to a central potential V (r). In this case the
variable ϕ is cyclic, W1 = pϕϕ (see Remark 11.4) and pϕ is the z-component of
the angular momentum of the particle, which plays the role of the constant

√
e1.

In addition, since e2 = p2φ/(sin
2 ϑ) + p2ϑ, e2 is identified with the square of the

norm of the angular momentum vector. �

Example 11.5: systems that are separable with respect to parabolic coordinates
The so-called parabolic coordinates are given by

x =
u2 − v2

2
, y = uv cosϕ, z = uv sinϕ,

where (u, v) ∈ R2, 0 ≤ ϕ ≤ 2π. The surfaces obtained by fixing a constant value
for u or for v correspond to circular paraboloids whose axis coincides with the
x-axis (Fig. 11.1):

x =
u2

2
− y2 + z2

2u2
, x = −v2

2
+

y2 + z2

2v2
·

With respect to this system of coordinates, the Hamiltonian (11.29) can be
written as

H =
1
2m

p2u + p2v
u2 + v2

+
1
2m

p2ϕ
u2v2

+ V (u, v, ϕ).
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O

x

Fig. 11.1

Suppose that the potential energy V , expressed in parabolic coordinates, has the
form

V (u, v, ϕ) =
a(u) + b(v)
u2 + v2

+
c(ϕ)
u2v2

. (11.35)

By choosing

S(u, v, ϕ, αu, αv, pϕ, t)

= W1(ϕ, αϕ) +W2(u, αu, αϕ) +W3(v, αv, αϕ)− E(αϕ, αu, αv)t, (11.36)

the Hamilton–Jacobi equation for the system is

1
2m(u2 + v2)

[(
∂W2

∂u

)2
+
(
∂W3

∂v

)2]
+

(∂W1/∂ϕ)
2 + 2mc(ϕ)

2mu2v2
+

a(u) + b(v)
u2 + v2

= E,

(11.37)

where E = E(αu, αv, αϕ), and it can immediately be separated by multiplying
both sides by u2 + v2; thus we find the system

(
∂W1

∂ϕ

)2
+ 2mc(ϕ) = e1(αϕ),

1
2m

(
∂W2

∂u

)2
+ a(u) +

e1(αϕ)
2mu2

− Eu2 = e2(αϕ, αu),

1
2m

(
∂W3

∂v

)2
+ b(v) +

e1(αϕ)
2mv2

− Ev2 = e3(αϕ, αv),

(11.38)
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where e2(αϕ, αu) and e3(αϕ, αv) are related by

e2(αϕ, αu) + e3(αϕ, αv) = 0.

The system (11.38) has solutions

W1 =
∫ √

e1(αϕ)− 2mc(ϕ) dϕ,

W2 =
∫ √

2m
[
e2(αϕ, αu)− a(u)− e1(αϕ)

2mu2
+ Eu2

]
du,

W3 =
∫ √

2m
[
e3(αϕ, αu)− b(v)− e1(αϕ)

2mv2
+ Ev2

]
dv.

(11.39)

An interesting example of a system which is separable with respect to parabolic
coordinates is the system of a point particle with mass m subject to a Newtonian
potential and to a uniform, constant force field of intensity F directed along the
x-axis. In this case the potential energy in Cartesian coordinates has the following
expression:

V (x, y, z) = − k√
x2 + y2 + z2

+ Fx. (11.40)

This problem originates in the study of celestial mechanics. Indeed, the potential
(11.40) describes the motion of a spaceship around a planet, under the propul-
sion of an engine providing a (small) acceleration that is constant in direction
and intensity, or the effect of solar radiation pressure upon the trajectory of
an artificial satellite. For some satellites the radiation pressure is the principal
perturbation to the Keplerian motion. If one considers time intervals sufficiently
small relative to the period of revolution of the Earth around the Sun, to a
first approximation we can neglect the motion of the Earth, and hence we can
assume that the radiation pressure produces an acceleration which is of constant
intensity and direction.
In parabolic coordinates the potential energy (11.40) becomes

V (u, v) = − 2k
u2 + v2

+
F

2
(u2 − v2) =

−2k + (F/2) (u4 − v4)
u2 + v2

,

from which it follows that

a(u) = −k +
F

2
u4, b(v) = −k − F

2
v4.

�

Example 11.6: systems that are separable with respect to elliptic coordinates
The so-called elliptic coordinates are given by

x = d cosh ξ cos η, y = d sinh ξ sin η cosϕ, z = d sinh ξ sin η sinϕ,



11.2 Analytic mechanics: Hamilton–Jacobi theory and integrability 427

where d > 0 is a fixed positive constant, ξ ∈ R+, 0 ≤ η ≤ π and 0 ≤ ϕ ≤ 2π. Note
that the surface ξ = constant corresponds to an ellipsoid of revolution around
the x-axis:

x2

d2 cosh2ξ
+

y2 + z2

d2 sinh2ξ
= 1,

and the surface η = constant corresponds to a two-sheeted hyperboloid of
revolution around the x-axis (Fig. 11.2):

x2

d2 cos2 η
− y2 + z2

d2 sin2 η
= 1.

The Hamiltonian (11.29) in elliptic coordinates can be written as

H =
1

2md2(cosh2ξ − cos2 η)

[
p2ξ + p2η +

(
1

sinh2ξ
+

1
sin2 η

)
p2ϕ

]
+ V (ξ, η, ϕ).

Suppose that the potential V expressed in elliptic coordinates has the following
form:

V (ξ, η, ϕ) =
a(ξ) + b(η) +

(
(1/sinh2ξ) + (1/sin2 η)

)
c(ϕ)

d2(cosh2ξ − cos2 η)
. (11.41)

By choosing

S(ξ, η, ϕ, αξ, αη, αϕ, t)

= W1(ϕ, αϕ) +W2(ξ, αϕ, αξ) +W3(η, αϕ, αξ, αη)− E(αϕ, αη, αξ)t (11.42)

z

O

x

Fig. 11.2
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the equation for the system under consideration becomes(
∂W2

∂ξ

)2
+
(
∂W3

∂η

)2
+
(

1
sinh2ξ

+
1

sin2 η

)[(
∂W1

∂ϕ

)2
+ 2mc(ϕ)

]
+2m(a(ξ) + b(η))

= 2md2(cosh2ξ − cos2 η)E, (11.43)

where E = E(αξ, αη, αϕ). This can be separated:(
∂W1

∂ϕ

)2
+ 2mc(ϕ) = e1(αϕ),

1
2m

[(
∂W2

∂ξ

)2
+

e1(αϕ)
sinh2ξ

]
+ a(ξ)− Ed2cosh2ξ = e2(αϕ, αξ),

1
2m

[(
∂W3

∂η

)2
+

e1(αϕ)
sin2 η

]
+ b(η) + Ed2 cos2 η = −e2(αϕ, αξ).

(11.44)

An example of a potential for which the Hamilton–Jacobi equation is separable,
with respect to elliptic coordinates, is given by the so-called problem of two centres
of force. Consider a point particle subject to the gravitational attraction of two
centres of force placed at (d, 0, 0) and (−d, 0, 0). In Cartesian coordinates, the
potential energy is given by

V (x, y, z) = −k

(
1

[(x− d)2 + y2 + z2]1/2
+

1
[(x+ d)2 + y2 + z2]1/2

)
. (11.45)

Since

(x± d)2 + y2 + z2=d2sinh2 ξ sin2 η + d2(cosh ξ cos η ± 1)2=d2(cosh ξ ± cos η)2,

in elliptic coordinates the potential energy becomes

V (ξ, η) = − 2kd cosh ξ
d2(cosh2ξ − cos2 η)

.

From this it follows that V has the form required in (11.41), with

a(ξ) = −2kd cosh ξ,
b(η) = c(ϕ) = 0.

�

Example 11.7: separability of the Hamilton–Jacobi equation for the geodesic motion
on a surface of revolution

We now show that the Hamilton–Jacobi equation for the free motion of a point
particle of mass m on a surface of revolution is separable.
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If

x = (u cos v, u sin v, ψ(u))

is a parametric expression for the surface, with 0 ≤ v ≤ 2π and u ∈ R, the
momenta conjugate to the Lagrangian variables u and v are

pu = m[1 + (ψ′(u))2]u̇, pv = mu2v̇,

and the Hamiltonian of the problem is

H(pu, pv, u, v) =
1
2m

(
p2u

1 + (ψ′(u))2
+

p2v
u2

)
.

Note that the angular coordinate v is cyclic. Hence by choosing

S(u, v, αu, pv, t) = vpv +W (u)− Et,

the Hamilton–Jacobi equation for the system is reduced to

1
2m

[
1

1 + (ψ′(u))2

(
∂W

∂u

)2
+

p2v
u2

]
= E,

where E = E(αu, pv). Thus we find

W = ±
∫ √(

2mE − p2v
u2

)
(1 + (ψ′(u))2) du.

�

Example 11.8: separability of the Hamilton–Jacobi equation for the geodesic motion
on an ellipsoid

Consider a point particle of mass m moving, in the absence of external forces,
on the ellipsoid

x2

a2
+

y2

b2
+

z2

c2
= 1,

with the condition 0 < a ≤ b < c. Setting ε = (b− a)/(c− a), we consider the
parametrisation

x =
√
a cosϑ

√
ε+ (1− ε) cos2 ϕ,

y =
√
b sinϑ cosϕ,

z =
√
c sinϕ

√
1− ε cos2 ϑ.
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Note that as 0 < ϑ ≤ 2π, 0 < ϕ ≤ 2π, the ellipsoid is covered twice. Setting

u = a+ (b− a) cos2 ϑ ∈ [a, b],

v = b+ (c− b) cos2 ϕ ∈ [b, c],

we find Jacobi’s original parametrisation

x = ±√
a

√
(u− a)(v − a)
(c− a)(b− a)

,

y = ±
√
b

√
(b− u)(v − b)
(c− b)(b− a)

,

z = ±√
c

√
(c− u)(c− v)
(c− a)(c− b)

.

The Lagrangian of the system is

L(ϑ, ϕ, ϑ̇, ϕ̇) =
1
2
[ϑ̇2A(ϑ) + ϕ̇2B(ϕ)][C(ϑ) +D(ϕ)],

where

A(ϑ) =
(c− a) + (b− a) cos2 ϑ

a+ (b− a) cos2 ϑ
,

B(ϕ) =
(b− a) + (c− b) cos2 ϕ

b sin2 ϕ+ c cos2 ϕ
,

C(ϑ) = (b− a) sin2 ϑ,

D(ϕ) = (c− b) cos2 ϕ.

The Hamiltonian of the system is thus given by

H =
1
2

(
p2ϑ

A(ϑ)
+

p2ϕ
B(ϕ)

)
1

C(ϑ) +D(ϕ)
.

Setting

S(ϑ, ϕ, αϑ, αϕ, t) = W1(ϑ) +W2(ϕ)− Et,

the Hamilton–Jacobi equation

1
2(C(ϑ) +D(ϕ))

[
1

A(ϑ)

(
∂S

∂ϑ

)2
+

1
B(ϕ)

(
∂S

∂ϕ

)2]
+

∂S

∂t
= 0
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yields the system

1
2A(ϑ)

(
∂W1

∂ϑ

)2
− EC(ϑ) = α,

1
2B(ϕ)

(
∂W2

∂ϕ

)2
− ED(ϕ) = −α.

By integration we obtain a complete integral of the Hamilton–Jacobi equation.
�

11.3 Integrable systems with one degree of freedom: action-angle
variables

Consider an autonomous Hamiltonian system with one degree of freedom:

H = H(p, q). (11.46)

The trajectories of the system in the phase plane (q, p) ∈ R2 are the curves γ
defined implicitly by the equation H(q, p) = E. Since they depend on the fixed
value of the energy E, we denote them by γ = γE .
Suppose that, as E varies (in an open interval I ⊂ R) the curves γE are

simple, connected, closed and non-singular, and hence that the gradient of the
Hamiltonian never vanishes: (

∂H

∂p
,
∂H

∂q

)∣∣∣∣
γE

=/ (0, 0).

In this case we call the motion libration, or oscillatory motion (Fig. 11.3).

p

E = E2

E = E1

E2 > E1

q

Fig. 11.3
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We saw in Chapter 3 that this motion is periodic of period T . The period
is in general a function of the energy: T = T (E) (it can also be constant, in
which case the motion is called isochronous; an example is given by the harmonic
oscillator). The length of the curve and the area it encloses are also functions of
the energy.
The librations typically arise in a neighbourhood of a point of stable

equilibrium, corresponding to a local minimum of the Hamiltonian H. The
non-singularity condition of the phase curves γE excludes the possibility of
separatrices.
With these hypotheses, every phase curve γE is diffeomorphic to a circle

enclosing the same area. Indeed, since γE is rectifiable, it can also be parametrised
(in dimensionless variables) by p = pE(s), q = qE(s). If we denote by λE the
length of γE , we can also introduce the angular coordinate ψ = 2π(s/λE) and
consider the circle p = RE cosψ, q = RE sinψ that is diffeomorphic to γE ,
choosing RE so that the areas enclosed are equal. Thus we have an invertible
transformation from (p, q) to (RE , ψ): to RE there corresponds a curve γE and
to ψ a point on it. Note however that in general the variables (RE , ψ) just
defined, or more generally variables (f(RE), ψ) with f ′ =/ 0, are not canonical
(see Example 11.10).
A natural question is whether there exists a transformation leading to a new

pair of canonical variables (J, χ) ∈ R×S1 satisfying the following conditions: the
variable χ is an angle, and hence its value increases by 2π when the curve γE is
traced once, while the variable J depends only on the energy, and characterises
the phase curve under consideration (hence the Hamiltonian (11.46) expressed in
the new variables is only a function of J).
These preliminary observations justify the following definition.

Definition 11.1 If there exists a completely canonical transformation

p = p(J, χ), (11.47)

q = q(J, χ) (11.48)

(where the dependence of p and q on χ is 2π-periodic) to new variables (J, χ) ∈
R× S1 satisfying the conditions

E = H(p(J, χ), q(J, χ)) = K(J), (11.49)∮
γE

dχ = 2π, (11.50)

the system (11.46) is called completely canonically integrable, and the variables
(J, χ) are called action-angle variables. �

If a system is completely canonically integrable, then from equation (11.49) it
follows that Hamilton’s equations in the new variables are

J̇ = −∂K

∂χ
= 0, χ̇ =

∂K

∂J
. (11.51)
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Setting

ω = ω(J) =
dK
dJ

, (11.52)

this yields

J(t) = J(0), χ(t) = χ(0) + ω(J(0))t, (11.53)

for every t ∈ R. The action variable is therefore a constant of the motion,
and substituting (11.53) into (11.47) and (11.48) and recalling that p and q are
2π-periodic in χ, we again find that the motion is periodic, with period

T =
2π
ω(J)

. (11.54)

Example 11.9
The harmonic oscillator (Example 11.2) is completely canonically integrable. The
transformation to action-angle variables (we shall derive it in Example 11.10) is
given by

p =
√
2mωJ cosχ, q =

√
2J
mω

sinχ. (11.55)

Indeed, one immediately verifies that the condition (11.50) is satisfied and that
the new Hamiltonian obtained by substituting (11.55) into H(p, q) is given by

K(J) = ωJ. (11.56)
�

We shall soon see that if the Hamiltonian (11.46) supports oscillatory motions,
then the system is completely canonically integrable. There exists, however,
another class of systems with one degree of freedom that admits action-angle
variables. Assume that the Hamiltonian (11.46) has a periodic dependence on
the variable q, so that there exists a λ > 0 such that H(p, q + λ) = H(p, q) for
every (p, q). Assume also that as the energy E varies, the curves γE are simple
and non-singular. If these curves are also closed then the motion is a libration.
If they are the graph of a regular function,

p = p̂(q, E),

the motion is called a rotation (Fig. 11.4). We assume that ∂p̂/∂E =/ 0. Evidently,
because of the periodicity hypothesis for the Hamiltonian H, the function p̂ is
also periodic with respect to q, with period λ (independent of E).
For example, in the case of the pendulum there appear both oscillations (for

values of the energy less than the value on the separatrix) and rotations (for larger
values). Rotations can also appear in many systems for which the Lagrangian
coordinate q is in fact an angle.
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p

E = E2

E2 > E1

E = E1

–l l 2l qO

Fig. 11.4

For systems involving rotations it is also possible to seek action-angle variables,
satisfying the conditions (11.49) and (11.50). The dependence of p on χ is then
2π-periodic, while

q(J, χ+ 2π) = q(J, χ) + λ.

This apparent difference can be easily eliminated. It is enough to recall that the
assumption of periodicity in q of the Hamiltonian H allows one to identify all
the points in the phase space R2 for which the coordinate q differs by an integer
multiple of λ. The natural phase space for these systems is therefore the cylinder
(p, q) ∈ R× S1, since S1 = R/(λZ).
We now construct the canonical transformation to action-angle variables for

systems with rotations or librations. Hence we seek a generating function F (q, J)
satisfying

p =
∂F

∂q
, χ =

∂F

∂J
, (11.57)

as well as the invertibility condition

∂2F

∂q∂J
=/ 0. (11.58)

In the case of rotations or oscillations it is possible to express the canonical
variable p locally as a function p̂(q, E). Since the action variable J must satisfy the
condition (11.49), we assume—as is true outside the separatrices—that dK/dJ =/
0, so that the invertibility of the relation between energy and action is guaranteed.
We temporarily leave the function E = K(J) undetermined. Then the generating
function we are seeking is given by

F (q, J) =
∫ q

q0

p̂(q′,K(J)) dq′, (11.59)
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corresponding to the integration of the differential form p dq along γE . Indeed
p = ∂F/∂q by construction, and hence

∂2F

∂q∂J
=

∂p̂

∂E

dK
dJ

=/ 0.

In addition, setting

∆F (J) =
∮
γE

p(q, J) dq, (11.60)

where E = K(J) and p(q, J) = p̂(q,K(J)), from (11.57) and (11.59) it follows
that ∮

γE

dχ =
d
dJ

∆F (J).

The quantity ∆F (J) represents the increment of the generating function F (q, J)
when going along a phase curve γJ = γE=K(J) for a whole period.

Remark 11.7
It is not surprising that the generating function F is multivalued, and defined
up to an integer multiple of (11.60). This is due to the fact that the differential
form pdq is not exact. �

Remark 11.8
The geometric interpretation of (11.60) is immediate. For librations, ∆F (J) is
equal to the area A(E) enclosed by the phase curve γE (where E = K(J)). For
rotations,

∮
γE

p(q, J) dq =
∫ q0+λ

q0
p(q, J) dq is the area under the graph of γE . �

Even if K(J) in the definition of F (q, J) is undetermined, we can still perform
the symbolic calculation of p = ∂F/∂q, but to ensure that condition (11.50) is
verified, we need to impose

d
dJ

∆F (J) = 2π.

This fact, and Remark 3.2, justify the following.

Definition 11.2 An action variable is the quantity

J =
1
2π

∮
γE

p dq =
A(E)
2π

. (11.61)

�

It can be easily checked that

dA

dE
=/ 0. (11.62)
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H = E

H = E + dE

(E )

ds ds

dh =xH

Fig. 11.5

Indeed (see Fig. 11.5 and recall Remark 8.12), we have dσ = ds dh, with
dh|∇xH| = δE, so that

A(E + δE) = A(E) + δE

∮
γE

ds
|∇xH| + O((δE)2),

where x = (p, q) and by our hypotheses |∇xH| =/ 0 on γE . Hence

dA

dE
= lim

δE→0

A(E + δE)− A(E)
δE

=
∮
γE

ds
|∇xH| =/ 0.

From equation (11.62) we have that dJ/dE =/ 0, and therefore the existence of
the inverse function E = K(J) = A

− 1(2πJ) follows. Substituting it into (11.59)
we obtain the generating function of the canonical transformation to the action-
angle variables. The latter is F (q, J) = W (q,K(J)) (Example 11.3). Thus we
have proved the following.

Theorem 11.3 Every Hamiltonian system (11.46) with one degree of freedom and
with motions of librations or rotations is completely canonically integrable. �

As a consequence of (11.52), (11.54) and (11.61), the period of the motion has
the following simple expression:

T =
dA

dE
= 2π

dJ
dE

. (11.63)

Example 11.10
Consider the harmonic oscillator with Hamiltonian

H =
p2

2m
+

1
2
mω2q2.
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Fig. 11.6

In the phase plane, the cycles γE of the equation

p2

2m
+

1
2
mω2q2 = E

enclose the area (2π/ω)E (Fig. 11.6), and hence it follows from (11.61) that the
action variable is J = E/ω, i.e. K(J) = ωJ ; we have rederived equation (11.56).
The generating function is (see Example 11.2)

F (q, J) = W (q, ωJ) = Jarcsin
(√

ωm

2J
q

)
+

√
mωJ

2
q

√
1− mω

2J
q2,

and hence

χ =
∂F

∂J
= arcsin

(√
mω

2J
q

)
,

from which we obtain the relations

q =

√
2J
mω

sinχ, p =
√
2mωJ

√
1− mω

2J
q2 =

√
2mωJ cosχ,

which coincide with (11.55). Figure 11.6 shows the geometric meaning of the
variable χ. �

The example of the harmonic oscillator illustrates well the statement made
at the beginning of this section: the transformation from the variables (p, q) to
variables of the kind (f(RE), ψ) is not in general canonical.
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Let us compute RE and ψ as functions of (J, χ) in dimensionless variables
(therefore setting m = 1). We find that πR2

E = 2πJ , and hence RE =
√
2J .

Having chosen the point (
√
2ωJ, 0) on γE to be the origin of the arcs, for χ = 0,

we have

s(J, χ) =
∫ χ

0

[(
∂p

∂χ

)2
+
(
∂q

∂χ

)2]1/2
dχ′ =

∫ χ

0

√
2ωJ sin2 χ′ +

2J
ω

cos2 χ′ dχ′.

In particular, the length λE of γE is only a function of J . Finally, we find

ψ(J, χ) = 2π
s(J, χ)
λE(J)

.

We now compute the Poisson bracket:

{ψ, f(RE)}(J,χ) = ∂ψ

∂χ

dRE

dJ
f ′(RE) =

2π
λE(J)

f ′(RE)√
2J

(
2ωJ sin2 χ+

2J
ω

cos2 χ
)1/2

.

It follows that if ω �= 1 (hence if γE is not a circle) then {ψ, f(RE)} �= 1, inde-
pendent of the choice of f(RE), and the variables (f(RE), ψ) are not canonical.
If instead ω = 1 we have that {ψ, f(RE)} = f ′(RE)/RE . Therefore, choosing
f(RE) = 1

2R
2
E = J we naturally obtain the same canonical variables (J, χ).

Example 11.11
The Hamiltonian of a simple pendulum is (see Section 3.3)

H(p, ϑ) =
p2

2ml2
−mgl cosϑ.

Setting e = E/mgl, if |e| < 1 the motion is oscillatory and the action is equal to

J =
2
π

√
2m2gl3

∫ ϑm

0

√
e+ cosϑ dϑ,

where ϑm = arccos(−e). Setting k2 = (e+ 1)/2 and sinϑ/2 = k sinψ, we find

J = ml
√
gl
8
π

∫ π/2

0

k2 cos2 ψ√
1− k2 sin2 ψ

dψ = ml
√
gl
8
π
[(k2 − 1)K(k) +E(k)],

(11.64)

where K(k) and E(k) are the complete elliptic integrals of the first and second
kind, respectively.
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If e > 1 the motions are rotations, and the action is equal to

J =
1
π

√
2m2gl3

∫ π

0

√
e+ cosϑ dϑ.

Setting k2 = 2/(e+ 1) and ψ = ϑ/2, we find

J =
2
π

√
2m2gl3

∫ π/2

0

√
e+ 1− 2 sin2 ψ dψ =

4
π

√
m2gl3

k2
E(k). (11.65)

The function K(J) can be found by inverting the function J(E); J depends
on E and e. Writing the formula for the period

T =
2π
ω

= 2π
dJ
dE

and computing

dJ
dE

=
dJ
de

1
mgl

,

we easily find the formulae (3.18) and (3.21) of Chapter 3.
We take into account in the calculations the relations

dE(k)
dk

=
E(k)−K(k)

k
,

dK(k)
dk

=
1
k

[
E(k)
1− k2

−K(k)
]

(see Whittaker and Watson 1927, p. 521). �

Introducing action-angle variables for systems with more degrees of freedom
requires some preliminary ideas. These are discussed in the following sections.

11.4 Integrability by quadratures. Liouville’s theorem

Integrating a system of 2l ordinary differential equations of first order requires
more than just knowledge of the l first integrals. However, if the system of
equations is canonical, the fact that the flow preserves the symplectic structure
of the phase space has among its consequences that it is enough to know l
independent integrals in order to solve the Hamilton–Jacobi equations, thus
leading to integration of the equations of motion. It is necessary, however, for the
l first integrals to be in involution (Definition 10.18). This concept is clarified in
the following.

Theorem 11.4 (Liouville) Consider an autonomous Hamiltonian system with
Hamiltonian H(p,q) having l degrees of freedom. Assume that the system admits
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l first integrals f1(p,q), . . . , fl(p,q) which are independent (hence such that for
every (p,q) the gradients ∇(p,q)fi are l linearly independent vectors) and that
they are in involution. Consider the level set

Ma = {x = (p,q) ∈ R2l|fi(p,q) = ai, i = 1, . . . , l}, (11.66)

where a ∈ Rl is fixed. If Ma is not empty:

(1) Ma is a regular submanifold of dimension l, invariant with respect to the
Hamiltonian flow St and the phase flows gt1, . . . , g

t
l associated with f1, . . . , fl;

(2) the flows gt1, . . . , g
t
l commute with each other.

In addition, if

det
(
∂fi
∂pj

)
=/ 0, (11.67)

then locally there exists a function S = S(f ,q, t) such that(
l∑

i=1
pi dqi −H(p,q) dt

)∣∣∣∣∣
(p,q)∈Ma

= dS(a,q, t). (11.68)

The function is a complete integral of the Hamilton–Jacobi equation (11.5)
corresponding to H. The system is therefore integrable by quadratures. �

Before giving the proof, we list some remarks.

Remark 11.9
The system is autonomous, and hence we can include the Hamiltonian H among
the l integrals of the motion considered in Theorem 11.4. In all cases, both H
and all of the first integrals fi are constant not only along their own flow gti ,
but also along the flow generated by other integrals. This is due to the mutual
involution condition.
In addition H is always constant on each connected component of the manifold

Ma. Indeed, even if fi =/ H for every i = 1, . . . , l it is always possible to connect
any pair of points belonging to the same connected component of Ma through
successive applications (in any order) of the flows gti . This intuitive concept will
be rigorously proven in Lemma 11.2 below.
Since H|Ma is constant, equation (11.68) takes locally the form

l∑
i=1

pi dqi|Ma = dW (a,q), (11.69)

where

W (a,q) = S(a,q, t) + E(a)t, (11.70)

and E(a) is the value taken by H on Ma.
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An l-dimensional submanifold of the phase space satisfying condition (11.69) is
called Lagrangian. The significance of this property will be made clear when we
construct the action-angle variables for systems with several degrees of freedom
(see Section 11.6). �

Remark 11.10
The condition (11.67) is not restrictive, because the condition that the first integ-
rals f1, . . . , fl are independent ensures that there exist l canonical coordinates
xi1 , . . . , xil such that

det
(

∂(f1, . . . , fl)
∂(xi1 , . . . , xil)

)
=/ 0. (11.71)

We saw (see Example 10.8) that the exchange of canonical coordinates is a
completely canonical transformation. Hence if (i1, . . . , il) =/ (1, . . . , l), exchanging
some of the coordinates qik with the corresponding kinetic momenta −pik , we
can always write (11.71) in the form (11.67). �

Remark 11.11
In general the condition (11.67) cannot be globally satisfied on all of Ma: consider
for example what happens in the case of the harmonic oscillator. �

Proof of Theorem 11.4
The properties (1) and (2) are an immediate consequence of the linear inde-
pendence of the integrals, and of the fact that they are in involution (see
Theorem 10.18).
The condition (11.67) and the implicit function theorem guarantee the local

existence of l regular functions p̂1(f ,q), . . . , p̂l(f ,q) such that

pi = p̂i(f ,q) and fi(p̂(f ,q),q) = ai, (11.72)

for all i = 1, . . . , l. By Remark 11.9, equation (11.68) is equivalent to

l∑
i=1

p̂i(f ,q)dqi = dW (f ,q), (11.73)

with f = a and d acting on q only. The existence of a function W satisfying
(11.73) is guaranteed if for every j, k = 1, . . . , l we have

∂p̂k
∂qj

=
∂p̂j
∂qk

, (11.74)

and hence if the matrix B = (∂p̂j/∂qk) is symmetric. On the other hand, by
differentiating with respect to qk the second of equations (11.72), we find

l∑
j=1

∂fi
∂pj

∂p̂j
∂qk

+
∂fi
∂qk

= 0. (11.75)
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It follows that, setting A = (∂fi/∂pj) and C = (∂fi/∂qk) we have

B = −A
− 1C, (11.76)

and equation (11.74) becomes

−A
− 1C = −CT (AT )− 1,

and hence CAT −ACT = 0. In componentwise form, this reads

l∑
k=1

(
∂fi
∂qk

∂fj
∂pk

− ∂fi
∂pk

∂fj
∂qk

)
= {fi, fj} = 0, (11.77)

confirming the validity of (11.73).
The function W is therefore defined on Ma as

W (f ,q) =
∫ q

q0

l∑
i=1

p̂i(f , ξ) dξi, (11.78)

computed along an arbitrary path belonging to Ma joining q0 and q. The
extension of W to non-constant values of f is possible because of the arbitrariness
of a. Consider now

Ĥ(f ,q) = H(p̂(f ,q),q). (11.79)

For fixed f = a, from (11.74) it follows that

∂Ĥ

∂qi
=

∂H

∂qi
+

l∑
j=1

∂H

∂pj

∂p̂j
∂qi

=
∂H

∂qi
+

l∑
j=1

∂p̂i
∂qj

∂H

∂pj
= −ṗi +

l∑
i=1

∂p̂i
∂qj

q̇j = 0,

by the first of equations (11.72). Thus Ĥ is independent of q, and the Hamiltonian
can be expressed through the integrals f1, . . . , fl:

H(p̂(f ,q),q) = Ĥ(f). (11.80)

It follows that setting

S(f ,q, t) = W (f ,q)− Ĥ(f)t, (11.81)

it can immediately be verified that (11.68) is satisfied and S is a solution of the
Hamilton–Jacobi equation.
Indeed, by hypothesis

det
(

∂2W

∂qi∂fj

)
= det (∂pi∂fj) =/ 0.
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From equation (11.73) it follows that

pi =
∂W

∂qi
=

∂S

∂qi
,

while equation (11.81) implies that H + ∂S/∂t = 0. In addition, S is a complete
integral, because it depends on the l arbitrary constants a1, . . . , al (the fixed
values of f1, . . . , fl) and H is independent of t. �

Example 11.12
Consider a system of l non-interacting harmonic oscillators, with Hamiltonian

H(p,q) =
l∑

i=1

(
p2i
2mi

+
1
2
miω

2
i q
2
i

)
. (11.82)

Evidently

H(p,q) =
l∑

i=1
fi(pi, qi), (11.83)

where

fi(pi, qi) =
p2i
2mi

+
1
2
miω

2
i q
2
i (11.84)

is the energy of the ith oscillator. The functions fi are integrals of the motion,
independent and in involution. The level manifold Ma is compact, connected,
and diffeomorphic to an l-dimensional torus. The condition (11.67) is satisfied
(as long as pi �= 0 for every i = 1, . . . , l). Note that this property is not globally
satisfied on Ma, see Remark 11.11; however the condition (11.71) is certainly
globally satisfied. The function S is then given by

S(f ,q, t) =
l∑

i=1

∫ qi

(qi)0
±
√
2mifi −m2

iω
2
i ξ
2
i dξi − t

l∑
i=1

fi. (11.85)

Note that since the condition (11.67) is not globally satisfied on Ma, S is not
a single-valued function. �

Remark 11.12
Liouville’s theorem ensures that the integrals f1, . . . , fl can play the role of
new canonical coordinates, together with the variables

βi =
∂W

∂fi
, i = 1, . . . , l. (11.86)

The function W (f ,q) is thus the generating function of a completely canonical
transformation of the variables (p,q) into (f ,β). Therefore it satisfies

l∑
i=1

(pidqi + βidfi) = dW (f ,q). (11.87)
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Note that on Ma we have df = 0 and equation (11.87) reduces to (11.69). The
new Hamiltonian takes the form

Ĥ = Ĥ(f) = H(p̂(f ,q),q), (11.88)

and hence Hamilton’s equations become

ḟ = 0, β̇ = ∇f Ĥ(f). (11.89)

From this it follows that f is constant (as was known) and

β(t) = β(0) +∇f Ĥ(f(0))t. (11.90)
�

Remark 11.13
We saw that every time we can solve the Hamilton–Jacobi equation (11.9) and
compute the Hamilton characteristic function (as is the case, for example, when
we can apply the method of separation of variables) then we determine l first
integrals, independent and in involution. These are precisely the new canonical
coordinates α1, . . . , αl.
The theorem of Liouville gives the converse: the knowledge of l integrals,

independent and in involution, yields Hamilton’s characteristic function.
Note finally that in the separable cases equation (11.73) is simplified in a

similar way to the Hamilton–Jacobi equation, as each function p̂i depends on f
and only on the corresponding qi. �

Example 11.13
Consider a point particle of mass m in free motion on an (l − 1) dimensional
ellipsoid embedded in Rl, described by the implicit equation

l∑
i=1

x2i
ai

= 1, (11.91)

where 0 < a1 < a2 < . . . < al, and
√
ai is the length of the ith semi-axis of

the ellipsoid. We introduce a convenient parametrisation of the ellipsoid (due to
Jacobi, see Arnol’d et al. (1983), p. 126–9) via the equation

f(x, λ) =
l∑

i=1

x2i
ai − λ

= 1. (11.92)

This associates to any generic point x = (x1, . . . , xl) ∈ Rl, l real numbers
λ1 ≤ . . . ≤ λl (the l roots of equation (11.92)) which evidently alternate with the
ai: λ1 < a1 ≤ λ2 < a2 ≤ . . . ≤ λl < al. To show this, it is enough to note that
for every fixed non-zero point x, f as a function of λ has l vertical asymptotes
in λ = ai, and for λ �= ai one has ∂f/∂λ > 0.
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If x belongs to the ellipsoid (11.91), necessarily λ1 = 0 and the variables
λ2, . . . , λl yield a system of orthogonal coordinates on the ellipsoid.
It is not difficult to show that for every i = 1, . . . , l we have

x2i =

∏l

j=1(ai − λj)∏l

j=1,j �=i(ai − aj)
, (11.93)

from which it follows that1

l∑
i=1

ẋi
2 =

1
4

l∑
i=2

Miλ̇
2
i , (11.94)

where

Mi =

∏
j �=i(λj − λi)∏l

j=1(aj − λi)
, i = 2, . . . , l. (11.95)

The variables µi canonically conjugate to the λi are

µi =
mMiλ̇i

4
, i = 2, . . . , l, (11.96)

and the Hamiltonian of our problem is given by

H(µ2, . . . , µl, λ2, . . . , λl) =
2
m

l∑
i=2

µ2i
Mi(λ2, . . . , λl)

. (11.97)

A set of independent first integrals is constructed by means of a remarkable
formula due to Jacobi:

l∑
i=1

λn
i∏

j �=i(λi − λj)
=

{
0, if n < l − 1,
1, if n = l − 1.

(11.98)

We leave its verification as an exercise. From equation (11.98), and substituting
the definition (11.95) of Mi into (11.97), we find that the following identity holds:

l∑
i=1

∑l−1
n=0 Fnλ

n
i∏

j �=i(λi − λj)
=

2
m

l∑
i=1

µ2i

∏l

k=1(λi − ak)∏
j �=i(λi − λj)

. (11.99)

1 An easy proof is provided by the computation of the residues of (11.92) considered as a
rational function of λ.
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In this formula Fl−1 = H, while for the moment, F0, F1, . . . , Fl−2 are arbitrary.
However, if we set

l−1∑
n=0

Fnλ
n
i =

2
m
µ2i

l∏
k=1

(λi − ak), i = 2, . . . l, (11.100)

from this system of equations we find F0, F1, . . . , Fl−2 as functions of λ and µ.
These, together with Fl−1, yield a set of l independent integrals of the motion
which can be seen to be in involution. �

11.5 Invariant l-dimensional tori. The theorem of Arnol’d

Liouville’s theorem implies that if an autonomous Hamiltonian system with l
degrees of freedom has l integrals that are independent and in involution, then
the Hamilton–Jacobi equation has a complete integral and the equations of motion
are integrable by quadratures.
In this section we intend to study the geometry of invariant manifolds of

integrable systems with several degrees of freedom. In particular, we prove the
following theorem, which clarifies in which cases it is possible to give a global
parametric representation of the manifold Ma using l angular coordinates (in
which case Ma is diffeomorphic to a torus Tl).

Theorem 11.5 (Arnol’d) Let H(p,q) be a given autonomous Hamiltonian
system with l degrees of freedom and which has l first integrals of the motion
f1(p,q), . . . , fl(p,q) that are independent and in involution. If the level manifold
Ma of the first integrals is compact and connected, then it is diffeomorphic to an
l-dimensional torus. �

Remark 11.14
Sometimes Ma has several connected components. In this case, Theorem 11.5
applies separately to each connected component. �

Remark 11.15
There exist Hamiltonian systems such that the level manifold Ma is not com-
pact and/or not connected. These systems satisfy the hypotheses of Liouville’s
theorem, but not of the theorem of Arnol’d above. An important example is
the case of linearised equations of a system with two degrees of freedom in a
neighbourhood of a saddle point of the potential energy:

H(p,q) =
1
2
[(p21 + ω21q

2
1) + (p22 − ω22q

2
2)].

Setting f1 = (p21 + ω21q
2
1/2), f2 = (p22 − ω22q

2
2/2), Ma is the Cartesian product of

an ellipse (corresponding to the curve f1 = a1 in the (p1, q1) plane) with two
branches of the hyperbola (corresponding to f2 = a2 in the (p2, q2) plane), and
hence it is neither compact nor connected. �
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Theorem 11.5 is a non-trivial extension of a very simple property, which we
observed when l = 1 (the manifold Ma reduces to the phase curve γE). The
proof of Theorem 11.5 can be omitted at a first reading. It is possible to skip
directly to the following section, after reading the statement of Proposition 5.1
and the subsequent remarks.
We devote this section to the proof of the theorem of Arnol’d and to its

consequences.
We have already remarked (see Remark 10.30) that the integrals f1, . . . , fl

induce l Hamiltonian phase flows gt1, . . . , g
t
l that leave Ma invariant. The idea

of the proof of Theorem 11.5 is to use these flows to construct an atlas of the
manifold Ma, and then to prove that this atlas is compatible with the definition
of the l-dimensional torus (see Examples 1.38 and 1.39).
Choose t = (t1, . . . , tl) ∈ Rl, and consider the composition gt of the flows gti :

gt = gt11 ◦ · · · ◦ gtll . (11.101)

Since {fi, fj} = 0, the flows commute, and gt does not depend on the order
in which the individual flows are applied, but only on t. We hence define an
l-parameter family of transformations from Ma to itself, i.e. a map g : Rl×Ma →
Ma, defined by g(t,x) = gt(x), satisfying the group conditions required by
Definition 1.33. We then say that gt is an l-parameter group of transformations
of Ma, and that Rl acts on Ma through gt, and hence that gt defines an action
of Rl on Ma.

Lemma 11.1 Let x0 be any point of Ma. The map gx0 : R
l → Ma, gx0(t) =

gt(x0) is a local diffeomorphism (Section 1.7), and hence there exist an open
neighbourhood U of t = 0 in Rl and an open neighbourhood V of x0 in Ma such
that gx0(U) = V , and gx0 restricted to U is a diffeomorphism (Fig. 11.7).

Proof
Since the integrals f1, . . . , fl are independent, for every x ∈ Ma the vectors
I∇xfi(x) ∈ TxMa are linearly independent and are a basis of TxMa. Integrating
along the directions of these vectors, it is possible to parametrise every point
y ∈ V of a neighbourhood of x0 ∈ Ma through t:

y = y(t1, . . . , tl) = gt(x0), (11.102)

where t = (t1, . . . , tl) belongs to a neighbourhood U of 0 (note that x0 = g0(x0)).
The invertibility of the transformation is a consequence of the independence of

the first integrals, which ensures that the determinant of the Jacobian matrix of
the parametrisation (11.102) is non-zero. Indeed if, for example, Ma is paramet-
risable through the variables (q1, . . . , ql) (hence p = p̂(a,q)) in the neighbourhood
V of x0 = (p0,q0) = (p̂(a,q0),q0), equation (11.102) can be written as

q = q(t1, . . . , tl) = gt(p̂(a,q0),q0). (11.103)
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R2l
Ma

gt (x0)

gx0
(t)

gx0
(0)

0

U

t

R�

x0
V

Fig. 11.7

Since the flows g
tj
i are canonical, ∂q/∂tj = ∇pfj , and hence

∂(q1, . . . , ql)
∂(t1, . . . , tl)

=
(
∂(f1, . . . , fl)
∂(p1, . . . , pl)

)T

, (11.104)

which is clearly non-singular. �

Remark 11.16
Evidently the map gx0 cannot be a global diffeomorphism, because Ma is assumed
to be a compact manifold, while Rl is not compact. It is worth noting that,
because of the local character of this lemma, we made no use of the compactness
assumption in the proof. �

Lemma 11.2 The action of Rl on Ma defined by gt is transitive, and hence
for each pair of points x1, x2 belonging to Ma there exists t ∈ Rl such that
gt(x1) = x2.

Proof
Since Ma is a connected manifold, there exists a regular curve γ : [0, 1] → Ma

joining x1 and x2: γ(0) = x1, γ(1) = x2. By Lemma 11.1 every point γ(τ) of
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Ma

gt i

gt i – t�i

gt�i

x2

x2
V (ti)

0 = t1
ti ti�

V (ti+1)

ti+1 t = tN

x1

� � � �

�

Fig. 11.8

the curve, 0 ≤ τ ≤ 1, has an open neighbourhood V (τ) restricted to which gt

acts as a local diffeomorphism. The family {V (τ)}τ∈[0,1] is an open covering
of the curve γ. By compactness, there exists a finite subcovering {V (τi)}Ni=1,
with τ1 = 0 and τN = 1. Consider any sequence of points γ(τ ′

i) of the curve
defined by the conditions γ(τ ′

i) = V (τi)∩V (τi+1)∩γ([0, 1]), τ ′
i > τi (Fig. 11.8), as

i = 1, . . . , N −1 varies. Since gt is a local diffeomorphism between an open set of
Rl and every open set V (τi), there exist ti and t′

i such that gtiγ(τi) = γ(τ ′
i) and

gt′
iγ(τi+1) = γ(τ ′

i). It follows that γ(τi+1) = gti − t′
iγ(τi), and therefore x2 = gtx1

where t =
∑N−1

i=1 (ti − t′
i). �

The two previous lemmas show that the action of Rl on Ma yields a way to
construct an atlas of Ma whose elements are the local parametrisations defined
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by Lemma 11.1. Since the action of Rl on Ma is transitive, Ma is called a
homogeneous space of Rl.

Definition 11.3 Given x0 ∈ Ma, the stationary subgroup of the action gt of
Rl on Ma at the point x0 is the subgroup of Rl:

Γx0 = {t ∈ Rl|gtx0 = x0}. (11.105)
�

Remark 11.17
It is immediate to verify that Γx0 is a subgroup of Rl. Indeed 0 ∈ Γx0 , and
if t ∈ Γx0 then g−tx0 = g−tgtx0 = x0, and therefore −t ∈ Γx0 . In addition, if t
and s both belong to Γx0 , g

t+sx0 = gtgsx0 = gtx0 = x0, and hence t+ s ∈ Γx0 .�

Lemma 11.3 The stationary subgroup Γx0 is independent of x0 (we shall
henceforth denote it simply by Γ).

Proof
It is enough to prove that if t ∈ Γx0 then gtx = x for every x ∈ Ma. Since the
action is transitive, there exists s ∈ Rl such that x = gsx0. From this it follows
that gtx = gtgsx0 = gsgtx0 = gsx0 = x. �

Definition 11.4 A subgroup of Rl is called discrete if it has no accumulation
point. �

Thus a subgroup Γ is discrete if each of its points is isolated in Rl, and hence
it is the centre of a ball which contains no other point of Γ.

Lemma 11.4 The stationary subgroup Γ is discrete.

Proof
Since gt is a local diffeomorphism, the origin 0 ∈ Γ is an isolated point, and
hence it has a neighbourhood U ⊂ Rl such that Γ∩U = {0}. Suppose that t =/ 0
is an accumulation point of Γ. Then

t+ U = {s+ t|s ∈ U}

is a neighbourhood of t, and hence there exists s ∈ (t+ U) ∩ Γ, s =/ t. But then
s− t =/ 0 and s− t ∈ Γ∩U , contradicting the hypothesis Γ∩U = {0}. �
The following lemma yields a classification of all discrete subgroups of Rl.

Lemma 11.5 Every discrete subgroup G of Rl is isomorphic to Zk, where k ∈
{0, . . . , l}. Hence there exist k linearly independent vectors e1, . . . , ek in Rl such
that

G = {m1e1 + · · ·+mkek|m = (m1, . . . ,mk) ∈ Zk}. (11.106)

The vectors e1, . . . , ek are called generators (or periods or bases) of G.
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Proof
If l = 1 every discrete subgroup G of R is either trivial, G = {0}, or else it is
of the form G = {me1,m ∈ Z}, where e1 = minx∈G\{0} |x|. Indeed, since G is
discrete, e1 is a non-zero element of G and every other element x of G must be
an integer multiple of it, otherwise the remainder r of the division of |x| by e1
would give another element of G, 0 < r < e1, which contradicts the definition of
e1.
For l ≥ 2 the proof that G is isomorphic to Zk with 0 ≤ k ≤ l can be obtained

by induction on l, by projecting G onto Rl−1 orthogonally to any element e1 of
G\{0} of minimum norm. Since the projection of G is again a discrete subgroup,
this yields the proof. �

The representation (11.106) of the discrete subgroup G is not unique. If
e1, . . . , ek generates G, evidently it also true that e1 + e2, e2, . . . , ek gener-
ate G, and so on. However, it is possible to characterise uniquely all possible
choices of the generators of a discrete subgroup, as shown by the following.

Lemma 11.6 e1, . . . , ek and e′
1, . . . , e

′
k are two k-tuples of generators of the same

discrete subgroup G of Rl if and only if there exists a k×k matrix A, with integer
coefficients and with determinant equal to ±1 (i.e. A ∈ GL(k,Z)), such that for
every i = 1, . . . , k we have

e′
i =

k∑
j=1

Aijei. (11.107)

Proof
Evidently if e1, . . . , ek generates G, and A ∈ GL(k,Z), the k-tuple e′

1, . . . , e
′
k

defined by (11.107) generates a discrete subgroup G′ of Rl. In addition G′ ⊂ G,
for if t′ ∈ G′, t′ =

∑k
i=1m

′
ie

′
i =

∑k
i=1

∑k
j=1m

′
iAijej =

∑k
j=1mjej , where

mj =
∑k

i=1m
′
iAij ∈ Z. Since detA = ±1 the inverse matrix A−1 also has integer

coefficients and detA−1 = ±1; therefore A−1 ∈ GL(k,Z) and it can be shown
immediately that G ⊂ G′. Conversely, if e′

1, . . . , e
′
k also generates G, let A be the

k × k matrix defined by (11.107) which transforms e1, . . . , ek in e′
1, . . . , e

′
k. The

coefficients of A are integers, as e′
i ∈ G for every i = 1, . . . , k. Applying the same

reasoning to A−1 we see that the latter must also have integer coefficients. It
follows that there exist two integers m and n such that det(A) = m, det(A−1) = n.
But det(A) det(A−1) = 1, and therefore m = n = ±1 and A ∈ GL(k,Z). �

We can finally prove the theorem of Arnol’d.

Proof of Theorem 11.5
Since the stationary subgroup Γ of the action of Rl on Ma is discrete, there
exists k ∈ {0, . . . , l} such that Γ is isomorphic to Zk. Therefore, there exist k
linearly independent vectors e1, . . . , ek in Rl that generate Γ. Let ẽk+1, . . . , ẽl be
l − k vectors in Rl chosen arbitrarily in such a way that e1, . . . , ek, ẽk+1, . . . , ẽl
is a basis of Rl. Setting then

t =
ψ1
2π

e1 + · · ·+ ψk

2π
ek + tk+1ẽk+1 + · · ·+ tlẽl, (11.108)
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when (ψ1, . . . , ψk, tk+1, . . . , tl) ∈ Rl vary, the action gt defines a parametrisation
of Ma. By Lemmas 11.1, 11.2, and 11.4 (recalling also Example 1.39) the manifold
Ma is diffeomorphic to Tk ×Rl−k. But Ma is compact, and hence k = l. �

We conclude this section by proving the following.

Proposition 11.1 Under the hypotheses of the theorem of Arnol’d, there exists
a neighbourhood U ⊂ R2l of Ma that is diffeomorphic to the direct product of a
neighbourhood of an open set V ⊂ Rl with a torus Tl: U ≈ V ×Tl.

Proof
The idea is to prove that the functions f1, . . . , fl and the angles ψ1, . . . , ψl

constructed in the proof of Theorem 11.5 give a regular parametrisation of a
neighbourhood U of Ma. Indeed, in a neighbourhood of any point P of Ma the
functions f(p,q) can be inverted with respect to (xi1 , . . . , xil), and hence to
l of the variables x = (p,q). This is due to the independence of the fi which
ensures that the condition (11.7) is always satisfied. Hence we determine a regular
submanifold N of dimension l, implicitly defined by

xik = x̂ik(f), (11.109)

where k = 1, . . . , l and f varies in a neighbourhood V of a in Rl.
At each point of N , determined by fixing the values of f , we can apply

Lemma 11.1 and construct a local parametrisation of the corresponding manifold
Mf :

x = x̂(f , t). (11.110)

The parametrisation (11.110) is by construction differentiable, and invertible
with respect to both f and t. It follows that we have a local diffeomorphism
between a neighbourhood UP ⊂ R2l of any point of Ma and a domain V × W ,
where W is a neighbourhood of 0 in Rl.
Since by Lemma 11.2 the action of Rl on Ma is transitive, considering any other

point P ′ in Ma, there exists t′ ∈ Rl such that gt′
P = P ′. It is immediate to verify

that gt′
(UP ) is a neighbourhood of P ′ that is diffeomorphic to UP and hence

also to V ×W via the parametrisation x = x̂(f , t+ t′). Since P ′ is arbitrary, we
conclude that there exists a neighbourhood U of Ma that can be parametrised by
coordinates (f , t) ∈ V ×Rl through a differentiable function x = x̂(f , t). However
this function is not invertible, because the stationary subgroup Γ of the action
of Rl used to construct it is isomorphic to Zl. If e1, . . . , el generates Γ, although
geiP = P , the map from gei to N generates a new submanifold N ′ = gei(N)
containing P but distinct from N .
The existence of a local parametrisation x̂(f , t) in a neighbourhood of Ma

ensures that for every point P ′ ∈ N ′ (determined uniquely by the corresponding
value f) there exist l differentiable functions τi(f), i = 1, . . . , l, and a point
P ′′ ∈ N such that τi(a) = 0 and gτi(f)P ′ = P ′′ for every i = 1, . . . , l. Hence
gei+τi(f)P ′′ = P ′′, and in a neighbourhood of P we can construct generators
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ei(f), with regular dependence on f and which on every level manifold Mf

determine the stationary subgroup of the action of Rl. On each manifold Mf we
can finally consider l angles ψ1, . . . , ψl providing a global parametrisation, and
thus obtain a regular parametrisation

x = x̃(f ,ψ), (11.111)

of a neighbourhood of Ma through coordinates (f ,ψ) ∈ V ×Tl. �

Remark 11.18
In general, the coordinates (f ,ψ) constructed in the course of the previous proof
are not canonical (recall the analogous discussion for the case l = 1, Section 11.3).
Liouville’s theorem guarantees the existence of l coordinates β1, . . . , βl, canonic-
ally conjugate to f1, . . . , fl, but the variables β1, . . . , βl are not angles, as required
by the previous proposition. In the next section we show how to overcome this
difficulty, by introducing the action-angle variables. �

Remark 11.19
The previous proposition is sufficient to prove that the phase space of an
autonomous Hamiltonian system having as many first integrals independent and
in involution as degrees of freedom is foliated in invariant tori, provided all traject-
ories are bounded. In that case the invariant tori in the family {Ma}a∈V depend
regularly on a. This is an important geometric characterisation of integrable
Hamiltonian systems, which will be discussed in depth in the next section. �

11.6 Integrable systems with several degrees of freedom:
action-angle variables

In Section 11.3 we introduced action-angle variables for one-dimensional systems.
We started from the observation that, for example for oscillatory motions, every
phase curve is diffeomorphic to a circle enclosing the same area.
In the case of an autonomous Hamiltonian system with l degrees of freedom,

which admits l integrals that are independent and in involution, the analogous
observation is that the level manifold of the first integrals, Ma, when is compact,
it is diffeomorphic to an l-dimensional torus (Theorem 11.5).
Starting from this, we try to extend the construction of the action-angle

variables to systems with several degrees of freedom.

Definition 11.5 An autonomous Hamiltonian system, with Hamiltonian H(p,q)
having l degrees of freedom, is called completely canonically integrable if there
exists a completely canonical transformation

p = p̂(J,χ),

q = q̂(J,χ)
(11.112)

(where the dependence of p̂ and q̂ on each variable χi is 2π-periodic) to new vari-
ables (J,χ) ∈ Rl×Tl, called action-angle variables, such that the new Hamiltonian
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K is only a function of the actions J:

K = H(p̂(J,χ), q̂(J,χ)) = K(J). (11.113)
�

If a system is completely canonically integrable, from (11.113) it follows that
Hamilton’s equations can be written as

J̇ = −∇χK = 0,

χ̇ = ∇JK ≡ ω(J).
(11.114)

The system (11.114) can be immediately integrated:

J(t) = J(0),

χ(t) = χ(0) + ω(J(0))t,
(11.115)

for every t ∈ R. The actions are therefore a system of l integrals that are
independent and in involution, while each angle variable χi, by hypothesis defined
mod 2π, has a time period

Ti =
2π

ωi(J)
. (11.116)

Since the dependence of (p,q) on (J,χ) is regular and 2π-periodic with respect
to each angle, it follows that the motions of a completely canonically integrable
system are bounded and quasi-periodic (see Section 11.7).
We aim to prove the following theorem.

Theorem 11.6 Let H(p,q) be a Hamiltonian system with l degrees of freedom
which admits l first integrals f1(p,q), . . . , fl(p,q) that are independent and in
involution. Assume that for a certain fixed value a ∈ Rl the level manifold
Ma of the integrals is compact and connected. Then there exists a canonical
transformation of the variables (p,q) ∈ U to action-angle variables (J,χ) ∈ V ×Tl

(where V is an open subset of Rl). The system is therefore completely canonically
integrable. �

Theorem 11.5 implies that it is possible to parametrise Ma through l angles
(ψ1, . . . , ψl). This fact is essential in the proof of Theorem 11.6. More pre-
cisely, we refer to the conclusion of Proposition 11.1, that in a neighbourhood
of Ma in R2l one can introduce the generalised coordinates (not canonical)
(f1, . . . , fl, ψ1, . . . , ψl). For fixed f = a and varying between 0 and 2π only one of
the angles ψi, we obtain a cycle γi ⊂ Ma (corresponding to one of the generators
of its fundamental group). Hence we can construct l cycles γ1, . . . , γl that are
and not continuously reducible to one another (hence not homotopic). It is now
possible to introduce the action variables, in analogy with Definition 11.2.



11.6 Analytic mechanics: Hamilton–Jacobi theory and integrability 455

Definition 11.6 The action variables are the variables (J1, . . . , Jl) defined as

Ji =
1
2π

∮
γi

l∑
j=1

pj dqj , (11.117)

where i = 1, . . . , l. �

Apparently the definition we have just given of action variables has some degree
of arbitrariness, due to the indetermination of the cycles γi, i.e. the arbitrariness
in the choice of the variables ψj , j �= i. However, the invariant manifolds Ma

are Lagrangian (see Remark 11.9), and this can be used to show that the above
definition determines the action variables uniquely. More precisely, one has the
following.

Proposition 11.2 The action variables Ji do not depend on the choice of the
cycles γi inside the same class of homotopy: if γ′

i is a new cycle obtained by a
continuous deformation of γi we have∮

γi

l∑
j=1

pj dqj =
∮
γ′
i

l∑
j=1

pj dqj . (11.118)

The action variables depend only on the integrals f1(p,q), . . . , fl(p,q), and are
independent and in involution.

Proof
The independence of the choice of γi in the same class of homotopy is an
immediate consequence of (11.69) and of Stokes’ theorem (see Appendix 4).
On the other hand, by (11.117) every action variable Ji is independent of ψi

and cannot depend on the other angles ψj , j =/ i, either, since as ψj varies,
the cycle γi is continuously deformed and the integral (11.117) does not change.
Hence the actions are only functions of the integrals f1, . . . , fl. They are also in
involution, as

{Ji, Jk} =
l∑

m,n=1

∂Ji
∂fm

∂Jk
∂fn

{fm, fn} = 0.

The independence of the actions can be proved by showing that

det
(
∂Ji
∂fj

)
=/ 0, (11.119)

and then using the independence of the integrals fi. The proof is simplified when
the variables are separable, which is the most interesting case in practice. Indeed,
in this case the set Ma is the Cartesian product of curves in each subspace (pi, qi),
identifiable with the cycles. Following the procedure of separation of variables
we obtain that Ji depends only on f1, . . . , fi so that the Jacobian matrix is
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triangular. Therefore (11.119) amounts to showing that ∂Ji/∂fi �= 0, i = 1, . . . , l,
which follows by repeating in each subspace the same argument used in the
one-dimensional case. For simplicity, we limit the proof to the separable case. �

Proof of Theorem 11.6
By Proposition 11.2 the action variables are a set of independent integrals which
are also in involution. By Liouville’s theorem (see in particular (11.78) and
(11.80)) the function

W (J,q) =
∫ q

q0

l∑
j=1

pj dqj

∣∣∣∣
MJ

(11.120)

is the generating function of a completely canonical transformation to new vari-
ables (J,χ), and the new Hamiltonian K is a function only of the action variables
J. To complete the proof it is then sufficient to show that the new coordinates
χ are angles defined mod 2π. By (11.117), the increment of the function W (J,q)
when integrating along a cycle γi is

∆iW = 2πJi, (11.121)

and hence the increment of each variable χk along the same cycle is

∆i χk = ∆i
∂W

∂Jk
=

∂

∂Jk
∆iW = 2πδik. (11.122)

It follows that χ ∈ Tl. �

Remark 11.20
The action-angle variables are evidently not unique. The construction of action-
angle variables depends on the choice of the homotopy classes of the cycles
γ1, . . . , γl generating the fundamental group of the torus (see Singer and Thorpe
1980, and Dubrovin et al. 1991b), and a different choice (of other cycles not homo-
topic) produces a different determination of the variables (Fig. 11.9). Because of
this arbitrariness it is possible to have completely canonical transformations to
new action-angle variables. �

Proposition 11.3 Let J, χ be action-angle variables. The variables J̃, χ̃
obtained through any of the following completely canonical transformations are
still action-angle variables.

(1) Translations of the actions: for fixed a ∈ Rl we have

J̃ = J+ a, χ̃ = χ. (11.123)

(2) Translation of the origin of the angles on each torus: let δ : Rl → R be an
arbitrary regular function, then

J̃ = J, χ̃ = χ +∇Jδ(J). (11.124)
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(3) Linear transformations of the torus onto itself: let A be a matrix in GL(l,Z)
(hence an l × l matrix with integer entries and |detA| = 1), then

J̃ = (AT )− 1J, χ̃ = Aχ. (11.125)

Proof
The verification that these transformations are completely canonical is left to the
reader. Evidently the transformations (11.123) and (11.124) are canonical and
leave invariant the property of being action-angle variables. We remark that the
function W (J, q) in (11.120) is defined up to an arbitrary function δ(J), which
reflects precisely the transformation (11.124). As for (11.125) it is sufficient to
note that K̃ = K(AT J̃) and the variables χ̃ are still defined mod 2π. We observe
that A−1 also has integer entries, thanks to |detA| = 1, which also preserves the
measure of the torus. �

Example 11.14
Consider a system of l harmonic oscillators:

H(p,q) =
l∑

i=1

p2i +m2
iω

2
i q
2
i

2mi
. (11.126)
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The cycles γ1, . . . , γl are given by

γi = {(pi, qi)|p2i +m2
iω

2
i q
2
i = 2mifi}, (11.127)

where f1, . . . , fl are the l integrals in involution (see (11.84)). It is immediate to
verify that the actions are given by

Ji =
1
2π

∮
γi

pi dqi =
fi
ωi

, (11.128)

and that the function

W (q,J) =
l∑

i=1

∫ qi

0
±
√
2miωiJi −m2

iω
2
i ξ
2
i dξi (11.129)

generates the transformation to action-angle variables (J,χ):

pi =
√
2miωiJicosχi,

qi =
√

2Ji
miωi

sinχi,
(11.130)

where i = 1, . . . , l. �

11.7 Quasi-periodic motions and functions

The analysis of the previous sections yields the conclusion that the integrable
completely canonical Hamiltonian systems are characterised by the fact that they
admit l independent integrals in involution, and the phase space is foliated in
invariant tori. On these tori, the motion is governed by the equations

χ̇ = ω. (11.131)

In what follows we ignore the trivial case ω = 0. If l = 1 the motions are
periodic. In the more general case that l ≥ 2, the motions are not necessarily
periodic. Before starting a more detailed analysis, we consider the case l = 2. In
this case, the solution of equation (11.131) can be written as

χ1(t) = χ1(0) + ω1t, χ2(t) = χ2(0) + ω2t. (11.132)

Eliminating time t, the orbit is given by the line

ω2(χ1 − χ1(0))− ω1(χ2 − χ2(0)) = 0. (11.133)

We can therefore assume without loss of generality that χ1(0) = χ2(0) = 0, so
that the line passes through the origin (otherwise, it is sufficient to translate
the origin to (χ1(0), χ2(0))). Since (χ1, χ2) ∈ T2, and T2 = R2/(2πZ)2, it is
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clear that the line must be represented in the square [0, 2π]2 with opposite sides
identified with each other, according to the rule χ′ ≡ χ + 2πm, where m ∈ Z2.
The segments obtained are necessarily parallel (Fig. 11.10).
If ω1 =/ 0, the sequence of intersections of the orbit with the vertical segment

[0, 2π] on the χ2-axis is given by {n�(mod 2π)}∞
n=0, where

� = 2π
ω2
ω1

, (11.134)

while if ω1 = 0 all trajectories are clearly periodic.
We thus obtain a map of T1 onto itself defined by a rotation of angle �.

Theorem 11.7 The sequence {n�(mod 2π)}∞
n=0 on the circle T1 is periodic if

and only if �/2π ∈ Q. Else if �/2π is irrational, the sequence is dense in T1.

Proof
A necessary and sufficient condition for the sequence to be periodic is that there
exists an integer s > 0 such that s�(mod 2π) = 0, and hence that there exists an
integer r such that s� = 2rπ, from which it follows that �/2π = r/s. If �/2π
is irrational, all points of the sequence are distinct. Since the circle is compact,
for every ε > 0 there exist integers r, s such that |(r� − s�)(mod 2π)| < ε.
Setting j = |r − s|, the subsequence {nj�(mod 2π)}[2π/ε]n=0 subdivides the circle
into adjacent intervals of length less than ε, and hence every point of the circle
is at a distance less than ε from a point of the sequence. Since ε is arbitrary,
the sequence is dense. �

An obvious corollary of this proposition is the following.
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Corollary 11.1 The orbit (11.32) on the torus T2 is periodic if and only if
ω2/ω1 is rational or ω1 = 0, otherwise it is dense on the torus. �

If l > 2, the solution of (11.131) is still given by

χi(t) = χi(0) + ωit, (11.135)

where i = 1, . . . , l. Eliminating time, we find that the orbit is still represented by
a line in Tl = Rl/(2πZ)l, and hence with the points χ′ ≡ χ + 2πm identified,
where m ∈ Zl, and can therefore be represented in the hypercube [0, 2π]l with
opposite faces identified.
To study the periodicity of the orbit it will be useful to introduce the following.

Definition 11.7 Choose ω ∈ Rl. The resonance module Mω of the frequencies
vector ω is the subset2 of Zl given by

Mω = {m ∈ Zl|m · ω = 0}. (11.136)
�

The dimension of the resonance module Mω represents the number of inde-
pendent resonance relations m · ω = 0 satisfied by ω. It is also called resonance
multiplicity. Since we excluded the case ω = 0 we have3 0 ≤ dimMω ≤ l − 1.
If l = 2 only the extreme cases dimMω = 0, and hence Mω = {0}, and
dimMω = l − 1 are possible, and are called, respectively, non-resonance and
complete resonance. Corollary 11.1 implies that in this case the orbit (11.132)
is periodic for complete resonance and dense for non-resonance. We can indeed
prove the following generalisation of Theorem 11.7.

Theorem 11.8 Let Mω be the resonance module associated with the frequency
vector ω of the motions (11.135). Then

(1) the orbit is periodic if and only if dimMω = l − 1 (complete resonance);
(2) if dimMω = 0 the orbit is dense on the whole torus Tl;
(3) if 0 < d < l− 1, with d = dimMω, the orbit is dense on a torus of dimension

l − d embedded into Tl.

The motions corresponding to the cases (2) and (3) are called quasi-periodic.�

We subdivide the proof of Theorem 11.8 into a series of partial results, of
some interest by themselves.
Consider an arbitrary invertible linear transformation of coordinates of the

torus Tl which preserves orientation. By Lemma 11.6 its general form is

χ′ = Mχ, (11.137)

2 Evidently Mω is a module of Zl.
3 Indeed if ω = 0 we have dim Mω = l, but then all the points of the torus Tl are fixed.
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where M ∈ SG(l,Z). The system of equations (11.131) is transformed by (11.137)
into

χ̇′ = ω′, (11.138)

where

ω′ = Mω. (11.139)

Lemma 11.7 Let Mω be the resonance module corresponding to ω. There exists a
coordinate transformation (11.137) of the torus Tl such that ω′

l−d+1 = · · · = ω′
l = 0,

where d = dimMω.

Proof
First of all we note that a collection of l vectors of Zl (e1, . . . , el) is a basis of
Zl if and only if the parallelepiped with sides e1, . . . , el has volume 1. Indeed,
the canonical basis e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . generates a cube of
side 1, and by Lemma 11.6 every other basis in Zl is related to the canonical
one by a volume-preserving linear transformation.
We now try to complete an arbitrary basis (m1, . . . ,md) of Mω with l− d lin-

early independent vectors of Zl, (µ1, . . . ,µl−d), in such a way that (µ1, . . . ,µl−d,
m1, . . . ,md) is a basis of Zl. If this is possible, then the lemma is proved
by constructing the matrix M whose rows are the components of the vectors
(µ1, . . . ,µl−d,m1, . . . ,md); indeed ω′

l−d+j = ω · mj = 0 for every j = 1, . . . , d.
The matrix M has integer components and determinant equal to ±1 by the
previous remark, and hence it induces an invertible coordinate transformation on
the torus Tl which satisfies the statement.
On the other hand, it is immediate to prove that such a choice of (µ1, . . . ,µl−d)

is possible. Let (µ1, . . . ,µl−d) be linearly independent vectors of

M⊥
ω = {µ ∈ Zl|µ ·m = 0 for every m ∈ Mω}. (11.140)

Evidently (µ1, . . . ,µl−d,m1, . . . ,md) is a basis of Rl. If the volume of the par-
allelepiped they generate is equal to 1, it is also a basis of Zl and the proof is
finished. Otherwise, since the volume is a positive integer, there exists a non-zero
vector v ∈ Zl inside the parallelepiped:

v = λ1µ1 + · · ·+ λl−dµl−d + λl−d+1m1 + · · ·+ λlmd, (11.141)

with 0 ≤ λj < 1 and λj a suitable rational, for every j = 1, . . . , l. Since the
subspace of Rl generated by Mω does not contain any point of Zl different from
those of Mω, the vector v cannot belong to Mω (which has no vectors inside the
parallelepiped), and therefore it is not restrictive to assume that λ1 =/ 0. Hence
replacing v by µ1, we find a new l-tuple of linearly independent vectors of Rl
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such that

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v
µ2
...

µl−d

m1
...
md

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µ1
µ2
...

µl−d

m1
...
md

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1.

The volume of the parallelepiped generated by the basis is therefore diminished
by at least one unit. If it is not equal to 1, by repeating this procedure a sufficient
number of times, we find the basis sought. �

Example 11.15
Consider a system of three independent harmonic oscillators; the Hamiltonian of
the system in action-angle variables is given by (see Example 11.14)

K(J) = ω1J1 + ω2J2 + ω3J3. (11.142)

Suppose that the frequencies satisfy the resonance relations

ω1 + 2ω2 − 4ω3 = 0, ω1 − ω2 = 0, (11.143)

so that Mω has dimension 2 and a basis for it is clearly given by m1 = (1, 2,−4),
m2 = (1,−1, 0). In this case the canonical linear transformation

J̃ = (MT )− 1J, χ̃ = Mχ, (11.144)

where M is the following matrix of SL(3,Z):

M =

⎛⎝1 2 −4
1 −1 0
0 −1 1

⎞⎠ , (11.145)

transforms the Hamiltonian (11.142) into

K̃(J̃) = J̃ ·Mω = (ω3 − ω2)J̃3, (11.146)

and hence in the new variables two frequencies vanish (ω̃1 = ω̃2 = 0, ω̃3 =
ω3 − ω2). �

Definition 11.8 A continuous function φ: R → R is called quasi-periodic if
there exist a continuous function f : Tl → R and a vector ω ∈ Rl such that

φ(t) = f(ω1t, . . . , ωlt). (11.147)
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The time average 〈φ〉T of a quasi-periodic function is given by

〈φ〉T = lim
T→∞

1
T

∫ T

0
φ(t) dt = lim

T→∞
1
T

∫ T

0
f(ω1t, . . . , ωlt) dt, (11.148)

as long as the limit exists. �

Evidently, the kinetic momenta and the coordinates (p,q) of a completely
integrable Hamiltonian system are examples of quasi-periodic functions. More
generally, if f is any continuous function defined on the torus Tl, then if we
consider the values f(χ(0) +ωt) that the function takes along the flow (11.135)
we find a quasi-periodic function, for which it is meaningful to consider the time
average (11.148) (this is a function of the orbit considered, parametrised by the
initial data χ(0)) and also the phase average, i.e. the average on the torus Tl:

〈f〉 = 1
(2π)l

∫
Tl

f(χ) dlχ. (11.149)

The comparison of the time average with the phase average allows us to establish
whether the motion on Tl is dense. Indeed, we have the following.

Theorem 11.9 Let f : Tl → R be a continuous function, and consider the
quasi-periodic function obtained by composing f with the flow (11.35): φ(t) =
f(χ(0) +ωt). If the frequencies ω are not resonant, i.e. if dimMω = 0, the time
average 〈φ〉T (χ(0)) exists everywhere, it is constant on Tl and coincides with the
phase average (11.49).

Proof
First of all we prove the theorem in the special case that f is a trigonometric
polynomial and hence can be written as

f(χ) =
∑
m∈F

f̂meim·χ, (11.150)

where F ⊂ Zl is a finite set of indices.
If F is made of only one index m, then if m = 0 the function is constant and

〈φ〉T = f0 = 〈f〉. Otherwise, if m =/ 0 it is immediate to check that the phase
average is zero and the time average is given by

〈φ〉T = eim·χ(0) lim
T→∞

1
T

∫ T

0
eim·ωt dt =

eim·χ(0)

im · ω lim
T→∞

eim·ωT − 1
T

= 0,

for any χ(0) ∈ Tl. If F has a finite number of indices, one can use the linearity
of the time average and phase average operators to show that the averages in
phase and time coincide.
Now let f be a generic continuous function. By Weierstrass’s theorem (see

Giusti 1989) for every ε > 0 there exists a trigonometric polynomial Pε
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approximating f uniformly on Tl up to ε/2:

max
χ∈Tl

|f(χ)− Pε(χ)| ≤ ε/2. (11.151)

Setting P− = Pε − ε/2 and P+ = Pε + ε/2, we have P− ≤ f ≤ P+ and

1
(2π)l

∫
Tl

(P+(χ)− P−(χ)) dlχ ≤ ε.

Therefore for every ε > 0 there exist two trigonometric polynomials P− and
P+ such that

〈f〉 − 〈P−〉 ≤ ε, 〈P+〉 − 〈f〉 ≤ ε, (11.152)

and for every T > 0 we have

1
T

∫ T

0
P−(χ(0) + ωt) dt ≤ 1

T

∫ T

0
f(χ(0) + ωt) dt ≤ 1

T

∫ T

0
P+(χ(0) + ωt) dt.

(11.153)

However, by the previous remarks, for every ε > 0 there exists T (ε) > 0 such
that for every T > T (ε) one has∣∣∣∣∣〈P±〉 − 1

T

∫ T

0
P±(χ(0) + ωt) dt

∣∣∣∣∣ ≤ ε. (11.154)

Combining (11.152)–(11.154) we find that for every ε > 0 and for every T >
T (ε) we have ∣∣∣∣∣〈f〉 − 1

T

∫ T

0
f(χ(0) + ωt) dt

∣∣∣∣∣ ≤ 2ε, (11.155)

and the theorem is proved. �

It is not difficult now to prove Theorem 11.8.

Proof of Theorem 11.8
Statement (1) is of immediate verification, and it is left to the reader.
Suppose now that dimMω = 0. If there exist a point χ ∈ Tl and an open

neighbourhood U not visited by the orbit, take any continuous function f : Tl → R
with the following properties:

(a) 〈f〉 = 1;
(b) f(χ) = 0 for every χ �∈ U .

The function f would then have zero time average, different from the phase
average, contradicting Theorem 11.9.
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Finally, if dimMω = d and 0 < d < l − 1, by Lemma 11.7 there exists a
coordinate transformation on Tl which annihilates the last d frequencies. It is
therefore sufficient to repeat the previous argument restricted to the torus Tl−d

with points (χ1, . . . , χl−d, χl−d+1(0), . . . , χl(0)). �

Example 11.16
Apply Theorem 11.9 to solve a celebrated problem proposed by Arnol’d. Consider
the sequence constructed by taking the first digit of 2n for n ≥ 0: 1, 2, 4, 8,
1, 3, 6, 1, 2, 5, 1, . . . and compute the frequency with which each integer i appears
in the sequence.
The first digit of 2n is equal to i if and only if

log10 i ≤ {n log10 2} < log10(i+ 1), 1 ≤ i ≤ 9,

where {x} denotes the fractional part of x: {x} = x(mod 1). On the other hand,
log10 2 is irrational and, by Theorem 11.7, the sequence {n log10 2} is dense on
the interval [0, 1].
The frequency νi with which the integer i appears in the sequence is given by

νi = lim
N→+∞

card({{n log10 2} ∈ [log10 i, log10(i+ 1))|0 ≤ n ≤ N − 1})
N

, (11.156)

where card(A) indicates the cardinality of the set A.
Evidently (11.156) coincides with the time average 〈χi〉T of the function χi :

[0, 1] → R given by

χi(x) =

{
1, if x ∈ [log10 i, log10(i+ 1)),
0, otherwise,

(11.157)

computed for the sequence {n log10 2}:

νi = 〈χi〉T = lim
N→+∞

1
N

N−1∑
j=0

χi({j log10 2}). (11.158)

It is not difficult to prove, by adapting the proof of Theorem 11.9,4 that, although
the function χi is not continuous, the conclusions of the theorem still hold, and
in particular, that the average 〈χi〉T is constant and equal to the average of χi

on the interval [0, 1]:

νi = 〈χi〉T =
∫ 1

0
χi(x) dx = log10(i+ 1)− log10 i. (11.159)

Hence the frequency of 1, 2, . . . , 9 in the sequence of the first digit of 2n is
approximately equal to 0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, 0.046,
respectively.

4 Note that the function χi can be approximated by trigonometric polynomials, although
the convergence occurs only pointwise.
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Considering only the first 40 terms of the sequence, it would appear that the
sequence is periodic, with period 10: 1, 2, 4, 8, 1, 3, 6, 1, 2, 5, etc. The number 7
appears for the first time for n = 46, and 9 for n = 53. This behaviour illustrates
how the convergence to the limit (11.158) is possibly very slow, and in our case it
can be explained by observing that log10 2 = 0.301029996 . . . , while an irrational
number is very close to 3/10, which would produce the sequence {3n/10} that
is periodic with period 10.
It is interesting to compare the behaviour of the sequence {n log10 2} with

{n(√5− 1)/2}. �

11.8 Action-angle variables for the Kepler problem. Canonical
elements, Delaunay and Poincaré variables

The Hamiltonian of the Kepler problem in spherical coordinates is given by

H(pr, pθ, pϕ, r, θ, ϕ) =
1
2m

(
p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ

)
− k

r
. (11.160)

The moment pϕ canonically conjugate to the azimuthal angle ϕ coincides with
the component along the z-axis (normal to the ecliptic) of the angular momentum,
as can be immediately verified from the definitions. In addition we have

|L|2 = |mr× ṙ|2 = m2r4(θ̇2 + sin2 θϕ̇2) = p2θ +
p2ϕ

sin2 θ
, (11.161)

and |L| = constant (areas constant).
If i indicates the angle of inclination of the orbit with respect to the ecliptic

z = 0, evidently

pϕ = |L| cos i. (11.162)

The angle ϕ is cyclic, and hence Lz = pϕ is a first integral of the motion.
It is very easy to check that all assumptions of Arnol’d’s theorem are satisfied.
Two angular coordinates ϕ, θ are immediately available to obtain the respective
cycles γϕ, γθ. The first action variable for the Kepler problem therefore coincides
with pϕ:

Jϕ =
1
2π

∮
γϕ

pϕ dϕ = pϕ (11.163)

(here γϕ is the cycle obtained by varying ϕ ∈ S1 and keeping r, θ, pr, pθ, pϕ
constant).
The second action variable is given by

Jθ =
1
2π

∮
γθ

pθdθ. (11.164)
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The equation of the cycle γθ is indeed (11.161) from which

Jθ =
1
2π

∮
γθ

√
|L|2 − J2ϕ

sin2 θ
dθ. (11.165)

On the other hand, Jϕ = |L| cos i, θ on a cycle varies between π/2 − i and
π/2 + i while r and ϕ remain constant, and hence we have

Jθ = −4|L|
2π

π/2− i∫
π/2

1
sin θ

√
sin2 i− cos2 θ dθ =

2|L|
π

sin2 i

π/2∫
0

cos2 ψ
1− sin2 i sin2 ψ

dψ,

where we have substituted cos θ = sin i sinψ. Setting now u = tan ψ we finally
find

Jθ =
2|L|
π

∫ +∞

0

[
du

1 + u2
− cos2 i

du
1 + u2 cos2 i

]
=

2|L|
π

(π
2

− π

2
cos i

)
= |L|(1− cos i),

from which, since |L| cos i = Jϕ we can deduce that |L| = Jθ+Jϕ. The third and
last action variable Jr is given by

Jr =
1
2π

∮
γr

pr dr =
1
2π

∮
γr

√
2m

(
E +

k

r

)
− (Jθ + Jϕ)2

r2
dr. (11.166)

Note that, because of equations (11.160), (11.161), the cycle γr in the plane
(pr, r) has precisely the equation

p2r = 2m
(
E +

k

r

)
− |L|2

r2
, (11.167)

from which we immediately find the extreme values of r:

r± = a

[
1±

√
1− |L|2

mka

]
,

with a = −k/2E > 0. The interpretation of Jϕ, Jθ and Jr is clear in terms of
the areas of the cycles depicted in Fig. 11.11.
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The integral (11.166) can be computed by elementary means and the final
result is

Jr = −(Jθ + Jϕ) + k

√
m

−2E ,

from which

H = E = − mk2

2(Jr + Jθ + Jϕ)2
. (11.168)

Differentiating with respect to the action variables we find the frequencies

ω =
∂H

∂Jr
=

∂H

∂Jθ
=

∂H

∂Jϕ
=

mk2

(Jr + Jθ + Jϕ)3
= mk2

(−2E
mk2

)3/2
. (11.169)

Since the frequencies are all equal, the problem is completely resonant and all
orbits are periodic with period

T =
2π
ω

=
2π
mk2

(
mk2

−2E
)3/2

. (11.170)
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From the relation a = −k/2E linking the major semi-axis with the energy, one
derives Kepler’s third law (see (5.43) and recall that k/m is independent of m):

a3

T 2
=

k

4π2m
.

The so-called Delaunay elements, which can be interpreted as orbital elements,
are defined through the linear canonical transformation of the kind (11.125),
naturally suggested by the physical meaning of Jϕ, Jϕ + Jθ, Jϕ + Jθ + Jr:

L = Jθ + Jϕ + Jr,

G = Jϕ + Jθ,

H = Jϕ;

l = χr,

g = χθ − χr,

h = χϕ − χθ,

(11.171)

where (χr, χθ, χϕ) are the angle variables conjugate to (Jr, Jθ, Jϕ). Relation
(11.171) annihilates two frequencies (see Lemma 11.7) and the Hamiltonian in
the new variables is written

H = −mk2

2L2 . (11.172)

It follows that the only non-constant element is l. On the other hand, the first
three elements are combinations of constants, while the constancy of g and
h is a consequence of complete resonance. It is not difficult to see that l is
the mean anomaly, g is the perihelion argument and h is the ascending node
longitude (Fig. 11.12). Here L, G and H are related to the semi-major axis a,
the eccentricity e and the inclination i of the orbit by

L =
√
mka,

G = |L| = L
√
1− e2,

H = |L| cos i.
(11.173)

Although appropriate to the complete resonance of the Kepler problem, the
Delaunay variables are not particularly convenient to describe the orbits of the
planets of the Solar System. This is due to the fact that these variables become
singular in correspondence to circular orbits (e = 0, therefore L = G and the
argument of the perihelion g is not defined) and to horizontal orbits (i = 0 or
i = π, therefore G = H and the ascending node longitude h is not defined). All
the planets of the Solar System have almost circular orbits (except Mercury, Mars
and Pluto) and small inclinations (see Table 11.1, taken from Danby (1988)).
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Table 11.1 Orbital elements of the planets of the Solar System. Here
�, h, i and λ are expressed in degrees, a is expressed in astronomical
units (1 A.U. = 1.5×108 km), � is the perihelion longitude: � = g+h,
λ = � + l is the average longitude (at a fixed time)

Planet � h i e λ a

Mercury 77.4561 48.3309 7.0050 0.205632 252.2509 0.387104
Venus 131.5637 76.6799 3.3947 0.006772 181.9798 0.723307
Earth 102.9373 0.016709 1000.4664 1.000012
Mars 336.0602 49.5581 1.8497 0.093401 355.4333 1.523711
Jupiter 374.3313 100.4644 1.3033 0.048495 34.3515 5.210216
Saturn 93.0568 113.6655 2.4889 0.055509 50.0775 9.538070
Uranus 173.0052 74.0060 0.7732 0.046296 314.0550 19.183302
Neptune 48.1237 131.7841 1.7700 0.008989 304.3487 30.055144
Pluto 224.6148 110.4065 17.1323 0.250877 218.8874 39.537580

This difficulty can be resolved by introducing a new set of action-angle variables
(Λ, Z1, Z2, λ, ζ1, ζ2) ∈ R3×T3: Λ = L, Z1 = L−G, Z2 = G−H, λ = h+g+ l, ζ1 =
−g−h, ζ2 = −h (λ is called the mean longitude, −ζ1 is the perihelion longitude).
Hence considering the pairs (Z1, ζ1) and (Z2, ζ2) as polar coordinates we find

ξ1 =
√
2Z1 cos ζ1, η1 =

√
2Z1 sin ζ1, ξ2 =

√
2Z2 cos ζ2, η2 =

√
2Z2 sin ζ2.

(11.174)
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The canonical variables (Λ, ξ1, ξ2, λ, η1, η2) ∈ R+×R2×T1×R2 are called Poin-
caré variables and are also well defined in the case of a circular orbit (Z1 = 0) or
a horizontal orbit (Z2 = 0). In these new variables the Hamiltonian of Kepler’s
problem is H = −mk2/2Λ2; therefore Λ, ξ1, ξ2, η1, η2 are constants of the motion.
The advantage of the Poincaré variables over the Delaunay ones is that the former
are then suitable for both the complete resonance of the Kepler problem and for
the study of the planets of the Solar System. The relation between the Poincaré
and the original variables momentum and position (p,q) is more complicated
and will not be discussed here (the interested reader can refer to Poincaré (1905,
chapter III) or Laskar (1989a)). Note however that Λ is proportional to

√
a,√

ξ21 + η21 � √
Λe(1 + O(e2)),

√
ξ22 + η22 � √

Λi(1 + O(i2) + O(e2)).

In applications one often uses the orbital elements as (non-canonical) coordinates.

11.9 Wave interpretation of mechanics

In this section we intend to illustrate how through the Hamilton–Jacobi equation,
we can associate a wave front to a Hamiltonian system. What follows is a seem-
ingly abstract analysis of classical mechanics, which however comes surprisingly
close to the fundamental concepts of quantum mechanics.
Consider an autonomous system with Hamiltonian H(p,q) having l ≥ 2 degrees

of freedom, and assume that the Hamilton principal function is known. This
function can be written in the form

S(q,α, t) = W (q,α)− E(α)t, (11.175)

up to an inessential additive constant. The constants α1, . . . , αl are determined
by the initial conditions. For t = 0 we have

S = W0 = W (q(0),α). (11.176)

For every t > 0 the equation

S(q,α, t) = W0 (11.177)

defines a regular (l−1)-dimensional manifold M(t) in the space of configurations
Rl. This manifold is identified with the level set

W (q,α) = W0 + E(α)t. (11.178)

At time t = 0 equation (11.178) selects a family of initial states, determined by the
pairs of vectors (q(0),α), such that W (q(0),α) = W0. As t varies, M(t) moves
within the family Σ of manifolds W (q,α) = constant, according to (11.178).
Hence the dynamics of the system becomes associated with the propagation

of a ‘front’ M(t). There exist interesting relations between the motion of the
system and the motion of M(t) in Σ.
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Proposition 11.4 If T = 1
2

∑l
i,j=1 aij q̇iq̇j is the kinetic energy of the system

and if Rl is endowed with the metric

ds2T =
l∑

i,j=1
aij dqi dqj , (11.179)

then the trajectories of the system in the configuration space are orthogonal to
each manifold in the family Σ.

Proof
For a fixed time t0 and a point q0 ∈ M(t0), for every vector δq ∈ Tq0M(t0) we
have by (11.178),

∇qW (q0,α) · δq = 0 (11.180)

to first order in |δq|. We know that (q0,α) determines uniquely a vector p0
through the relation p0 = ∇qW (q0,α) and that in addition, by definition,
p0i =

∑l
j=1 aij(q0)q̇j . Equation (11.180) can be interpreted as (q̇, δq)T = 0,

where we denote by (x,y)T =
∑l

i,j=1 aijxiyj the scalar product induced by the
metric (11.179). �

We can now deduce information on the velocity of the points of M(t). Consider
the family of the trajectories of the system issuing from the points of M(0) and
the family Σ of the manifolds M(t) (Fig. 11.13). For every fixed trajectory γ we
define the vector qγ(t) = γ ∩M(t).

Proposition 11.5 According to the metric (11.179) we have

|q̇γ |T =
|E|√

2(E − V (qγ))
. (11.181)

Proof
From the identity

W (qγ(t),α) = W0 + Et (11.182)

we deduce

∇qW (qγ(t),α) · q̇γ = E, (11.183)

which can be interpreted as (q̇, q̇γ)T = E, where q̇ is defined through the vector
p = ∇qW (qγ(t),α). By construction q̇γ and q̇ are proportional at every instant,
and therefore (q̇, q̇γ)T = |q̇|T |q̇γ |T = |E|.
Since |q̇|2T = 2T = 2(E − V ), we can deduce equation (11.181). �

In the case of a single free point particle, the space of configurations coincides
with the physical space, the manifold M(t) is a surface, and the metric (11.179)
can be identified with the Euclidean metric.
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Example 11.17
For a free point particle we have q̇ = c0, a constant, p = mc0 = α, and hence
W = α·q. In this case, W is the generating function of the identity transformation.
The surfaces W = constant are the planes orthogonal to α (Fig. 11.14) and the
‘front’ M(t) behaves as the phase of a plane wave:

S = α · q− Et. (11.184)
�

This simple example leads us to reinterpret the propagation of the front M(t)
in the context of a field theory analogous to the theory describing the propagation
of light in a non-uniform optical medium.
We start from the observation that a plane wave with velocity c0 can be

represented in the form

φ = φ0ei(k·q−ωt), (11.185)

with φ0 a constant, k a vector parallel to c0 and

ω = kc0. (11.186)

The absolute value k is the wave number which defines the wavelength λ =
2π/k. Equation (11.185), with ω given by (11.186), is a solution of the wave
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a

Fig. 11.14

equation

∆φ− 1
c20

∂2φ

∂t2
= 0, (11.187)

describing the propagation of the electromagnetic field in a medium with refractive
index

n0 =
c

c0
, (11.188)

where c is the speed of light in the void. The wave phase can also be written in
the form

k0(n0e · q− ct) = 2π
(
n0
λ0

e · q− νt

)
, (11.189)

where e = k/n, k0 = kc0/c, λ0 = 2π/k0, ν = ω/2π. Up to here, the analogy with
Example 11.17 is evident.
We now consider the modifications which must be introduced in order to

describe the motion of a more general mechanical system by means of this
optical model. For simplicity we shall deal only with the case of a single free
point particle, subject to a field with potential energy V (q). We know then
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that at every point of the associated moving surface M(t) we can define the
propagation velocity

u =
E√

2m(E − V )
, (11.190)

and we try to reproduce this behaviour in the case of a wave of the form

φ = φ0eA(q)+ik0(L(q)−ct), (11.191)

by imposing the validity of an equation of the kind (11.187). Note that in contrast
to the case of a plane wave, we now have a variable amplitude φ0eA(q) and that
the function L(q), called eikonal, replaces the linear function n0e ·q. If we insert
the function (11.191) into the modified equation

∆φ− 1
u2(q)

∂2φ

∂t2
= 0, (11.192)

with u(q) given by (11.190), separating real and imaginary parts we find

|∇L|2 = n2(q) +
(
λ0
2π

)2
[∆A+ |∇A|2], (11.193)

∆L+ 2∇L · ∇A = 0, (11.194)

where n(q) = c/u(q).
If λ0 tends to zero in (11.193) (geometrical optic limit) we find for L(q) the

equation of geometrical optics:

|∇L|2 = n2(q), (11.195)

which is structurally a Hamilton–Jacobi equation. The analogy with the equation
for the function W can be made closer by noting that the front with constant
phase:

2π
(

1
λ0

L(q)− νt

)
= constant (11.196)

varies in the family Σ of surfaces L(q) = constant.
We can impose proportionality between the phase (11.196) and the function

S = W − Et. This yields:

(a) a proportionality relation between |E| and ν:

|E| = hν (11.197)

(h is the Planck constant),
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(b) the proportionality W = h/λ0L, so that equation (11.193) coincides with the
Hamilton–Jacobi equation for W if

n =
λ0
h

√
2m(E − V ), (11.198)

in agreement with the definition

n = c/u =
c
√
2m(E − V )

E
=

c

hν

√
2m(E − V ), c/ν = λ0.

The hypothesis that allowed us to develop this analogy is that we assumed
the validity of the geometrical optics approximation, corresponding to neglecting
the terms in λ20 in equation (11.193).
We can also introduce the wave number of the equivalent field:

k =
2π
u

=
1
�

√
2m(E − V ), � =

h

2π
. (11.199)

We can easily check that if we rewrite equation (11.191) in the form

φ = ψ(q)e−iωt (11.200)

ψ must satisfy the equation

∆ψ + k2ψ = 0, (11.201)

and hence

∆ψ +
2
�2

m(E − V )ψ = 0, (11.202)

called the Schrödinger equation of wave mechanics.
We note that this can also be derived from the Schrödinger equation for

quantum mechanics:

1
2m

∆φ− 1
�2

V φ = − i
�

∂φ

∂t
, (11.203)

by substituting into it the expression (11.200).
If we now return to the parallel idea of considering a wave with phase S/�,

and hence φ = φ0eiS/h
–
, equation (11.203) yields the equation

1
2m

|∇S|2 + V +
∂S

∂t
=

i
2m

�∆S, (11.204)

which reduces to the Hamilton–Jacobi equation if we consider the limit h → 0
(classical limit). It is interesting to note that h → 0 is equivalent to ν → ∞ (by
(11.197)), and hence to λ0 → 0: the classical limit of the Schrödinger equation
is equivalent to the limit of geometrical optics in the context of wave theory.
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11.10 Problems

1. Solve the Hamilton–Jacobi equation for the motion in space of a point
particle of mass m subject to weight.

2. Separate variables in the Hamilton–Jacobi equation for the motion of a
point particle of mass m subject to the action of weight and constrained to move
on a surface of rotation around the z-axis.

3. A point particle of unit mass moves without any external forces on a
surface whose first fundamental form is (ds)2 = (U(u) + V (v))((du)2 + (dv)2),
where (u, v) ∈ R2 (Liouville surface).
(a) Write down the Hamiltonian of the system.
(b) Write down the Hamilton–Jacobi equation and separate variables.
(c) Solve the Hamilton–Jacobi equation in the case that U(u) = u2, V (v) = v,

where u > 0, v > 0.
(Answer: (a) H = (p2u + p2v)/[2(U(u) + V (v))]; (b) setting S = W1(u) +W2(v) −
Et, we have (W ′

1(u))
2 − 2EU(u) = α = (W ′

1(v))
2 − 2EV (v); (c) W1(u) =

1/2[u
√
α+ 2Eu2+(α/

√
2E)arcsinh(

√
2E/αu)], and W2(v) = 1/3E(α+2Ev)3/2.)

4. Use the Hamilton–Jacobi method to solve Problems 23, 24 and 28 of
Section 1.13.

5. Write down the Hamiltonian, solve the Hamilton–Jacobi equation and find
the action variables for the systems described in Problems 11 and 15 of Section
3.7 and Problems 8, 9 and 12 of Section 4.12.

6. Consider a point particle of unit mass freely moving on the surface of a
tri-axial ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1,

where a < b < c. Prove that in the variables (u, v) ∈ [b, c]× [a, b] defined by

x =

√
a
(u− a)(v − a)
(b− a)(c− a)

,

y =

√
b
(u− b)(v − b)
(c− b)(a− b)

,

z =

√
c
(u− c)(v − c)
(a− c)(b− c)

,

the Hamiltonian is given by

H(u, v, pu, pv) =
1
2

[
p2u

(u− v)A(u)
+

p2v
(v − u)A(v)

]
,
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where

A(λ) =
1
4

λ

(a− λ)(b− λ)(c− λ)
.

Write down the Hamilton–Jacobi equation and separate variables.
7. Two point particles of equal mass move along a line interacting through a

force field with potential energy V (x1−x2), where x1 and x2 are the coordinates
of the two points.
(a) Write down the Hamiltonian.
(b) Write down the Hamilton–Jacobi equation and separate variables (hint:

introduce as new coordinates x = (x1 + x2)/
√
2 and y = (x1 − x2)/

√
2).

(c) Setting V (x1−x2) = V0e(x1−x2)/d, where V0 and d are two prescribed positive
constants, compute the solution of the Hamilton–Jacobi equation.
8. Write down and solve the Hamilton–Jacobi equation for a point particle

of mass m moving in space under the action of a central field V (r) = k/r2+hr2,
where k and h are two positive constants. Find the action variables and express
the energy as a function of them. Compute the frequencies of the motions. Find
the resonance conditions. Do periodic orbits exist?

9. Consider the Hamiltonian (see Problem 9 of Section 3.7)

H(p, q) =
p2

2m
+ V0

( q
d

)2n
,

where m, V0 and d are prescribed positive constants and n is an integer greater
than or equal to 2. Let E be the fixed value of energy. Prove that if J indicates
the action variable, then

E =
(
πnJ

dBn

)2n/(n+1)( 1
2m

)n/(n+1)

V
1/(n+1)
0 ,

where Bn =
∫ 1
0

√
1− uu1/2n − 1 du. Prove that the period T of the motion is equal

to

T = d

√
2m
E

(
E

V0

)1/2n
n+ 1
n2

Bn.

10. Given a system of Hamiltonian (see Problem 14 of Section 3.7)

H(p, q) =
p2

2m
+ V0(e

−2q/d − 2e−q/d),
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where V0, d are prescribed positive constants, compute the action variable J and
check that the energy expressed in terms of the action variable is

E = −V0

(
1− J

d
√
2mV0

)2
.

Compute the period of the motion.
11. Given a system of Hamiltonian (see Problem 13 of Section 3.7)

H(p, q) =
p2

2m
− V0

cosh2 (q/d)
,

where V0, d are prescribed positive constants, compute the action variable cor-
responding to librations, and verify that the energy expressed in terms of the
action variable is

E = −V0

(
1− J

d
√
2mV0

)
.

Compute the period of the motions.
12. Given a system with Hamiltonian

H(p, q) =
p2

2m
+ V0|q|,

where V0 is a prescribed positive constant, find the transformation to action-angle
variables and determine the frequency of the motion.
13. Given a system with Hamiltonian

H(p, q) =
p2

2m
+ V (q),

where V is periodic with period 2π and

V (q) =

{
−V0q, if −π ≤ q ≤ 0,
+V0q, if 0 ≤ q ≤ π,

with V0 a prescribed positive constant (see Problem 12 of Section 3.7), find
the transformation to action-angle variables and determine the frequency of the
motion for librations and for rotations.
14. Consider the Hamiltonian system (see Problem 10 of Section 3.7)

H(p, q) =
p2

2m
+ V0tan2(q/d),

where V0, d are two fixed positive constants. Compute the action variable J and
prove that the energy E expressed in terms of J is given by

E =
1
2m

J

d2
(J + 2d

√
2mV0).
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Verify that the period of the motion is

T =
2πmd2

J + 2d
√
2mV0

,

and compute the angle variable.
15. A point particle of mass m moves with velocity v along a segment and is

reflected elastically at the endpoints of the segment. Prove that the action J for
the system is J = pl/π, where p = mv and l is the length of the segment. Prove
that the energy is E = 1/2m (πJ/l)2.
16. Use separability to express the function W for the Kepler problem as the

sum of three functions related to the three cycles in Fig. 11.11. Then compute
the angle variables, showing that one of them coincides with the mean anomaly.

11.11 Additional remarks and bibliographical notes

In this chapter we discussed the Hamilton–Jacobi method for solving the equations
of motion and a notion of integrability5 for the Hamilton’s equations, correspond-
ing to the existence of bounded and quasi-periodic orbits, and hence of a foliation
of the phase space in invariant tori. The presentation of the Hamilton–Jacobi
equations and of the method of separation of variables for its solution follows
the text of Landau and Lifschitz (1976).
The book by Levi-Civita and Amaldi (1927) contains a detailed discussion of

the theory presented in the first two sections, and of the examples we chose to
illustrate it.
General references for this chapter are the book of Whittaker (1936), which

contains many of the classical results obtained by the Italian school6 at the
beginning of the twentieth century on the classification of the cases when the
Hamilton–Jacobi equation is solvable by separation of variables, and the treatise
of Agostinelli and Pignedoli (1989).
For a more complete treatment of the notion of a completely canonically

integrable system, and of action-angle variables, we recommend the article of
Nekhoroshev (1972), and the review of Gallavotti (1984). The latter is also an
excellent basis for a more advanced study of the topics discussed in the next
chapter. We partially followed it in our proof of the theorem of Liouville given
in Section 11.4.
The lecture notes of Giorgilli (1990) have been particularly useful in preparing

Section 11.5, in particular for the proof of Proposition 11.1.
A more detailed discussion of the action-angle variables for the problem of

Kepler, and their relation with the orbital elements, can be found in the first

5 There indeed exist various other notions of integrability, just as there exist methods
different from the Hamilton–Jacobi one for solving the equations of motion. The reader
interested in a more detailed treatment of these themes can start by reading the review
article of Kozlov (1983).

6 Morera, Levi-Civita, Burgatti, Dall’Acqua and many more.
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chapter of Beletski (1986). In the second chapter of this very pleasant and
informal introduction to celestial mechanics one can find a study of the problem
of two centres of force (see Example 11.6), with the completion of its solution
via separation of variables in the Hamilton–Jacobi equation, and the explicit
computation of the trajectory of a polar satellite using elliptic functions. In
the following third chapter, parabolic coordinates are used for the study of the
pressure of solar radiation upon an artificial satellite orbiting around the Earth,
and there is a complete classification of the trajectories corresponding to the
planar case.
We stress that for the sake of brevity we did not illustrate the mechanics of

rigid systems as an example of completely canonically integrable systems. The
book of Gallavotti (1980) contains this illustration fully.
In addition, we did not develop very extensively the theme, touched upon in

Section 11.9, of the relations existing between the Hamilton–Jacobi equation, geo-
metrical optics and the semiclassical approximation in quantum mechanics. The
text of Arnol’d (1978a), already referred to, also contains these topics (sections 46
and 47 and appendices 11 and 12). The complex relation between the notion
of action variable and the so-called ‘old quantum’ of Bohr and Sommerfeld,
described in Graffi (1993), is also very interesting. An excellent reading on
this is the treatise of Born (1927), which can also be read as an introduc-
tion to the study of the canonical theory of perturbations, studied in the next
chapter.

11.12 Additional solved problems

Problem 1
A point particle of unit mass moves along a plane curve of equation y = P (x),
where P is a polynomial of degree n ≥ 1, and it is subject to a conservative
force field with potential energy V (x) = ax2 + bx+ c, a =/ 0. Use the method of
Hamilton–Jacobi to determine the travelling time t = t̂(x, x(0), ẋ(0)) of a solution.

Solution
The Lagrangian of the particle is

L(x, ẋ) =
1
2
ẋ2(1 + P ′(x)2)− V (x),

from which it follows that p = ∂L/∂ẋ = ẋ(1 + P ′(x)2) and

H(p, x) =
p2

2(1 + P ′(x)2)
+ V (x). (11.205)

The Hamilton–Jacobi equation for Hamilton’s characteristic function W =
W (x,E) is

1
2

(
∂W

∂x

)2
(1 + P ′(x)2)−1 + V (x) = E, (11.206)
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and hence

W (x,E) = ±
∫ x

x(0)
(1 + P ′(ξ)2)

√
2(E − V (ξ)) dξ, (11.207)

where the sign is determined by the sign of ẋ(0). Differentiating (11.207) with
respect to E and recalling Remark 11.5, we find

t =
∂W

∂E
= ±

∫ x

x(0)

1 + P ′(ξ)2√
2[E − V (ξ)]

dξ. (11.208)

The integrand is of the form Q(ξ)/
√
αξ2 + βξ + γ, where Q(ξ) =

∑k
j=0 qjξ

j (in
our case q0 = 1, k = 2n− 2, α = −2a, β = −2b, γ = 2(E − c)). Its primitives are
of the form(

k−1∑
j=0

q̃jξ
j

)√
αξ2 + βξ + γ + q̃k

∫
dξ√

αξ2 + βξ + γ
, (11.209)

where the k coefficients q̃0, q̃1, . . . , q̃k can be determined starting from the known
coefficients q0, . . . , qk, α, β, γ and multiplying the relation∑k

j=0 qjξ
j√

αξ2 + βξ + γ
=

d
dξ

[(
k−1∑
j=0

q̃jξ
j

)√
αξ2 + βξ + γ

]
+

q̃k√
αξ2 + βξ + γ

(11.210)

by the square root and identifying the polynomials obtained on the two sides of
the identity. Recall that, setting ∆ = β2−4αγ, we have, up to additive constants,∫

dξ√
αξ2 + βξ + γ

=
1√
α
ln |2

√
αξ2 + βξ + γ + 2αξ + β| (if α > 0)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
α
arcsinh

2αξ + β√−∆
, if ∆ < 0, α > 0,

1√
α
ln |2αξ + β|, if ∆ = 0, α > 0,

− 1√−α
arcsin

2αξ + β√
∆

, if ∆ > 0, α < 0.

(11.211)

From (11.209)–(11.211) it follows that it is possible to compute explicitly the
integral (11.208) and hence obtain t = t̂(x, x(0), ẋ(0)).

Problem 2
Consider the following canonical transformation of R+ ×R3:

Q1 = −et(1 + p1)
√
q1,

Q2 = arcsin
q2√

p22 + q22
,

P1 = e−t(1− p1)
√
q1,

P2 =
p22 + q22

2
.

(11.212)
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How does the Hamiltonian H(p1, p2, q1, q2) = q1(p21 − 1) + (p22 + q22)/2 transform?
Use the result obtained to completely solve Hamilton’s equations associated with
H. For the associated system determine whether the hypotheses of the theorem
of Liouville and of the theorem of Arnol’d are satisfied.

Solution
The transformation (11.212) admits the generating function

F2(q1, q2, P1, P2, t) = − 2(etP1)
√
q1 +

1
2
(etP1)2 + q1

+
q2
2

√
2P2 − q22 + P2arcsin

q2√
2P2

.

The Hamiltonian H is transformed into K(P1, P2, Q1, Q2, t) = H + ∂F2/∂t:

K = P1Q1 + P2 +
∂F2
∂t

= P1Q1 + P2 − 2etP1
√
q1 + P 2

1 e
2t = 2P1Q1 + P2.

(11.213)

Hamilton’s equations associated with K can be solved immediately:

P1(t) = P1(0)e−2t, Q1(t) = Q1(0)e2t,

P2(t) = P2(0), Q2(t) = Q2(0) + t.
(11.214)

Then from the inverse of (11.122):

q1 =
e2t

4
(P1 − e−2tQ1)2, p1 = −P1 + e−2tQ1

P1 − e−2tQ1
,

q2 =
√
2P2 sinQ2, p2 =

√
2P2 cosQ2,

(11.215)

we deduce the solution of Hamilton’s equations associated with H by substituting
(11.214) into (11.215) and using the relations

P1(0) = (1− p1(0))
√
q1(0), P2(0) = (p22(0) + q22(0))/2,

Q1(0) = −(1 + p1(0))
√
q1(0), Q2(0) = arcsin

q2(0)√
p22(0) + q22(0)

.

The two functions

f1(p1, p2, q1, q2) = −q1(1− p21),

f2(p1, p2, q1, q2) =
p22 + q22

2

are first integrals for H = f1+ f2, in involution and independent except in three
planes π1, π2, π3 of equations q1 = 0, p1 = 1; q1 = 0, p1 = −1; q2 = p2 = 0,
respectively. The hypotheses of the theorem of Liouville are therefore satisfied
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on R4 \ (π1 ∪π2 ∪π3) while those of the theorem of Arnol’d are not, because the
level sets of f1 are not compact.

Problem 3
Consider the system described by the Hamiltonian

H : R2 × (R \ {−1, 1})×R → R, H(p1, p2, q1, q2) =
p21

q21 − 1
(1 + p22 + q22).

(11.216)

(i) Write down Hamilton’s equations and determine all constant solutions.
(ii) Linearise the equations around p1 = p2 = q1 = q2 = 0 and solve the linearised

equations.
(iii) Determine two first integrals of the motion, independent and in involution,

and express the Hamiltonian through these first integrals.
(iv) Write down the Hamilton–Jacobi equation associated with H and solve it

by separation of variables.
(v) Construct when it is possible the action-angle variables, write the Hamilto-

nian as a function of the actions only and determine the frequencies. For
what initial conditions are the motions periodic?

Solution
Hamilton’s equations are

ṗ1 =
2q1p21

(q21 − 1)2
(1 + p22 + q22), q̇1 =

2p1
q21 − 1

(1 + p22 + q22),

ṗ2 = − 2q2p21
q21 − 1

, q̇2 =
2p2p21
q21 − 1

,

(11.217)

from which we see immediately that the constant solutions are given by p1 = 0,
for any (p2, q1, q2). The equations linearised around the origin are

ṗ1 = 0, ṗ2 = 0, q̇1 = −2p1, q̇2 = 0.

Denoting by (P1, P2, Q1, Q2) the initial conditions, the corresponding solution is
clearly

p1(t) ≡ P1, p2(t) ≡ P2, q1(t) = Q1 − 2P1t, q2(t) ≡ Q2.

Since the Hamiltonian is of the form H(p1, p2, q1, q2) = f1(p1, q1)f2(p2, q2), with
f1(p1, q1) = p21/(q

2
1 − 1), f2(p2, q2) = 1 + p22 + q22 , we deduce immediately that f1

and f2 are two first integrals that are independent and in involution. Indeed, the
involution is guaranteed by the fact that f1 and f2 are functions of distinct pairs
of canonically conjugate variables. Moreover {f1, H} = {f1, f1f2} = {f1, f2}f1 +
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{f1, f1}f2 = 0 and similarly {f2, H} = 0. The independence holds on the whole
of R2 × (R \ {−1, 1})×R except where

∇f1 =
(

2p1
q21 − 1

, 0,− 2q1p21
(q21 − 1)2

, 0
)
= (0, 0, 0, 0),

or

∇f2 = (0, 2p2, 0, 2q2) = (0, 0, 0, 0),

and hence {p1 = 0} and {p2 = q2 = 0}, respectively. Since H is independent of
time, if E denotes the energy, the Hamilton–Jacobi equation for the characteristic
function W (q1, q2, α1, α2) can be written as

1
q21 − 1

(
∂W

∂q1

)2 [
1 +

(
∂W

∂q2

)2
+ q22

]
= E

and can be solved by separation of variables: W (q,α) = W1(q1, α1)+W2(q2, α2),
with (

∂W1

∂q1

)2
= α1(q21 − 1),(

∂W2

∂q2

)2
= α2 − 1− q22 , α2 ≥ 1

E = α1α2,

from which it follows that, up to additive constants,

W1(q1, α1) = ±

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q1
2

√
α1(q21 − 1)− 1

2
√
α1

ln
(√

α1q1 +
√
α1(q21 − 1)

)
, if α1 > 0,

0, if α1 = 0,
q1
2

√
−α1(q21 − 1) +

1
2
√−α1

arcsinq1, if α1 < 0

W2(q2, α2) = ±
[
q2
2

√
α2 − 1− q22 +

1
2
(α2 − 1)arcsin

q2√
α2 − 1

]
.

Following the steps outlined in Section 11.1 it is then possible to compute
explicitly the Hamiltonian flow associated with (11.216). For a completely canon-
ical transformation to action-angle variables to exist, the level set Mα1,α2 =
{(p1, p2, q1, q2) | f1(p1, q1) = α1, f2(p2, q2) = α2} must be compact and connec-
ted. This is the case only if (α1, α2) ∈ (−∞, 0)× (1,+∞). In this case, the two
equations

p21 − α1q
2
1 = −α1, p22 + q22 = α2 − 1
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determine two ellipses in the planes (p1, q1), (p2, q2) and therefore Mα1,α2 is
evidently diffeomorphic to a two-dimensional torus T2. From equation (11.61) it
follows that

J1 =
1
2π

π
√−α1 =

√−α1
2

, J2 =
1
2π

π(α2 − 1) =
α2 − 1

2
,

from which α1 = −4J21 , α2 = 2J2+1, E = −4J21 (2J2+1) = K(J1, J2). Substituting
the latter into W1 and W2 we find the generating function of the transformation
to action-angle variables.
The frequencies are ω1 = −8J1(2J2+1), ω2 = −8J21 ; therefore the motions are

periodic only if ω1/ω2 is rational, i.e. for initial conditions such that (2J2(0) +
1)/J1(0) ∈ Q (or if J1(0) = 0).



12 ANALYTICAL MECHANICS: CANONICAL
PERTURBATION THEORY

12.1 Introduction to canonical perturbation theory

The so-called ‘perturbation methods’ for studying differential equations are tradi-
tionally of great importance for their applications to celestial mechanics (indeed,
this field of study initially motivated their development). In spite of the efforts
of generations of celebrated mathematicians (Lagrange, Laplace, Weierstrass and
above all Poincaré, who can be considered the father of the modern theory) until
recently the majority of techniques used did not have a rigorous mathematical
justification. Proving the convergence (or divergence) of the perturbation series
is not just an abstract goal, of secondary interest for physicists. On the contrary,
it stems from the need to understand in depth the domains of applicability to
physical problems, and the limitations, of perturbation techniques.
On the other hand, the number of problems that can be treated with these tech-

niques justifies a more detailed analysis, even if most of the modern developments
go beyond the scope of the present text.
The central question we want to consider is the study of a system whose

Hamiltonian is a ‘small’ perturbation of the Hamiltonian of a completely canon-
ically integrable system. According to Poincaré (1893) this is to be considered
the ‘fundamental problem of classical mechanics’.
In what follows we assume systematically that the Hamiltonian functions we

consider are sufficiently regular.

Definition 12.1 A Hamiltonian system is called quasi-integrable if its Hamilton
function is of the form

h(p,q, ε) = h0(p,q) + εf(p,q), (12.1)

where (p,q) ∈ R2l, ε is a small parameter (0 ≤ |ε| � 1) and h0 is the Hamiltonian
of a completely canonically integrable system. �

Remark 12.1
The previous definition is not completely satisfactory, unless we make more
precise in what sense ε is a small parameter. As (p,q) varies in a compact
subset K of R2l (in which we want to study the motions and where h0 does not
have singularities) there exists a constant MK > 0 such that

max
(p,q)∈K

|f(p,q)| ≤ MK max
(p,q)∈K

|h0(p,q)|. (12.2)
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The requirement that the perturbation be small can be expressed through the
condition

|εMK | � 1. (12.3)

(Naturally, we suppose that neither h0 nor f contain terms that are independent
of q,p.) �

Since the system with Hamiltonian h0 is completely canonically integrable,
there exists a completely canonical variable transformation from (p,q) to action-
angle variables (J,χ) with respect to which the Hamiltonian h0 is expressed
through a function H0 that depends only on the action variables. After this
transformation, the Hamiltonian (12.1) in the new coordinates is

H(J,χ, ε) = H0(J) + εF (J,χ), (12.4)

where H0 and F are the functions h0 and f expressed in the new variables,
respectively. The action variables J are defined on some open subset of Rl, while
the angle variables are by their nature variables on a torus Tl of dimension l.
In other words, the function F is periodic separately in each of its variables
χ1, . . . , χl with fixed periodicity, for example equal to 2π.
We also assume that the functions H, H0 and F are regular (of class C∞ or

analytic when needed) in each argument.

Example 12.1
The so-called Fermi–Pasta–Ulam model (Fermi et al. 1954) consists of a chain
of l + 2 equal particles linked by non-linear springs. The two particles at the
extremes of the chain are fixed. If (p,q) = (p1, . . . , pl, q1, . . . , ql) are the kinetic
moments and the coordinates of the l moving particles, setting q0 = ql+1 = 0,
the Hamiltonian of the model is

H(p,q, ε) = h0(p,q) + εf(q)

where

h0(p,q) =
l∑

i=1

p2i
2m

+
k

2

l∑
i=0

(qi+1 − qi)2,

corresponds to the integrable part, and

f(q) =
λ

r

l∑
i=0

(qi+1 − qi)r,

where r = 3 or r = 4, defines the non-linearity of the springs of the chain, and λ
is a constant. Fermi, Pasta and Ulam introduced this model to study numerically
the ergodic hypothesis and the equipartition theorem of statistical mechanics
(cf. Section 15.2). �

Example 12.2
Consider a system of l identical particles, each performing a uniform rotation on
a fixed circle. Let qi be the angular coordinate identifying the ith particle and
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we examine a weak perturbation with potential energy

V (qi, qi+1) = −εV0 cos(qi+1 − qi), V0 > 0,

where 0 ≤ |ε| � 1 measures the intensity of the coupling. If we assume that
the last particle is coupled to the penultimate and the first, setting q0 = ql, the
Hamiltonian of the system is

H(p,q, ε) = h0(p) + εf(q),

with

h0(p) =
l∑

i=1

p2i
2
, f(q) = −V0

l∑
i=1

cos(qi − qi−1).

The action variables for the unperturbed system coincide with the kinetic
moments p and the angle variables correspond to the angles q ∈ Tl. This
system can also be considered as a classic model for the study of the so-called
‘spin systems’ of statistical mechanics. �

In the following two examples the perturbation is periodic in time.

Example 12.3
The Hamiltonian of the restricted three-body problem is quasi-integrable. Consider
the effect of the attraction of Jupiter on the revolution around the Sun of a
minor planet of the Solar System (the Earth, or Mercury) or of an asteroid. As a
first approximation we can consider the orbit of Jupiter as circular and fixed
(hence neglecting the effect of the attraction of the minor body on Jupiter). The
resulting problem has three degrees of freedom, but the Hamiltonian depends on
time t periodically (the period is equal to the period of revolution of Jupiter
around the Sun). The motion of the minor body is then described with respect
to a reference system with origin at the Sun, and axes moving with respect to
an inertial reference system (Fig. 12.1). Note that this system is however not
inertial, because the Sun has an acceleration (due to the attraction of Jupiter):

aS = Kε
rG

|rG|3 ,

where K is a constant proportional to the mass of the Sun, ε is the ratio MG/MS

between the mass of Jupiter and of the Sun (so that ε ≈ 10−3), and rG is the
position vector of Jupiter. The Hamiltonian of the system is then equal to

H(p,q, t, ε) =
|p|2
2

− K

|q| − Kε

|q− rG(t)| +Kε
rG(t) · q
|rG(t)|3 ,

where the mass of the minor body is equal to 1, its position vector is denoted by
q ∈ R3 and p denotes the relative conjugate kinetic momentum. The last term
in H is the (generalised) potential energy of the inertia force responsible for the
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G

rG

q – rG

q

aS

S

T

Fig. 12.1

acceleration aS of the origin of the reference system considered. Evidently the
system is quasi-integrable, with

h0(p,q) =
|p|2
2

− K

|q| ,

f(p,q, t) = − K

|q− rG(t)| +K
rG(t) · q
|rG(t)|3 · �

Example 12.4: the spin–orbit problem
Consider a satellite S in orbit around a planet P . Suppose that the satellite is
a rigid body with the form of a tri-axial homogeneous ellipsoid. The three axes
A1 > A2 > A3 of the ellipsoid coincide with the principal axes of inertia. Since
the ellipsoid is homogeneous, the corresponding principal moments of inertia are
I1 < I2 < I3, and hence the maximum momentum I3 is associated with the
shortest axis of the ellipsoid. Suppose also that the orbit of the satellite is a
fixed Keplerian ellipse with P at one of the foci. We denote by e the eccentricity
of the orbit. We also assume that the axis of rotation of the satellite coincides
with the x3-axis and is directed orthogonally to the plane of the orbit. Since
the orientation of the satellite is completely determined by the angle between the
major axis of the ellipsoid and the direction of the pericentre of the orbit, the
problem has only one degree of freedom. We also neglect dissipative forces which
may be acting on the system and all perturbations due to other bodies (which
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S

P

x1

aw

Fig. 12.2

may for example be responsible for changes in the orbital parameters, cf. Laskar
and Robutel (1993)). The orientation of the satellite varies only under the effect
of the torque of the gravitational attraction of P on the ellipsoid S.
If α is the angle between the x1-axis of the ellipsoid and the direction of the

pericentre of the orbit, ϕ is the polar angle, a is the semi-major axis and r is
the instantaneous orbital radius (Fig. 11.2) the equation of the motion can be
written as (cf. Goldreich and Peale 1966, Danby 1988, section 14.3)

α̈+
3
2

I2 − I1

I3

(
a

r(t)

)3
sin(2α− 2ϕ(t)) = 0.

Note that if the ellipsoid is a surface of revolution, then I1 = I2 and the equation
is trivially integrable. In addition, since r and ϕ are periodic functions of t (with
period equal to the period T of revolution of S around P ), by choosing the unit
of time appropriately we can assume that r and ϕ are 2π-periodic functions.
Finally, setting

x = 2α, ε = 3
I2 − I1

I3
,

and expanding (a/r(t))3 sin(x− 2ϕ(t)) in Fourier series we find

ẍ+ ε
∑

m∈Z
m�=0

ŝm(e) sin(x−mt) = 0.

This equation corresponds to a quasi-integrable Hamiltonian system (depending
on time) with one degree of freedom:

H(p, x, t, ε) =
p2

2
− ε

∑
m∈Z
m�=0

ŝm(e) cos(x−mt),
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which will be the object of a more detailed study in the next section (ε is a
small parameter because, in the majority of cases arising in celestial mechanics,
ε ≈ 10−3–10−4).
The computations of the coefficients ŝm(e) is somewhat laborious (see Cayley

1861). They can be expressed as a power series in e and at the lowest order they
are proportional to e|m−2|. As an example, we have

ŝ−2(e) =
e4

24
+

7e6

240
+ O(e8),

ŝ−1(e) =
e3

48
+

11e5

768
+ O(e7),

ŝ1(e) = −e

2
+

e3

16
− 5

384
e5 + O(e7),

ŝ2(e) = 1− 5e2

2
+

13e4

16
− 35e6

288
+ O(e8),

ŝ3(e) =
7e
2

− 123e3

16
+

489e5

128
+ O(e7),

ŝ4(e) =
17e2

2
− 115e4

6
+

601e6

48
+ O(e8),

ŝ5(e) =
845
48

e3 − 32525
768

e5 + O(e7).

In the Earth–Moon system (cf. Celletti 1990) the orbital eccentricity is
e = 0.0549, while ε = 7× 10−4. If we neglect the terms which give a contribution
to the Hamiltonian of less than 10−6 we find

H(p, x, t) =
p2

2
− ε

[
−e

2
cos(x− t) +

(
1− 5

2
e2
)
cos(x− 2t) +

7e
2
cos(x− 3t)

+
17
2
e2 cos(x− 4t) +

845
48

e3 cos(x− 5t)
]
. �

If ε = 0 the system (12.4) is integrable and Hamilton’s equations

J̇i = 0, χ̇i =
∂H0

∂Ji
(J) (12.5)

are trivially integrable: the actions are first integrals of the motion for the system,
i.e. Ji(t) = Ji(0) for every i = 1, . . . , l, while each angle has a period 2π/ωi, where

ωi = ωi(J(0)) =
∂H0

∂Ji
(J(0))

is the frequency of the angular motion, depending on the initial conditions
for the action variables. All motions are therefore bounded and quasi-periodic
and the system admits as many independent first integrals as the number of
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degrees of freedom. The phase space is foliated into invariant tori of dimension l
(cf. Remark 11.19) for the Hamiltonian flow and each torus is identified by the
constant values of the actions J.
When ε =/ 0 the motion equations change; in particular for the action variables

we have

J̇i = −ε
∂F

∂χi
(J,χ), i = 1, . . . , l, (12.6)

and they are no longer constants of the motion. From the regularity of F there
follows the possibility of estimating the time difference of the action from its
initial value:

|Ji(t)− Ji(0)| ≤
∥∥∥∥ ∂F∂χi

∥∥∥∥ εt, (12.7)

where ‖ · ‖ indicates the maximum norm on a compact subset K of Rl to which
J(0) belongs, and on Tl for the angles. The estimate (12.7), while significant
for times t of order O(1), may yield little information for longer times. This is
shown by the following trivial example.

Example 12.5
Let l = 1 and H(J, χ, ε) = J + ε cosχ. In this case, Hamilton’s equations are

J̇ = ε sinχ, χ̇ = 1,

and hence

J(t) = J(0) + ε[cosχ(0)− cos(χ(0) + t)], χ(t) = χ(0) + t.

It follows that

|J(t)− J(0)| ≤ 2ε

for all times t and not only for times t = O(1) as predicted by (12.7). �

This drawback of (12.7) can be attributed to the fact that in deriving this
inequality we did not take into account the sign variations in ∂F/∂χi. These
variations can yield some compensations which extend the validity of the estimate.
The perturbation ∂F/∂χi is not generally constant (except when its arguments
are constant), and it does not have a constant sign. Indeed, the function ∂F/∂χi

is periodic but has zero mean, and therefore it cannot have a constant sign unless
it is identically zero.
The perturbation method for Hamiltonian systems of type (12.4) consists of

solving the following problem.

Problem
Find a completely canonical transformation which eliminates the dependence of
the Hamiltonian on the angular variables, to first order in ε. Then iterate this
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procedure until the dependence on χ to all orders in ε, or at least to a prescribed
order, is eliminated.

Hence we seek the generating function W (J′,χ, ε) of a canonical transformation
from the action-angle variables (J,χ) corresponding to the integrable system with
Hamiltonian H0 to new variables (J′,χ′), with respect to which the Hamiltonian
(12.4) has an expression H ′(J′,χ′, ε) that is independent of the angular variables,
at least in the terms up to order O(ε2):

H ′(J′,χ′, ε) = H ′
0(J

′) + εH ′
1(J

′) + ε2F ′(J′,χ′, ε). (12.8)

Here F ′ is a remainder depending on ε, but that may fail to tend to 0 when
ε → 0 (however we assume it to be bounded together with its first derivatives).
When ε = 0 the starting Hamiltonian is independent of the angle variables.

Hence the transformation sought is ε-near the identity and we can try to expand
the generating function W into a power series in ε whose zero-order term is the
generating function of the identity transformation. We therefore write

W (J′,χ, ε) = J′ · χ + εW (1)(J′,χ) + O(ε2), (12.9)

with W (1)(J′,χ) unknown. The transformation generated by (12.9) is

Ji = J ′
i + ε

∂W (1)

∂χi
(J′,χ) + O(ε2), i = 1, . . . , l,

χ′
i = χi + ε

∂W (1)

∂J ′
i

(J′,χ) + O(ε2), i = 1, . . . , l.

(12.10)

Substituting the first of equations (12.10) into (12.4) and requiring that the
transformed Hamiltonian has the form (12.8), we find the equation

H0(J′ + ε∇χW
(1)) + εF (J′,χ) + O(ε2) = H ′

0(J
′) + εH ′

1(J
′) + O(ε2), (12.11)

where the functions H ′
0, H

′
1 are to be determined. Expanding H0 to first order

and equating the corresponding powers of ε we find for the term of zero order
in ε:

H ′
0(J

′) = H0(J′). (12.12)

This ensures—as was obvious from the previous considerations—that to zero
order in ε the new Hamiltonian coincides with the starting one (expressed in the
new action variables).
At the first order in ε we find the equation

ω(J′) · ∇χW
(1)(J′,χ) + F (J′,χ) = H ′

1(J
′), (12.13)

for the unknowns W (1)(J′,χ) and H ′
1(J

′), where ω(J′) = ∇J′H ′
0 is the vector of

frequencies of the new Hamiltonian. For fixed actions J′, equation (12.13) is a
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linear partial differential equation of first order on the torus Tl whose solution
will be studied in Sections 12.3 and 12.4.
We shall see that the iteration to higher order terms of the perturbation

method always leads to solving equations of the type (12.13). For this reason,
the latter is called the fundamental equation of classical perturbation theory.
If equation (12.13) admits a solution, i.e. if there exist two functions H ′

1(J
′)

and W (1)(J′,χ) (the second 2π-periodic with respect to χ) which satisfy (12.13),
the equations of motion for the new action variables are

J̇ ′
i = −∂H ′

∂χi
(J′, ε) = O(ε2),

where i = 1, . . . , l. Therefore, for all times t in the interval [0, 1/ε] we have

|J′(t)− J′(0)| = O(ε).

The new action variables are approximately (up to O(ε) terms) constant over a
time interval of length 1/ε. One arrives at the same conclusion for the action
variables J, exploiting the fact that the transformation (12.10) is near the identity.
Indeed,

J(t)− J(0) = (J(t)− J′(t)) + (J′(t)− J′(0)) + (J′(0)− J(0)),

and given that the first and last terms are also O(ε) (uniformly with respect to
time t) we have

|J(t)− J(0)| = O(ε),

for every t ∈ [0, 1/ε].

Remark 12.2
Equation (12.11) is simply the Hamilton–Jacobi equation approximated up to
terms of order ε2 for the Hamiltonian (12.4). Indeed, the Hamilton–Jacobi
equation for the Hamiltonian (12.4) can be written as

H(∇χW,χ, ε) = H0(∇χW ) + εF (∇χW,χ) = H ′(J′, ε), (12.14)

and equation (12.11) is then obtained by substituting the expansion (12.9) into
equation (12.14) and neglecting all terms of order O(ε2). �

Before starting a more detailed study of equation (12.13) when l ≥ 2, we
consider the case l = 1. If the system has only one degree of freedom, then
as we saw (cf. Section 11.3), it is completely canonically integrable, as long as
the motions are periodic (hence outside the separatrix curves in phase space).
Therefore the following theorem should not come as a surprise to the reader.
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Theorem 12.1 If l = 1 and ω(J ′) =/ 0, equation (12.13) has solution

H ′
1(J

′) =
1
2π

∫ 2π

0
F (J ′, χ) dχ, (12.15)

W (1)(J ′, χ) =
1

ω(J ′)

∫ χ

0
[H ′

1(J
′)− F (J ′, x)] dx. (12.16)

This solution is unique, if we require that the mean value of W (1) on S1 be zero,
and hence that

1
2π

∫ 2π

0
W (1)(J ′, χ) dχ = 0. (12.17)

Proof
Expression (12.15) is the only possible choice for H ′

1(J
′), because the χ-average

of ω(J ′)∂W (1)/∂χ vanishes due to the periodicity of W (1). Therefore H ′
1(J

′) must
be the mean of F (J ′, χ) with respect to χ. After this, it is immediate to check
that (12.16) actually satisfies (12.13). The uniqueness of the solution follows in
a similar way. Let W̃ (1), H̃ ′

1 be a second solution of (12.13). Then

ω(J ′)
∂

∂χ
(W̃ (1) −W (1))(J ′, χ) = H̃ ′

1(J
′)−H ′

1(J
′). (12.18)

However∫ 2π

0

∂

∂χ
(W̃ (1) −W (1))(J ′, χ) dχ

= W̃ (1)(J ′, 2π)−W (1)(J ′, 2π)− (W̃ (1)(J ′, 0)−W (1)(J ′, 0)) = 0,

by the periodicity of W̃ (1) and W (1). Hence integrating both sides of equation
(12.18) we find that H̃ ′

1(J
′) = H ′

1(J
′). Therefore

ω(J ′)
∂

∂χ
(W̃ (1) −W (1))(J ′, χ) = 0,

from which it follows that W̃ (1)(J ′, χ) = W (1)(J ′, χ) + g(J ′). If we impose that
W̃ (1) has zero average, then necessarily g ≡ 0. �

Example 12.6
Consider the following quasi-integrable system with one degree of freedom
(dimensionless variables):

H(J, χ, ε) = J2 + εJ3 sin2 χ.
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The generating function

W (J ′, χ, ε) = J ′χ+
εJ ′2

8
sin 2χ

transforms the Hamiltonian H to

H ′(J ′, ε) = J ′2 +
ε

2
J ′3 + O(ε2).

The frequency of the motions corresponding to H ′ is ω′(J ′, ε) = 2J ′ + 3
2εJ

′2. �

In the case of one degree of freedom, it is possible to formally solve the
Hamilton–Jacobi equation (12.14) to all orders in ε (neglecting the question of
the convergence of the series), assuming that the frequency of the motions is not
zero. Canonical perturbation theory thus yields (at least formally) the complete
integrability of these systems.

Theorem 12.2 If l = 1 and ω(J ′) =/ 0, the Hamilton–Jacobi equation (12.14)
admits a formal solution:

H ′(J ′, ε) =
∞∑
n=0

εnH ′
n(J

′), (12.19)

W (J ′, χ, ε) = J ′χ+
∞∑
n=1

εnW (n)(J ′, χ). (12.20)

The solution is unique if we require that W (n) has zero average with respect to χ
for every n ≥ 1.

Proof
Substituting (12.19) and (12.20) into equation (12.14) we have

H0

(
J ′ +

∞∑
n=1

εn
∂W (n)

∂χ

)
+ εF

(
J ′ +

∞∑
n=1

εn
∂W (n)

∂χ
, χ

)
=

∞∑
k=0

εkH ′
k(J

′),

and expanding H0 in Taylor series around J ′ we find

H0

(
J ′ +

∞∑
n=1

εn
∂W (n)

∂χ

)

= H0(J ′) + ω(J ′)
∞∑
n=1

εn
∂W (n)

∂χ

+
1
2
d2H0

dJ2

∞∑
n=2

εn
∑

n1+n2=n

∂W (n1)

∂χ

∂W (n2)

∂χ
+ · · ·

+
1
k!
dkH0

dJk

∞∑
n=k

εn
∑

n1+n2+···+nk=n

∂W (n1)

∂χ

∂W (n2)

∂χ
· · · ∂W

(nk)

∂χ
+ · · · ,

(12.21)
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where ω = dH0/dJ . Similarly, expanding F we find

F

(
J ′ +

∞∑
n=1

εn
∂W (n)

∂χ
, χ

)

= F (J ′, χ) +
∂F

∂J

∞∑
n=1

εn
∂W (n)

∂χ

+
1
2
∂2F

∂J2

∞∑
n=2

εn
∑

n1+n2=n

∂W (n1)

∂χ

∂W (n2)

∂χ
+ · · ·

+
1
k!

∂kF

∂Jk

∞∑
n=k

εn
∑

n1+n2+···+nk=n

∂W (n1)

∂χ

∂W (n2)

∂χ
· · · ∂W

(nk)

∂χ
+ · · · .

(12.22)

Therefore to order k ≥ 2 we must solve the equation

ω(J ′)
∂W (k)

∂χ
(J ′, χ) + F (k)(J ′, χ) = H ′

k(J
′), (12.23)

where the functions F (k) are given by

F (k) =
k∑

i=2

1
i!
diH0

dJ i

∑
n1+···+ni=k

∂W (n1)

∂χ
· · · ∂W

(ni)

∂χ

+
k−1∑
i=1

1
i!
∂iF

∂J i

∑
n1+···+ni=k−1

∂W (n1)

∂χ
· · · ∂W

(ni)

∂χ

(12.24)

and thus contain W (n) only with n < k. Equation (12.23) is exactly of the type
(12.13). It then follows from Theorem 12.1 that

H ′
k(J

′) =
1
2π

∫ 2π

0
F (k)(J ′, χ) dχ, (12.25)

W (k)(J ′, χ) =
1

ω(J ′)

∫ χ

0
[H ′

k(J
′)− F (k)(J ′, x)] dx. (12.26)

The uniqueness of the solution follows from the uniqueness of the Taylor series
expansion in ε of H ′ and W , and from Theorem 12.1. �

Remark 12.3
It is not difficult to prove the uniform convergence of the series expansions
(12.19) and (12.20) under the assumption that H0 and F are analytic functions
of all their arguments, but the proof goes beyond the scope of this introduction
as it requires some knowledge of the theory of analytic functions of one or more
complex variables. �

Example 12.7
Consider the following quasi-integrable system with one degree of freedom:

H(J, χ, ε) = cos J + ε
J2

2
sin2 χ,

and solve the Hamilton–Jacobi equation up to terms of order O(ε3).
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Substituting the expansions (12.19) and (12.20) into

cos
∂W

∂χ
+

ε

2

(
∂W

∂χ

)2
sin2 χ = H ′(J ′, ε)

and neglecting terms of order higher than 3 in ε we find

cos
(
J ′ + ε

∂W (1)

∂χ
+ ε2

∂W (2)

∂χ

)
+

ε

2

(
J ′ + ε

∂W (1)

∂χ

)2
sin2 χ = H ′

0 + εH ′
1 + ε2H ′

2.

Then it follows that

cos J ′ − sinJ ′
[
ε
∂W (1)

∂χ
+ ε2

∂W (2)

∂χ

]
− 1

2
ε2 cos J ′

(
∂W (1)

∂χ

)2
+

ε

2

(
J ′2 + 2εJ ′ ∂W

(1)

∂χ

)
sin2 χ = H ′

0 + εH ′
1 + ε2H ′

2.

Equating the terms corresponding to the same power of ε in the expansion and
solving the resulting equations by using equations (12.25), (12.26), we find

H ′
0(J

′) = cos J ′,

H ′
1(J

′) =
1
4
J ′2,

H ′
2(J

′) = − 1
64

(cos J ′)J ′4

sin2 J ′

and

W (1)(J ′, χ) = − J ′2

8 sinJ ′ sin(2χ).

We leave the computation of W (2) as an exercise for the reader. �

12.2 Time periodic perturbations of one-dimensional uniform
motions

Consider a point particle of unit mass moving along a line under the action
of a weak force field depending periodically on the position x of the particle
and on time t. For simplicity of exposition, we systematically use dimensionless
variables. The Lagrangian and the Hamiltonian of the system can then be written
as follows:

L(x, ẋ, t, ε) =
1
2
ẋ2 − εV (x, t), H(p, x, t, ε) =

p2

2
+ εV (x, t), (12.27)

where ε is a small parameter, 0 ≤ ε � 1, and V is the (generalised) potential of
the applied force (which we assume to be non-constant and of class C∞).
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The periodicity assumption implies that V (x+ 2π, t) = V (x, t+ 2π) = V (x, t),
for appropriately normalised units of space and time. The periodicity in space of
the force field acting on the particle yields that the x-coordinates of the particle
that differ by an integer multiple of 2π are identifiable; the phase space of the
system is therefore a cylinder (x, ẋ) ∈ S1 ×R.
An example of a field that satisfies these assumptions is the case discussed in

Example 2.4.
If ε = 0, the velocity ẋ = ω of the particle is constant. Since ε is small, it

is reasonable to expect that there exists an invertible coordinate transformation,
depending on time, which transforms the equation of motion

ẍ+ εVx(x, t) = 0, (12.28)

where Vx = ∂V/∂x, into

ξ̈ = 0, (12.29)

and for which the velocity ξ̇ = ω is a conserved quantity. Such a transformation
certainly exists—if ω =/ 0 and ε is sufficiently small—when V does not depend
on time (it is easy to conclude this in view of the complete integrability of the
associated Hamiltonian system; ξ is the angle variable corresponding to rotations).
We therefore seek a transformation of the type

x = ξ + u(ξ, t; ε), (12.30)

with u ∈ C∞, where (ξ, t) ∈ T2 (hence the function u is 2π-periodic with respect
to ξ and t), transforming equation (12.28) into (12.29). Since for ε = 0 the two
equations coincide, we must impose that u(ξ, t; 0) = 0, and hence u(ξ, t, ε) = O(ε).
If we also require that ∣∣∣∣∂u∂ξ

∣∣∣∣ < 1, (12.31)

the local invertibility of the transformation is guaranteed.
Condition (12.31) is satisfied as long as ε is chosen sufficiently small.
Differentiating equation (12.30) once with respect to t, and recalling that ξ̇ = ω

is constant, we find

ẋ = ω + (Dωu)(ξ, t; ε), (12.32)

where Dω denotes the linear partial differential operator of first order:

(Dωu)(ξ, t; ε) = ω
∂u

∂ξ
(ξ, t; ε) +

∂u

∂t
(ξ, t; ε). (12.33)

Differentiating (12.32) again with respect to time, we find

ẍ = D2
ωu = ω2

∂2u

∂ξ2
+ 2ω

∂2u

∂ξ∂t
+

∂2u

∂t2
. (12.34)
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The equation of motion (12.28) then becomes

(D2
ωu)(ξ, t; ε) + εVx(ξ + u(ξ, t; ε), t) = 0. (12.35)

Equation (12.35) is a partial differential equation of second order, which is non-
linear because of the term Vx(ξ+ u, t). We try to solve equation (12.35) starting
from the remark that this equation is identically satisfied by u ≡ 0 if ε = 0. Then
we expand the function u in power series of ε:

u(ξ, t; ε) =
∞∑
n=1

εnu(n)(ξ, t). (12.36)

Each function u(n)(ξ, t) is periodic with period 2π, both in the space coordinate
ξ and in time t. If we substitute the expansion (12.36) into the term Vx(ξ+u, t)
of equation (12.35) we find

Vx(ξ + u, t) = Vx(ξ, t) +
∞∑

m=1

1
m!

(
∂m

∂xm
Vx

)
(ξ, t)(u(ξ, t; ε))m

= Vx(ξ, t) +
∞∑

m=1

1
m!

(
∂m

∂xm
Vx

)
(ξ, t)

( ∞∑
n=1

εnu(n)(ξ, t)

)m

= Vx(ξ, t) +
∞∑

m=1

1
m!

(
∂m

∂xm
Vx

)
(ξ, t)

×
∑

n1,...,nm
εn1+···+nmu(n1)(ξ, t) . . . u(nm)(ξ, t).

(12.37)

Hence, reordering the second sum in increasing powers n1+ · · ·+nm = n of ε we
have

Vx(ξ + u, t)

= Vx(ξ, t) +
∞∑
n=1

εn
n∑

m=1

1
m!

(
∂m

∂xm
Vx

)
(ξ, t)

∑
n1+···+nm=n

u(n1)(ξ, t) . . . u(nm)(ξ, t).

(12.38)

Substituting (12.38) and (12.36) into equation (12.35) we find

∞∑
n=1

εn(D2
ωu

(n))(ξ, t) + εVx(ξ, t)

+
∞∑
n=2

εn
n−1∑
m=1

1
m!

(
∂m

∂xm
Vx

)
(ξ, t)

∑
n1+···+nm=n−1

u(n1)(ξ, t) . . . u(nm)(ξ, t) = 0.

(12.39)
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Therefore, equation (12.35) has a solution if the following infinite system of linear
equations admits a solution:

D2
ωu

(1)(ξ, t) + Vx(ξ, t) = 0,

D2
ωu

(2)(ξ, t) + Vxx(ξ, t)u(1)(ξ, t) = 0,

D2
ωu

(3)(ξ, t) + Vxx(ξ, t)u(2)(ξ, t) +
1
2
Vxxx(ξ, t)(u(1)(ξ, t))2 = 0,

. . . ,

D2
ωu

(n)(ξ, t) + Pn(ξ, t) = 0,

. . . ,

(12.40)

where Vxx = ∂2V/∂x2, Vxxx = ∂3V/∂x3 and Pn is a function depending only on
V , on its derivatives (up to order n) and on the functions u(1), u(2), . . . , u(n−1).
We must hence study the linear equation

(D2
ωu)(ξ, t) = v(ξ, t), (12.41)

where v is a known function, periodic in x and in t. Equation (12.41) is a partial
differential equation with constant coefficients on the torus T2, analogous to
equation (12.39).
Evidently, the existence of a solution of equation (12.41) is a consequence of

the invertibility of the linear operator Dω which we will now discuss.

12.3 The equation Dωu = v. Conclusion of the previous analysis

We remark first of all that the eigenvalues λ and the eigenvectors uλ of the linear
operator

Dω = ω
∂

∂ξ
+

∂

∂t
(12.42)

are given by

Dωuλ = λuλ, (12.43)

and take the form

uλ = ei(mξ+nt), λ = i(mω + n), (12.44)

where (m,n) ∈ Z2. Hence if ω is an irrational number, the eigenvalue λ = 0
corresponds to the choice m = n = 0, and hence has multiplicity one. If, on
the other hand, ω is rational, ω = j/k, the eigenvalue λ = 0 corresponds to
the choice of (m,n) ∈ Z2 such that mj + nk = 0 and therefore has infinite
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multiplicity. We shall now see that if ω ∈ R\Q, it is sufficient to impose the zero
mean condition

v̂0,0 =
1

(2π)2

∫ 2π

0
dξ

∫ 2π

0
v(ξ, t)dt = 0 (12.45)

to ensure the existence of a formal solution u of the equation

Dωu = v. (12.46)

This means that it is possible to determine the coefficients of the Fourier series
expansion of u, neglecting the question of its convergence.
If, on the other hand, ω is rational, then it is necessary to impose infinitely

many conditions, corresponding to the vanishing of all the coefficients v̂m,n of
the Fourier expansion of v with m,n such that mj + nk = 0. We will not study
further the latter case, which would lead to the study of the so-called resonant
normal forms.

Proposition 12.1 If ω ∈ R\Q and if v(ξ, t) has zero mean (hence if it satisfies
the condition (12.45)) there exists a formal solution u of the equation (12.46).
The solution is unique if we impose that the mean of u be zero: û0,0 = 0.

Proof
Expanding both v and u in Fourier series, and substituting these series into
(12.46), we find∑

(m,n)∈Z2
ûm,ni(mω + n)ei(mξ+nt) =

∑
(m,n)∈Z2

v̂m,nei(mξ+nt).

Hence, by the uniqueness of Fourier expansions, it follows that for every
(m,n)∈Z2 we have

ûm,ni(mω + n) = v̂m,n

(yielding v̂0,0 = 0), and therefore

ûm,n =
v̂m,n

i(mω + n)

if (m,n) =/ (0, 0), while û0,0 is undetermined. �

It follows that if ω is irrational and v has zero mean, there exists a unique
formal solution

u(ξ, t) =
∑

(m,n)∈Z2\{(0,0)}
v̂m,n

i(mω + n)
ei(mξ+nt) (12.47)

of Dωu = v, and similarly, a unique formal solution

w(ξ, t) =
∑

(m,n)∈Z2\{(0,0)}
v̂m,n

−(mω + n)2
ei(mξ+nt) (12.48)



504 Analytical mechanics: canonical perturbation theory 12.3

of D2
ωw = v. We now discuss the convergence of the series (12.47) and (12.48).

We start by remarking that the most serious difficulty is the need to control the
denominators |mω+n| which can become arbitrarily small even if ω is irrational.

Theorem 12.3 (Dirichlet) Let ω be irrational; there exist infinitely many distinct
pairs (m,n) ∈ Z2\{(0, 0)}, m > 0, such that |mω + n| < 1/|m|.

Proof
Let M be a fixed integer, and consider the sequence {|mω + n|,m = 0, . . . ,M},
where n ∈ Z is prescribed for every m in such a way that |mω + n| ≤ 1 (such
a choice is always possible). The points of the sequence then belong to the
interval [0,1] and are necessarily distinct, as ω is irrational. If we consider the
decomposition of

[0, 1] =
M−1⋃
j=0

[
j

M
,
j + 1
M

]
into M intervals, it follows that at least two points in the sequence |mω+n| must
belong to the same subinterval [j/M, (j + 1)/M ] (indeed, there are M +1 points
and only M intervals). Denote these two points by m′ω+n′ and m′′ω+n′′, and
note that it is not restrictive to assume that 0 ≤ m′′ −m′ ≤ M . Therefore

|(m′′ −m′)ω + n′′ − n′| ≤ 1
M

<
1

m′′ −m′ ,

and we have found one pair satisfying the claim. The existence of infinitely many
such pairs (m,n) follows from a simple proof by contradiction. Suppose that
(m1, n1), (m2, n2), . . . , (mk, nk) are all the solutions of |mω+ n| < 1/|m|. Then if
M is an integer such that

|mjω + nj | > 1
M

, j = 1, . . . , k,

there exists a pair (m,n) ∈ Z2 \ {0, 0} such that

|mω + n| ≤ 1
M

<
1

|m| ,

which is a contradiction. �

From this theorem it also follows that

inf
(m,n)∈Z2\{(0,0)}

|mω + n| = 0,

and therefore 1/|mω + n| is not bounded from above. This fact yields serious
difficulties in the proof of the convergence of the series (12.47) and (12.48).
This problem is called the problem of small divisors and was already known to
Poincaré and the astronomers of the nineteenth century.
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We shall now see that it is possible to make some hypotheses on ω—verified by
almost any ω with respect to the Lebesgue measure—under which it is possible
to prove the convergence of the series (12.47) and (12.48).

Definition 12.2 We say that an irrational number ω satisfies a diophantine
condition (with constant γ > 0 and exponent µ ≥ 1), and we denote it by
ω ∈ Cγ,µ, if for every (m,n) ∈ Z2\{(0, 0)} we have

|mω + n| ≥ γ(|m|+ |n|)−µ. (12.49)
�

Remark 12.4
The need for the condition µ ≥ 1 in the previous definition is an immediate
consequence of the theorem of Dirichlet, which guarantees that there do not
exist diophantine irrationals with exponent µ < 1. �

Proposition 12.2 Let µ > 1 be fixed. The Lebesgue measure | · | of the set
Cγ,µ ∩ (0, 1) satisfies the inequality

|Cγ,µ ∩ (0, 1)| ≥ 1− 4ζ(µ)γ, (12.50)

where ζ(µ) =
∑∞

k=1 k
−µ is the Riemann zeta function computed at µ.

Proof
Let Rγ,µ = (0, 1)\(Cγ,µ ∩ (0, 1)) be the complement in (0, 1) of Cγ,µ. From the
definition of Cγ,µ it immediately follows that

Rγ,µ =
⋃
j,k

{
x ∈ (0, 1)||kx− j| < γ

(k + j)µ

}
=
⋃
j,k

{
x ∈ (0, 1)|

∣∣∣∣x− j

k

∣∣∣∣ < γ

k(k + j)µ

}
,

with the conditions k ≥ 1, 0 ≤ j ≤ k. This yields

|Rγ,µ| ≤
∞∑
k=1

k∑
j=0

2γ
k(k + j)µ

≤
∞∑
k=1

k∑
j=0

2γk−1−µ ≤ 4γ
∞∑
k=1

1
kµ

·

Evidently ζ(µ) =
∑∞

k=1 1/k
µ < +∞, since µ > 1. Equation (12.50) follows by

observing that |Cγ,µ ∩ (0, 1)| = 1− |Rγ,µ|. �

From the previous result it follows immediately that∣∣∣∣ ⋃γ>0Cγ,µ ∩ (0, 1)
∣∣∣∣ = 1, (12.51)

and therefore for almost every ω ∈ (0, 1) there exists a constant γ > 0 such that
ω ∈ Cγ,µ. Note that if γ′ < γ, then Cγ,µ ⊆ Cγ′,µ.
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Remark 12.5
It is not difficult to prove that if ω is an algebraic number of degree d ≥ 2, i.e.
if ω ∈ R \Q is a zero of an irreducible polynomial with rational coefficients and
of degree d, then ω is diophantine with exponent µ = d−1 (Liouville’s theorem).
It is possible to prove that in fact all algebraic numbers are diophantine for every
exponent µ > 1, independent of their degree (by a theorem of Roth, cf. Schmidt
1980). �

If ω satisfies a diophantine condition, and v is of class C∞ or analytic, the
series (12.47) and (12.48) converge uniformly and define a function of class C∞

and analytic, respectively.

Theorem 12.4 Let ω ∈ Cγ,µ and v ∈ C∞. Then the series (12.47) and (12.48)
converge uniformly.

Proof
Consider the series (12.47) (a similar argument applies to the series (12.48)):

∣∣∣∣ ∑
(m,n)∈Z2\{(0,0)}

v̂m,n

i(mω + n)
ei(mξ+nt)

∣∣∣∣ ≤ ∑
(m,n)∈Z2\{(0,0)}

|v̂m,n|
|mω + n|

≤
∑

(m,n)∈Z2\{(0,0)}
|v̂m,n|
γ

(|m|+ |n|)µ.

Since v ∈ C∞, for r > µ+ 2 we have the inequality (cf. Appendix 7)

∑
(m,n)∈Z2\{(0,0)}

|v̂m,n|
γ

(|m|+ |n|)µ ≤ M

γ

∑
(m,n)∈Z2\{(0,0)}

1
(|m|+ |n|)r−µ

< +∞.

To prove that
∑

(m,n)∈Z2\{(0,0)}
1

(|m|+ |n|)r−µ
< +∞ compare the series with the

integral
∫ ∞

1

∫ ∞

1

dxdy
(x+ y)r−µ

. �

We can now conclude our discussion of the example from which we started.
Indeed, we have reduced the solution of equation (12.35) to the system of linear
equations (12.40). Each of the equations in (12.40) has the form (12.41) and
the previous theorem guarantees that if ω satisfies a diophantine condition with
constant γ and exponent µ, and if V (x, t) is of class C∞ (or analytic), the
system (12.40) admits a solution of class C∞ (or analytic), so that the functions
u(1), . . . , u(k), . . . that are solutions of (12.40) exist and are functions of class C∞

(or analytic) of (ξ, t). In fact, from the first equation of the system (12.40):

D2
ωu

(1)(ξ, t) + Vx(ξ, t) = 0, (12.52)
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and expanding u(1) and V in Fourier series:

u(1)(ξ, t) =
∑

(m,n)∈Z2\{(0,0)}
û(1)m,ne

i(mξ+nt),

V (ξ, t) =
∑

(m,n)∈Z2\{(0,0)}
V̂m,nei(mξ+nt),

(12.53)

we find

−(mω + n)2û(1)m,n + imV̂m,n = 0,

for every (m,n) ∈ Z2\{(0, 0)}. Hence

u(1)(ξ, t) =
∑

(m,n)∈Z2\{(0,0)}
imV̂m,n

(mω + n)2
ei(mξ+nt). (12.54)

The regularity of u(1) follows from the regularity of V and from the assumption
that ω satisfies a diophantine condition.
Since u(1) is C∞, we can substitute this into the second equation of the system

(12.40):

D2
ωu

(2)(ξ, t) + Vxx(ξ, t)u(1)(ξ, t) = 0. (12.55)

One can check that Vxx(ξ, t)u(1)(ξ, t) has zero mean, and thus we can compute
u(2), which is then of class C∞, and so on. We are still left with the more difficult
problem of the convergence of the series (12.36). What we have seen so far only
guarantees that each term in the series is well defined. The convergence of (12.36)
under our assumptions (regularity of V and ω satisfying a diophantine condition)
is guaranteed by the following theorem, whose proof is beyond the scope of this
introduction (cf. Salomon and Zehnder 1989).

Theorem 12.5 Let ω ∈ Cγ,µ and suppose that V is analytic. Then there exists a
unique solution u(ξ, t; ε) of (12.35) that is analytic in (ξ, t; ε). Moreover there exists
a constant ε0 > 0 such that the series expansion (12.36) of u(ξ, t; ε) converges
uniformly with respect to (ξ, t) for all ε such that |ε| < ε0. �

The constant ε0 of the previous theorem depends only on V and on ω. If ω =
(
√
5− 1)/2 and V = − cos ξ − cos(ξ − t), ε0 has a value of approximately 0.03.

The computation of ε0—and its physical significance—have been discussed, e.g.
in Escande (1985).

12.4 Discussion of the fundamental equation of canonical
perturbation theory. Theorem of Poincaré on the
non-existence of first integrals of the motion

We consider again the fundamental equation of canonical perturbation theory
(12.13), and we show how the discussion of equation (12.46) extends to the more
general case.
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Since the mean on the torus Tl of the term ω(J′) · ∇χW
(1) is equal to zero

because of the periodicity of W , a necessary condition (which clearly is not
sufficient) for (12.13) to have a solution is

1
(2π)l

∮
Tl

(H ′
1(J

′)− F (J′,χ)) dχ1 . . .dχl = 0, (12.56)

which allows the determination of H ′
1 as the mean of the perturbation:

H ′
1(J

′) =
1

(2π)l

∮
Tl

F (J′,χ) dχ1 . . .dχl = F0(J′), (12.57)

as we have already seen when l = 1 (cf. (12.15)).
Fixing the values of the actions J′, the linear operator

Dω = ω · ∇χ (12.58)

has constant coefficients. Its eigenvalues λ and eigenfunctions uλ(χ) are of the
form

λ = im · ω, uλ = eim·χ, (12.59)

where m ∈ Zl and ω = ω(J′) is the vector of frequencies.

Definition 12.3 The frequencies ω ∈ Rl are called non-resonant if for every
m ∈ Zl,m =/ 0,

m · ω =/ 0. (12.60)

Otherwise (hence if there exists m ∈ Zl, m =/ 0, such that m · ω = 0) the
frequencies ω are said to be resonant. �

Example 12.8
The vector (1,

√
2,

√
3) ∈ R3 is non-resonant, while

(
1,

√
2, 1/

√
2
)
is resonant (for

example consider m = (0, 1,−2)). �

Remark 12.6
We could naturally examine the various possible kinds of resonance, and consider
the associated modules of resonance (cf. Definition 11.7). This would lead us
to the study of resonant normal forms, which goes beyond the scope of this
introduction. �

If ω is non-resonant, the eigenvalue λ = 0 of Dω corresponds to the choice
m = 0 and has multiplicity one. The fundamental equation of the canonical
theory of perturbations is therefore formally solvable (neglecting the question of
the convergence of the series arising when considering the Fourier expansions of
W (1) and F ).

Theorem 12.6 If ω is non-resonant, there exists a formal solution W (1) of
equation (12.13). The solution is unique if we require that the mean of W (1) on
the torus Tl is zero: Ŵ (1)

0 = 0.
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Proof
Expanding both F and W (1) in Fourier series (see Appendix 7):

F (J′,χ) =
∑

m∈Zl
F̂m(J′)eim·χ,

W (1)(J′,χ) =
∑

m∈Zl
Ŵ (1)

m (J′)eim·χ,
(12.61)

and substituting these expansions into (12.13) we find

im · ω(J′)Ŵ (1)
m (J′) + F̂m(J′) = 0, (12.62)

for every m ∈ Zl\{0}, from which it follows immediately that

Ŵ (1)
m (J′) =

F̂m(J′)
−im · ω(J′)

. (12.63)

The non-resonance hypothesis (12.60) guarantees that the denominators in (12.63)
never vanish. �

When the Hamiltonian H0 is linear in the action variables (harmonic oscillators)

H0(J) = J · ω =
l∑

k=1
ωkJk, (12.64)

the non-resonance condition is a hypothesis on the unperturbed system, and not
on the values of the action variables, as the frequencies do not depend on the
actions. However, in general the frequencies ω depend on the action variables,
and hence contrary to the case of (12.64), the function ω(J′) is not constant,
and the non-resonance condition will only hold on a subset of the phase space.

Definition 12.4 A Hamiltonian integrable system H0(J) is non-degenerate (in
an open subset A ⊂ Rl) if there exists a constant c > 0 such that for every J ∈ A,∣∣∣∣det( ∂2H0

∂Ji∂Jk

)
(J)

∣∣∣∣ ≥ c. (12.65)

�

If a system is non-degenerate, by the local invertibility theorem the map
ω : A → Rl,

J → ω(J) = ∇JH0(J),

is a local diffeomorphism. In this case, the hypothesis of non-resonance (12.60)
selects some values of the action variables, and disregards others. Since the set of
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vectors of Rl orthogonal to vectors of Zl is dense in Rl, the resonance condition
ω ·m = 0 is satisfied for any m ∈ Zl, m =/ 0 in a dense subset Ωr of Rl:

Ωr =
⋃

m∈Zl
m�=0

{ω ∈ Rl|ω ·m = 0}.

However, since the frequencies ω are in continuous one-to-one correspondence
with the action variables, the resonance condition is satisfied by values of the
actions J which belong to a dense subset Ar of A:

Ar = {J ∈ A|ω(J) ∈ Ωr} =
⋃

m∈Zl
m�=0

{J ∈ A|ω(J) ·m = 0}.

We shall see shortly (cf. Theorem 12.7) that the density of Ar in A makes it
impossible to define the canonical transformation generated by J′ · χ + εW (1)

as a regular transformation on an open susbset of the phase space, and it
precludes the existence of analytic first integrals of the motion, independent of
the Hamiltonian, in quasi-integrable systems (cf. Theorem 12.8). This was proved
by Poincaré in 1893.

Definition 12.5 A function F : A×Tl → R, F = F (J,χ) has a generic Fourier
series expansion if for every J ∈ A and every m ∈ Zl there exists m′ ∈ Zl parallel
to m such that F̂m′(J) =/ 0. �

Theorem 12.7 (Poincaré) If the integrable part of the Hamiltonian (12.4) is
non-degenerate in an open set A and the perturbation F has a generic Fourier
series expansion, the fundamental equation of perturbation theory (12.13) does
not admit a solution W (1)(J′,χ) which is regular as the action variables vary in
the open set A.

Proof
The proof is by contradiction. Suppose that the fundamental equation of perturb-
ation theory (12.13) admits a solution W (1) regular with respect to the actions.
The non-degeneracy of the Hamiltonian H0 guarantees the invertibility of the
relation between the actions J′ and the frequencies ω, as well as the continuity
of both transformations (from actions to frequencies and vice versa). The set Ωr

of resonant frequencies is dense in every open subset of Rl. It follows that the set
Ar of the J′ resonant actions, to which there corresponds a resonant frequency
ω(J′), is dense in A. Therefore, for every J′ ∈ A there exists an action J ∈ A,
arbitrarily close to J′, and a vector m ∈ Z, m =/ 0, such that m · ω(J) = 0 for
m = m and for all vectors m = m′ parallel to it. From (12.62) it then follows
that necessarily Fm(J) = 0 and by continuity also that Fm(J) = 0, and hence
Fm′(J) = 0 for every m′ parallel to m, contradicting the hypothesis that F has
a generic Fourier series expansion. �
The density of the set Ar of the actions corresponding to resonant values of

the frequencies has significant consequences for the problem of the existence of
analytic first integrals, independent of the Hamiltonian.



12.4 Analytical mechanics: canonical perturbation theory 511

Consider the Hamiltonian quasi-integrable system (12.4) and seek a solution
for the equation of the first integrals

{I,H} = 0 (12.66)

in the form of a power series in ε:

I(J,χ, ε) =
∞∑
n=0

εnI(n)(J,χ). (12.67)

Substituting equation (12.67) into (12.66), taking into account the form (12.4)
of H and equating terms of the same order in ε, we obtain an infinite system
of equations for the (unknown) coefficients of the expansion (12.67) of the first
integral sought:

{I(0), H0} = 0,

{I(1), H0} = {F, I(0)},
. . . . . .

{I(n), H0} = {F, I(n−1)}.

(12.68)

We remark first of all that the Poisson bracket with H0 is an operator of the
form

{·, H0} = ω(J) · ∇χ, (12.69)

and hence it coincides with the operator Dω (12.58). Each equation of the infinite
system (12.68) therefore has the form of the fundamental equation of canonical
perturbation theory (12.13). We start by proving that the first of equations
(12.68) implies that I(0) does not depend on the angles χ.

Proposition 12.3 If the Hamiltonian H0(J) is non-degenerate and I(0) is a
first integral that is regular for the Hamiltonian flow associated with H0, i.e. a
regular solution of the equation

{H0, I
(0)} = 0, (12.70)

then I(0) does not depend on the angles χ, and hence I(0) = I(0)(J).

Proof
Assume that I(0)(J,χ) is a solution of (12.70). Substituting the equation into
the Fourier series expansion of I(0):

I(0)(J,χ) =
∑

m∈Zl
Î(0)m (J)eim·χ,

we find

i
∑

m∈Zl
(m · ω(J))Î(0)m (J)eim·χ = 0,
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and hence it follows that for every m ∈ Zl we have

Î(0)m (J) ≡ 0 or m · ω(J) ≡ 0.

Differentiating the latter relation with respect to the actions, we find

l∑
i=1

mi
∂ωi

∂Jk
= 0,

for every k = 1, . . . , l, which, when m =/ 0, is satisfied only if

det
(
∂ωi

∂Jk

)
= det

(
∂2H0

∂Ji∂Jk

)
= 0,

contradicting the hypothesis of non-degeneracy (12.65). It follows that the only
non-zero Fourier coefficient is the one corresponding to m = 0 and the solutions
of the first of equations (12.68) are necessarily of the form

I(0) = I(0)(J).
�

We now use induction, and assume that we have solved equations (12.68) for
I(1), . . . , I(n−1). Consider then the equation

{I(n), H0} = {F, I(n−1)}. (12.71)

Indicating by F (n) the term, known by the inductive hypothesis, which appears
on the right-hand side, by expanding in Fourier series both I(n) and F (n) we
find the relation

im · ω(J)Î(n)m (J) = F̂ (n)
m (J), (12.72)

which must hold for every m ∈ Zl.
There are therefore two problems to be solved in order to prove the existence

of a solution of (12.72).

(a) We must prove that F̂
(n)
0 (J) ≡ 0, and hence that {F, I(n−1)} has zero mean

value. This is immediate for n = 1 (since Î(0) is independent of χ and F is
periodic in χ) but it is non-trivial for n ≥ 2.

(b) We again need a non-resonance condition for ω(J) (unless F̂
(n)
m (J) vanishes

when m · ω(J) = 0) to guarantee at least the existence of a formal solution
(still neglecting the problem of the convergence of the series).

While the first problem can be solved generally by a more in-depth study of
the series (cf. Cherry 1924a,b; Whittaker 1936, chapter 16; Diana et al., 1975),
the second is at the heart of the non-existence theorem of Poincaré (Poincaré
1892, sections 81–3).
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Definition 12.6 An analytic first integral of the motion I depends only on H if
there exists a non-constant analytic function g of one variable such that I = g(H).
Otherwise, I is independent of H. �

Theorem 12.8 (Poincaré) If H(J,χ, ε) is a Hamiltonian quasi-integrable system
satisfying the same hypotheses as Theorem 12.6 (non-degeneracy and genericity),
there does not exist an analytic first integral of the motion I(J,χ, ε) (for which
the expansion (12.67) is therefore well defined and convergent if ε is sufficiently
small, uniformly with respect to J ∈ A and χ ∈ Tl) which is independent of H. �

The proof of the theorem of Poincaré uses the following.

Lemma 12.1 An analytic first integral I, such that I(0) is independent of H0,
is also independent of H. Conversely, if I is an analytic first integral that is
independent of H, one can associate with it an analytic first integral Ĩ with Ĩ(0)

independent of H0.

Proof
If I depends on H, I(0) necessarily depends on H0. Indeed since I = g(H) =
g(H0+εF ), expanding in Taylor series it follows that I = g(H0)+εg′(H0)F + · · · .
Comparing with (12.67) we find I(0) = g(H0), proving the first part of the

proposition.
Now let I0 be an analytic first integral that is independent of H and consider

the power series expansion in ε:

I0 = I
(0)
0 + εI

(1)
0 + ε2I

(2)
0 + · · · . (12.73)

We want to prove that if I(0)0 is not independent of H0, starting from I0 one can
construct another first integral Ĩ, analytic and independent of H, for which Ĩ(0)

is independent of H0.
Indeed, if I(0) depends on H0, i.e.

I(0) = g0(H0), (12.74)

then if I0 is a first integral I0 − g0(H) is a first integral too. Moreover from
equations (12.73) and (12.74) it follows that

I0 − g0(H) = I
(0)
0 + εI

(1)
0 + O(ε2)− g0(H0 + εF )

= I
(0)
0 + εI

(1)
0 − g0(H0)− εg′

0(H0)F + O(ε2)

= ε[I(1)0 − g′
0(H0)F ] + O(ε2);

hence setting

I1 =
I0 − g0(H)

ε
, (12.75)
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I1 is a new analytic first integral that is independent of H (because by hypothesis
I0 cannot be expressed as a function of H) and

I1 = I
(0)
1 + εI

(1)
1 + ε2I

(2)
1 + · · · (12.76)

is its expansion in powers of ε. The coefficients I
(j)
1 are obtained starting from

the coefficients I
(k)
0 and from the Taylor series expansion of g0(H):

∞∑
j=0

I
(j)
1 εj =

1
ε

[
I
(0)
0 +

∞∑
k=1

I
(k)
0 εk − g0(H0 + εF )

]

=
1
ε

[
I
(0)
0 +

∞∑
k=1

I
(k)
0 εk − g0(H0)−

∞∑
k=1

εk

k!
g
(k)
0 (H0)F k

]

=
∞∑
k=1

[
I
(k)
0 − 1

k!
g
(k)
0 (H0)F k

]
εk−1,

where g
(k)
0 is the kth-order derivative of g0. Therefore we have

I
(j)
1 = I

(j+1)
0 − 1

(j + 1)!
g
(j+1)
0 (H0)(H −H0)j+1, (12.77)

for every j ≥ 0. We can again ask if I
(0)
1 is independent of H0 or not. In the

first case, the proof is finished: Ĩ = I1. If however

I
(0)
1 = g1(H0),

by repeating the previous argument, setting

I2 =
I1 − g1(H)

ε
,

I2 is a new analytic first integral that is independent of H. If I
(0)
2 depends

again on H0, we must iterate this procedure. But after a finite number n of
iterations we necessarily obtain an integral In for which I

(0)
n does not depend on

H0. Indeed, if otherwise I
(0)
n = gn(H0) for every n ≥ 0, since (cf. (12.77))

gn(H0) = I(0)n = I
(1)
n−1 − g′

n−1(H0)(H −H0)

= I
(2)
n−2 − 1

2!
g′′
n−2(H0)(H −H0)2 − g′

n−1(H0)(H −H0) = . . .

= I
(n)
0 −

n−1∑
k=0

1
(n− k)!

g
(n−k)
k (H0)(H −H0)n−k,
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we would find

I
(n)
0 = gn(H0) +

n−1∑
k=0

1
(n− k)!

g
(n−k)
k (H0)(H −H0)n−k,

for every n, and hence I0 would depend on H, contradicting the hypothesis. �

We now prove the theorem of Poincaré.

Proof of Theorem 12.8
Let I be an analytic first integral of the motion. By Proposition 12.3, I(0) is
only a function of the action variables. Expanding in Fourier series I(1) and F
in equation (12.71) for n = 1 we therefore find the equation

im · ω(J)Î(1)m (J) = i(m · ∇JI
(0)(J))F̂m(J),

for every m ∈ Zl. Hence, for Î(1)m (J) to be well defined, m ·ω(J) must vanish for
every value of J annihilating the right-hand side. By the hypothesis of genericity
of the Fourier series expansion of F , there is no loss of generality in assuming
that F̂m(J) =/ 0 (otherwise, there certainly exists a vector m′ parallel to m for
which F̂m′(J) =/ 0; but m′ is parallel to m only if there exists an integer k such
that m′ = km). Therefore m · ∇JI

(0)(J) must vanish every time that m ·ω(J) is
zero (and vice versa).
For a fixed resonant vector ω ∈ Ωr, consider the associated resonance module

Mω (see Definition 11.7). The condition that m · ∇JI
(0)(J) and m · ω(J) are

both zero is equivalent to imposing that ω and ∇JI
(0) are both orthogonal to

Mω. Hence, if the dimension of Mω is equal to l− 1, the orthogonal complement
of Mω has dimension 1 and ω and ∇JI

(0) are parallel. By the non-degeneracy
hypothesis, the correspondence between ω and J is bijective and continuous, and
hence the set Ar of the values of J ∈ A corresponding to resonant frequencies
ω(J) is dense.1 It follows that ω(J) = ∇JH0(J) and ∇JI

(0)(J) must be parallel
as J varies in a dense set in Rl. By continuity there must then exist a scalar
function α(J) such that

∇JH0(J) = α(J)∇JI
(0)(J),

for every J ∈ Rl. Hence there exists a function A : R → R such that α(J) =
(A′(H0(J)))−1 and I(0)(J) = A(H0(J)). By Lemma 4.1 the integral I is then a
function of H. �

The ‘negative’ results proved in this section apparently leave only two possib-
ilities of establishing the existence of a regular solution of equation (12.13):

(a) consider only degenerate Hamiltonian systems—for example systems that are
linear in the action variables, as in the case of harmonic oscillators;

(b) admit that the solution does not have a regular dependence on the actions.

1 It is not difficult to check that the subset of Ωr made of the vectors ω whose resonance
module Mω has dimension l− 1 is dense in Rl: it is enough to observe that dim Mω = l− 1
if and only if there exists ν ∈ R and m ∈ Zl, such that ω = νm.
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Both cases are possible and lead to physically significant results. In the next
section, we examine briefly the first possibility, then we survey the important
developments related to the second.

12.5 Birkhoff series: perturbations of harmonic oscillators

While not eternity, this is a considerable slice of it.2

In the previous section we showed (Theorem 12.6) that it is not possible to
find a regular solution of the fundamental equation of the canonical theory of
perturbations for non-degenerate Hamiltonians. In this section we restrict our
analysis only to degenerate quasi-integrable Hamiltonian systems:

H(J,χ, ε) = ω · J+ εF (J,χ). (12.78)

In this case, the frequencies ω are fixed constants that are independent of the
actions. The condition of non-resonance for the frequencies does not imply any
restriction on the action variables, as opposed to what happens in the case of
non-degenerate systems, and Theorem 12.7 ensures the existence of a formal
solution of equation (12.13) for all J′ ∈ A and χ ∈ Tl. We shall indeed show
that it is possible to prove a result analogous to Theorem 12.4: if the frequen-
cies satisfy a diophantine condition, the formal solution (12.63) gives rise to a
convergent Fourier series and the fundamental equation of the canonical theory
of perturbations admits a regular solution for J′ ∈ A and χ ∈ Tl.

Definition 12.7 Fix l > 1. A vector ω ∈ Rl satisfies a diophantine condition
(of constant γ > 0 and exponent µ ≥ l − 1), and we write ω ∈ Cγ,µ, if for every
m ∈ Zl, m =/ 0, we have

|m · ω| ≥ γ|m|−µ, (12.79)

where |m| = |m1|+ · · ·+ |ml|. �

Remark 12.7
It is not difficult to show, generalising Theorem 12.3 (of Dirichlet), that the
condition µ ≥ l − 1 is necessary, and hence that if µ < l − 1 there does not
exist a vector ω ∈ Rl that satisfies (12.79) for every m =/ 0. In addition, it can
be proved—using an argument slightly more sophisticated than the one used in
Section 12.3—that for every fixed µ > l−1 the Lebesgue measure of Cγ,µ ∩ [0, 1]l

satisfies the inequality

|Cγ,µ ∩ [0, 1]l| ≥ 1− aγζ(µ+ 2− l) > 0, (12.80)

where a is a constant depending only on l. Note that if l = 2 we again find
(12.50) (and a = 4). Hence for almost every ω ∈ [0, 1]l there exists γ > 0 such
that ω ∈ Cγ,µ, for fixed µ > l − 1. �

2 Littlewood (1959a, p. 343).
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Remark 12.8
It is possible to prove the following generalisation of the theorem of Liouville
referred to in Remark 12.5. Suppose that (ω1, . . . , ωl) is a basis on Q of a field of
algebraic real numbers. Then ω = (ω1, . . . , ωl) satisfies the diophantine condition
(12.79) with µ = l−1 (see Meyer 1972, proposition 2, p. 16). Hence, for example,
(1,

√
2,

√
3,

√
6) and (1, 21/3, 22/3) satisfy equation (12.79) with µ = l − 1 and

l = 4, l = 3, respectively. There also exists a generalisation of the theorem of
Roth known as the subspace theorem, see Schmidt (1991). �

Theorem 12.9 Consider ω ∈ Cγ,µ, and let A be an open subset of Rl and
F : A×Tl → R, F = F (J,χ), a function of class C∞. The Fourier series

W (1)(J′,χ) =
∑

m∈Zl
m�=0

− F̂m(J′)
im · ω eim·χ (12.81)

converges uniformly for (J′,χ) ∈ K ×Tl, where K is any compact subset of A.

Proof
The proof is analogous to that of Theorem 12.4. Indeed, exploiting the diophantine
condition on ω, we find∣∣∣∣∣∣

∑
m∈Zl
m�=0

− F̂m(J′)
im · ω eim·χ

∣∣∣∣∣∣ ≤
∑

m∈Zl
m�=0

‖F̂m‖
γ

|m|µ,

where

‖F̂m‖ = max
J′∈K

|F̂m(J′)|.

Since F is of class C∞, for any r > µ+l, there exists a constant M > 0 depending
only on r and K such that

‖F̂m‖ ≤ M |m|−r

(see Appendix 7), and therefore∑
m∈Zl
m�=0

‖F̂m‖
γ

|m|µ ≤ M

γ

∑
m∈Zl
m�=0

|m|µ−r < +∞.

�

Consider now the Hamiltonian systems

h(p,q) =
l∑

j=1

(
p2j
2
+

ω2j q
2
j

2

)
+

∞∑
r=3

fr(p,q), (12.82)

where fr is a homogeneous trigonometric polynomial of degree r in the variables
(q,p). The Hamiltonian (12.82) represents the perturbation of a system of l
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harmonic oscillators. In this problem the perturbation parameter ε does not
appear explicitly, as in (12.4), but an analogous role is played by the distance
in phase space from the linearly stable equilibrium position corresponding to the
origin (p,q) = (0,0). Indeed, consider the set

Bε =
{
J ∈ Rl|Ji = p2i + ω2i q

2
i

2ωi
< ε, for every i = 1, . . . , l

}
, (12.83)

and suppose for simplicity that the sum in (12.82) is extended only to odd indices
r (this assumption guarantees that only integer powers of ε will appear in the
series expansion (12.84)). Then if we perform a change of scale of the actions
J → J/ε such that Bε is transformed to B1, and a change of time scale t → εt
and of the Hamiltonian H → H/ε (recall that t and H are canonically conjugate
variables, see Remark 10.21), we find

H(J,χ) = ω · J+
∞∑
r=1

εrFr(J,χ), (12.84)

where we have introduced the action-angle variables (J,χ) of the unper-
turbed harmonic oscillators, and the functions Fr are homogeneous trigonometric
polynomials of degree 2(r + 1):

Fr(J,χ) =
∑

m∈Zl
|m|=2(r+1)

F̂ (r)
m (J)eim·χ. (12.85)

Suppose that the frequency ω is not resonant (hence that the condition (12.60)
is satisfied). In the series expansion in powers of ε of the perturbation, the
corresponding term Fr has to all orders a finite number of Fourier components.
We now show how it is possible, at least formally, to construct the series of

the canonical theory of perturbations, to all orders εr, r ≥ 1.
Denote by W the generating function of the canonical transformation near the

identity that transforms the Hamiltonian (12.84) into a new Hamiltonian H ′,
depending only on the new action variables J′:

H ′(J′, ε) =
∞∑
r=0

εrH ′
r(J

′). (12.86)

Expanding W = W (J′,χ, ε) in a series of powers of ε:

W (J′,χ, ε) = J′ · χ +
∞∑
r=1

εrW (r)(J′,χ), (12.87)

and substituting the transformation induced by equation (12.87)

J = J′ +
∞∑
r=1

εr∇χW
(r)(J′,χ) (12.88)
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into the Hamilton–Jacobi equation for the Hamiltonian (12.87), we find the
equation

ω ·
[
J′ +

∞∑
r=1

εr∇χW
(r)

]
+

∞∑
r=1

εrFr

(
J′ +

∞∑
r=1

εr∇χW
(r),χ

)
=

∞∑
r=0

εrH ′
r(J

′).

(12.89)

Expanding in Taylor series the second term:

Fr

(
J′ +

∞∑
r=1

εr∇χW
(r),χ

)
=Fr +∇JFr ·

∞∑
r=1

εr∇χW
(r) + · · ·

+
1
k!

l∑
m1,...,mk=1

∂kFr

∂Jm1 . . . ∂Jmk

∞∑
n=k

εn

×
∑

j1+···+jk=n

∂W (j1)

∂χ
m1

· · · ∂W
(jk)

∂χ
mk

+ · · · ,

(12.90)

equation (12.89) can be written as

(ω · J′ −H ′
0) + ε(ω · ∇χW

(1) + F1 −H ′
1)

+ ε2(ω · ∇χW
(2) + F2 +∇JF1 · ∇χW

(1) −H ′
2) + · · ·

+ εr(ω · ∇χW
(r) + Fr +∇JFr−1 · ∇χW

(1) + · · · −H ′
r) + · · · = 0.

(12.91)

To all orders in ε we must solve the fundamental equation of the theory of
perturbations:

ω · ∇χW
(r)(J′,χ) + F(r)(J′,χ) = H ′

r(J
′), (12.92)

where

F(r) = Fr +
r−1∑
n=1

n∑
k=1

1
k!

l∑
m1,...,mk=1

∂kFr−n

∂Jm1 · · · ∂Jmk

∑
j1+···+jk=n

∂W (j1)

∂χ
m1

· · · ∂W
(jk)

∂χ
mk

(12.93)

depends only on F1, . . . , Fr and on W (1), . . . ,W (r−1). Therefore H ′
r is determined

by the average of F(r) on Tl:

H ′
r(J

′) = F̂
(r)
0 (J′), (12.94)

while W (r) is a homogenous trigonometric polynomial of degree 2(r + 1).
If the series (12.86) and (12.87), called Birkhoff series, converge for |ε|<ε0

in the domain A × Tl, where A is an open set of Rl, the Hamiltonian (12.80)
would be completely canonically integrable. Indeed, we would have a perturb-
ative solution of the Hamilton–Jacobi equation (12.89); W would generate a
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completely canonical transformation transforming (12.82) to a Hamiltonian that
is independent of the new angle variables.
In general the series (12.86) and (12.87) diverge, and hence perturbations of

harmonic oscillators do not give rise to integrable problems. The divergence of the
Birkhoff series can be easily illustrated by an example, as is shown in Problem 7
of Section 12.8. In addition, there holds a theorem analogous to Theorem 12.7
(see Siegel 1941, 1954), which we simply state.
Consider the set H of the Hamiltonians h : R2l → R which are analytic and

of the form (12.82). We can associate with every Hamiltonian h its power series
expansion

h(p,q) =
∑

k,n∈Nl
hk,np

k1
1 . . . pkll qn1

1 . . . qnll . (12.95)

Comparing with (12.82) it follows that for every r ≥ 3 we have

fr(p,q) =
∑

|k|+|n|=r
hk,np

k1
1 . . . pkll qn1

1 . . . qnll , (12.96)

where |k| = k1 + · · ·+ kl.

Definition 12.8 Let h∗ ∈ H. A neighbourhood of h∗ in H is given by the set
of all Hamiltonians h ∈ H such that for every k, n ∈ Nl we have

|hk,n − h∗
k,n| < εk,n, (12.97)

where {εk,n}k,n∈Nl is an arbitrary fixed sequence of positive numbers such that
εk,n → 0 for |k|+ |n| → ∞. �

Two Hamiltonians are therefore close if all the coefficients of the corresponding
power series expansions are close.

Theorem 12.10 (Siegel) In every neighbourhood of a Hamiltonian h∗ ∈ H there
exists a Hamiltonian h such that the corresponding flow does not admit a first
integral of the motion which is analytic and independent of h. �

Systems which are not (completely canonically) integrable are therefore dense
in H, and hence the set of Hamiltonians for which the Birkhoff series diverge is
also dense.

Remark 12.9
Siegel’s theorem also shows how, in general, the Hamilton–Jacobi equation
does not admit a complete integral near a point of linearly stable equilib-
rium (see Remark 11.2). Indeed, moving the equilibrium point into the origin,
the Hamiltonian has the form (12.82), and therefore it belongs to H. If the
Hamilton–Jacobi equation admitted a complete integral, the system would have
l first integrals of the motion, independent of h. By Theorem 12.10 this is not
the case for any h in a dense subset of H. �

Birkhoff series, although divergent, are very important in practice, for the
qualitative study of degenerate Hamiltonian systems, and for the study of the
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stability of the Hamiltonian flow for finite but long time. Indeed, there holds
the following remarkable result (see Nekhoroshev 1977, Gallavotti 1984).

Theorem 12.11 Consider a Hamiltonian quasi-integrable system, degenerate and
of the form (12.78), and assume that:

(1) the Hamiltonian (12.78) is analytic with respect to J, χ and ε for |ε| ≤ 1;
(2) the frequency vector ω satisfies a diophantine condition (12.79).

Then there exist two constants ε0 > 0 and ρ0 > 0 and a completely canonical
transformation, analytic and near the identity:

J = J′ + εA(J′,χ′, ε),

χ = χ′ + εB(J′,χ′, ε),
(12.98)

defined for |ε| ≤ ε0 and ‖J′‖ ≤ ρ0, such that the transformed Hamiltonian
H ′(J′,χ′, ε) is of the form

H ′(J′,χ′, ε) = ω · J′ + εK ′(J′, ε) +
ε

ε0
exp

[
−(l + 3)

(
ε

ε0

)1/(l+3)]
R(J′,χ′, ε),

(12.99)

where K ′ and R are analytic functions of their arguments and K ′(J′, 0) = 0,
R(J′,χ′, 0) = 0. �

An interesting consequence is the following.

Corollary 12.1 There exist two constants C1 > 0 and C2 > 0 such that if
(J(t),χ(t)) is the solution of Hamilton’s equations for the Hamiltonian (12.78)
with initial data (J(0),χ(0)), for every time t such that

|t| ≤ C1 exp

[
(l + 3)

(
ε

ε0

)1/(l+3)]
, (12.100)

we have

|J(t)− J(0)| ≤ C2
ε

ε0
. (12.101)

Proof (sketch)
From equation (12.99) it follows that

J̇′ = − ε

ε0
exp

[
−(l + 3)

(
ε

ε0

)1/(l+3)]
∇χR(J′,χ′, ε), (12.102)

and therefore, if t is chosen as in (12.100), then

|J′(t)− J′(0)| ≤ C3
ε

ε0
, (12.103)
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where J′(0) is the initial condition corresponding to J(0),

C3 = max |∇χR(J′, χ′, ε)|, (12.104)

and the maximum is taken as J′ varies on the sphere of radius ρ0, while χ ∈ Tl

and ε ∈ [−ε0, ε0]. The inequality (12.101) follows from the remark that the
canonical transformation (12.98) is near the identity and from the inequality

|J(t)− J(0)| ≤ |J(t)− J′(t)|+ |J′(t)− J′(0)|+ |J′(0)− J(0)|. (12.105)

�

It is not difficult to convince oneself, by a careful inspection of (12.100) as the
ratio ε/ε0 varies in [−1, 1], that the order of magnitude of the time over which
the previous corollary ensures the validity of (12.101) can be very large. As an
example, in the applications to celestial mechanics (see Giorgilli et al. 1989) one
can obtain stability results for the restricted three-body problem for times of
the order of billions of years, and hence comparable with the age of the Solar
System.
Littlewood (1959a,b), who first thought of a ‘rigorous’ application of Birkhoff

series to the three-body problem, wrote that, ‘while not eternity, this is a
considerable slice of it.’

12.6 The Kolmogorov–Arnol’d–Moser theorem

In Section 12.4 we saw that, under fairly general hypotheses, the fundamental
equation of perturbation theory does not admit regular solutions. In Section 12.5
we studied a special case, which does not satisfy the assumptions of Theorems 12.7
and 12.8 of Poincaré. Under appropriate hypotheses of non-resonance, for these
systems it is possible to write formally the series of the canonical theory of
perturbations to all orders. However, these series are in general divergent (see
Theorem 12.10).
It would therefore seem impossible to prove the existence of quasi-periodic

motions for Hamiltonian quasi-integrable systems, and the theory of perturb-
ations seems, from this point of view, bound to fail. (It can still yield
interesting information about the stability problem, though. This is shown by
Theorem 12.11.)
Consider a quasi-integrable Hamiltonian system. If ε = 0 the system is integ-

rable and all motions are bounded and quasi-periodic. When ε =/ 0, instead
of requiring that this property is preserved, and hence that the system is still
integrable, as we did so far, we can ask if at least some of these quasi-periodic
unperturbed motions persist in the perturbed version. We shall not therefore
seek a regular foliation of the phase space in invariant tori, but simply try to
prove the existence, for values ε =/ 0, of ‘some’ invariant tori, without requiring
that their dependence on the action J is regular as J varies in an open subset
A of Rl.
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The Kolmogorov–Arnol’d–Moser (KAM) theorem gives a positive answer to
this question: for sufficiently small values of ε the ‘majority’ (in a sense to be
clarified shortly) of invariant tori corresponding to diophantine frequencies ω
are conserved, and are slightly deformed by the perturbation. The motions on
these tori are quasi-periodic with the same frequency ω which characterises them
for ε = 0.
To be able to state the KAM theorem precisely, we must first give a meaning

to the statement that ‘the invariant tori are slightly deformed’ under the action
of a perturbation.
Let

H(J,χ, ε) = H0(J) + εF (J,χ) (12.106)

be a quasi-integrable Hamiltonian system. Suppose that, for fixed ε0 > 0, H :
A×Tl× (−ε0, ε0) → R is an analytic function and that H0 is non-degenerate (cf.
Definition 12.4). Every invariant l-dimensional unperturbed torus T0 = {J0} ×
Tl ⊂ A×Tl is uniquely characterised by the vector ω0 = ω(J0) of the frequencies
of the quasi-periodic motions that stay on it.

Definition 12.9 Let ε0 > 0 be fixed. A one-parameter family {Tε}ε∈(−ε0,ε0) of
l-dimensional submanifolds of R2l is an analytic deformation of a torus T0 =
{J0} ×Tl if, for every ε ∈ (−ε0, ε0), Tε has parametric equations

J = J0 + εA(ψ, ε),

χ = ψ + εB(ψ, ε),
(12.107)

where ψ ∈ Tl,A : Tl × [−ε0, ε0] → Rl and B : Tl × [−ε0, ε0] → Tl are analytic
functions. �

Note that setting ε = 0 in (12.107) we again find the torus T0 = {J0} ×Tl.

Remark 12.10
The function B in (12.107) has the additional property that its average B̂0

on the torus Tl is zero. Indeed, εB = χ − ψ, and since χ and ψ are both
coordinates on a torus Tl we have

ε

(2π)l

∫
Tl

B(ψ, ε) dlψ =
1

(2π)l

[∫
Tl

χdlχ −
∫
Tl

ψ dlψ
]
= 0.

�

For fixed ε ∈ (−ε0, ε0), equations (12.107) establish a correspondence of every
point ψ0 ∈ Tl with the point Tε of coordinates

J = J0 + εA(ψ0, ε),

χ = ψ0 + εB(ψ0, ε).
(12.108)

Denote by (J(t, ψ0), χ(t, ψ0)) the solution of the Hamilton equations associated
with (12.106) and passing through the point of coordinates (12.108) at time t = 0.
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Definition 12.10 A deformation {Tε}ε∈(−ε0,ε0) of T0 is a deformation of T0 into
invariant tori for the quasi-integrable system (12.106) if, for fixed ε ∈ (−ε0, ε0),
and every choice of ψ0 ∈ Tl the Hamiltonian flow (J(t, ψ0),χ(t, ψ0)) can be
obtained from equations (12.107) by setting ψ = ψ0 + ω(J0)t:

J(t, ψ0) = J0 + εA(ψ0 + ω(J0)t, ε),

χ(t, ψ0) = ψ0 + ω(J0)t+ εB(ψ0 + ω(J0)t, ε).
(12.109)

It follows that (J(t, ψ0),χ(t, ψ0)) belongs to Tε for every t ∈ R. �

Remark 12.11
The motions on Tε are quasi-periodic with the same frequency vector ω0 of
the motions on T0. �

We now show how it is possible to carry out, by means of a perturbative
approach, the computation of the functions A and B.
Setting ω0 = ω(J0) and ψ = ψ0 + ω0t, from equation (12.109) it follows that

J̇ = ε
dA
dt

(ψ, ε) = εω0 · ∇ψA(ψ, ε),

χ̇ = ω0 + ε
dB
dt

(ψ, ε) = ω0 + εω0 · ∇ψB(ψ, ε),
(12.110)

to be compared with Hamilton’s equations associated with (12.106) and computed
along the flow (12.109):

J̇ = −ε∇χF (J(t, ψ0),χ(t, ψ0)) = −ε∇χF (J0 + εA(ψ, ε), ψ + εB(ψ, ε)),

χ̇ = ω(J(t, ψ0)) + ε∇JF (J(t, ψ0),χ(t, ψ0))

= ω(J0 + εA(ψ, ε)) + ε∇JF (J0 + εA(ψ, ε), ψ + εB(ψ, ε)).

(12.111)

Expanding A and B in power series in ε (the so-called Lindstedt series):

A(ψ, ε) =
∞∑
k=0

εkA(k)(ψ) = A(0)(ψ) + εA(1)(ψ) + · · · ,

B(ψ, ε) =
∞∑
k=0

εkB(k)(ψ) = B(0)(ψ) + εB(1)(ψ) + · · · ,
(12.112)

and ω in Taylor series around J0:

ω(J0 + εA(ψ, ε)) = ω0 + ε∇Jω(J0) ·A(ψ, ε) + · · · , (12.113)

and then comparing (12.111) and (12.110) to first order in ε, we find

εω0 · ∇ψA(0)(ψ) = −ε∇χF (J0, ψ), (12.114)

εω0 · ∇ψB(0)(ψ) = ε∇Jω(J0) ·A(0)(ψ) + ε∇JF (J0, ψ). (12.115)
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Equation (12.114) can be solved immediately by expanding A(0) and F in
Fourier series: setting

A(0)(ψ) =
∑

m∈Zl
Â(0)

m eim·ψ, (12.116)

since

∇χF (J0, ψ) =
∑

m∈Zl
imF̂m(J0)eim·ψ, (12.117)

by the uniqueness of Fourier series we have for all m ∈ Zl that

im · ω0Â(0)
m = −imF̂m(J0). (12.118)

The solution, if ω0 = ω(J0) is non-resonant, is given by

Â(0)
m = −mF̂m(J0)

m · ω0
, (12.119)

for m =/ 0, while for the time being the average Â(0)
0 of A on the torus Tl is

undetermined.
Substituting the solution (12.116), (12.119) into the expression (12.115), and

expanding in turn B(0) in Fourier series, we similarly find the coefficients B̂(0)
m

for m =/ 0. Note that integrating both sides of (12.115) on Tl, and taking into
account the periodicity of B with respect to ψ, we find

∇Jω(J0) · Â(0)
0 +∇JF̂0(J0) = 0. (12.120)

Since ∇JF̂0(J0) can be non-zero, for equation (12.120) (hence also (12.115)) to
have a solution we must require that the matrix

∇Jω(J0) =
(

∂2H0

∂Ji∂Jk
(J0)

)
(12.121)

be invertible, and hence that the unperturbed Hamiltonian H0 be non-degenerate
in a neighbourhood of J0 ∈ A. In this case

Â(0)
0 = −(∇Jω(J0))−1∇JF̂0(J0), (12.122)

and this determines the average of A(0) on Tl.
This discussion can be summarised in the following proposition.

Proposition 12.4 If the Hamiltonian H0 is non-degenerate on the open set A,
for fixed J0 ∈ A such that ω0 = ω(J0) is non-resonant, the system (12.114),
(12.115) admits a formal solution. �

We can in fact prove that the argument we have just presented to obtain
functions A and B as first-order perturbations can be iterated to all orders.
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Under the hypotheses of non-degeneracy for H0 and of non-resonance for ω0
as in Proposition 12.2 it is possible to define for every k ≥ 0 the functions A(k)

and B(k) in (12.112) through their Fourier series expansions:

A(k)(ψ) =
∑

m∈Zl
Â(k)

m eim·ψ,

B(k)(ψ) =
∑

m∈Zl,m �=0
B̂(k)

m eim·ψ,
(12.123)

at least formally, and hence neglecting the problem of the convergence of the
series (12.123). The coefficients Â(k)

m and B̂(k)
m of the series expansions (12.123)

can be computed from the solution of a system of the form

ω0 · ∇ψA(k)(ψ) = A(k)(J0, ψ), (12.124)

ω0 · ∇ψB(k)(ψ) = B(k)(J0, ψ), (12.125)

where A(k) and B(k) depend on A(0), . . . ,A(k−1), B(0), . . . ,B(k−1) and on the
derivatives of F with respect to J and χ up to order k + 1. Here B(k) also
depends on A(k) and on the derivatives of ω with respect to J up to order k+1
(hence on the derivatives of H0 with respect to J up to order k + 2).
Note that the structure of equations (12.124) and (12.125) is the same as that

of the fundamental equation of perturbation theory (12.13), and it constitutes
the natural generalisation of equation (12.46) to the case l > 2.
Indeed, Poincaré proved in chapter IX of his Méthodes Nouvelles (second

volume, 1893) that the functions Ak and Bk appearing on the right-hand side of
(12.124) and (12.125) have zero mean on the torus Tl, and therefore the formal
solvability of the two equations is guaranteed.
It follows that we have the following significant extension of Proposition 12.2.

Proposition 12.5 If the Hamiltonian H0 is non-degenerate in the open set A,
for any fixed J0 ∈ A such that ω0 = ω(J0) is non-resonant, it is always possible
to determine formally the functions A and B (parametrising the deformation to
invariant tori of the torus of frequency ω0) via the series expansions (12.112)
and (12.123). �

Two problems are still open:

(a) the question of the convergence of the Fourier series expansions (12.123) of
the functions A(k)(ψ) and B(k)(ψ);

(b) the question of the convergence of the power series (12.112).

The first question has an easy solution. For fixed µ > l − 1, consider the
set of diophantine frequencies ω0 (see Definition 12.7) of constant γ > 0 (and
exponent µ):

Cγ,µ = {ω0 ∈ Rl||ω0 ·m| ≥ γ|m|−µ}. (12.126)



12.6 Analytical mechanics: canonical perturbation theory 527

Since the Hamiltonian H0 is non-degenerate, to every ω0 ∈ Cγ,µ there corresponds
a unique vector J0 of the actions for which ω(J0) = ω0. Let

Aγ,µ = {J0 ∈ A|ω(J0) ∈ Cγ,µ}. (12.127)

Evidently

Aγ,µ = ω−1(Cγ,µ) (12.128)

(recall that the hypothesis of non-degeneracy of H0 guarantees that the map
J → ω(J) is a local diffeomorphism).
Now fix a value of the actions J0 ∈ Aγ,µ, so that the corresponding frequency

is ω0 = ω(J0) ∈ Cγ,µ. Then we can extend the arguments considered in the
proofs of Theorems 12.4 and 12.9 to the equations (12.124) and (12.125) for the
Fourier series expansions of A(k)(ψ) and of B(k)(ψ), and prove their convergence.

Proposition 12.6 If the Hamiltonian H0 is non-degenerate in the open set A,
for fixed J0 ∈ Aγ,µ the functions A(k) : Tl → Rl and B(k) : Tl → Rl which
solve the system (12.124), (12.125) have a convergent Fourier series expansion,
for every k ≥ 0. �

Problem (a) is therefore solved. The solution of problem (b) is much more
difficult. However, it is necessary to give this question an affirmative answer if
the existence of deformations of a torus into invariant tori is to be proven.
Poincaré was sceptical of the possibility of proving the convergence of the

Lindstedt series, and in Méthodes Nouvelles, volume II, p. 104 he comments that

Supposons pour simplifier qu’il y ait deux degrés de liberté; les séries ne pourraient-
elles pas, par exemple, converger quand x0

1 et x0
2 ont été choisis de telle sorte que le

rapport
n1

n2
soit incommensurable, et que son carré soit au contraire commensurable

(ou quand le rapport
n1

n2
est assujetti à une autre condition analogue à celle que je

viens d’énoncer un peu au hasard)? Les raisonnements de ce chapitre ne me permettent
pas d’affirmer que ce fait ne se présentera pas. Tout ce qu’il m’est permis de dire,
c’est qu’il est fort invraisemblable.

[Suppose for simplicity there are two degrees of freedom; would it be possible for
the series to converge when, for example, x01 and x02—the initial conditions—are
chosen in such a way that the ratio n1/n2 of the frequencies—in our notation
ω0 = (n1, n2)—is irrational, however such that its square is rational (or when the
ratio n1/n2 satisfies some other condition analogous to the one I just stated a
bit randomly)? The arguments in this chapter do not allow me to rule out this
case, although it appears to me rather unrealistic.]

Weierstrass, as opposed to Poincaré, was convinced of the possibility that the
Lindstedt series could converge (see Barrow-Green 1997).
It is nevertheless surprising that the condition referred to as ‘a bit randomly’ by

Poincaré—implying that ω0 satisfies a diophantine condition, see Remark 12.8—is
correct.
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The Kolmogorov–Arnol’d–Moser theorem (see Kolmogorov 1954, Arnol’d 1961,
1963a, Moser 1962, 1967), whose proof goes beyond the scope of the present
introduction, guarantees in practice the convergence of the power series (12.112)
as long as the frequency ω0 satisfies a diophantine condition.

Theorem 12.12 (KAM) Consider a quasi-integrable Hamiltonian system
(12.106) and assume that the Hamiltonian H is analytic and non-degenerate.
Let µ > l − 1 and γ > 0 be fixed. There exists a constant εc > 0, depending on
γ, such that for every J0 ∈ Aγ,µ there exists a deformation {Tε}ε∈(−εc,εc) of the
torus T0 = J0×Tl into invariant tori for the quasi-integrable system (12.106). �

Remark 12.12
It is possible to prove that εc = O(γ2) (see Pöschel 1982, Arnol’d et al. 1983).�

Remark 12.13
Since we assume that H0 is non-degenerate, the correspondence between actions
J and frequencies ω is a diffeomorphism, and there therefore exists the inverse
function J = J(ω) of ω = ω(J) = ∇JH0(J). Hence, thanks to (12.65),

|A\Aγ,µ| =
∫
A\Aγ,µ

dlJ

=
∫
ω(A)\Cγ,µ

∣∣∣∣∣det
(

∂2H0

∂Ji∂Jk
(J(ω))

)−1∣∣∣∣∣ dlω ≤ c−1|ω(A)\Cγ,µ|.
(12.129)

Assume for simplicity that the open set A of Rl is obtained as the preimage of
(0, 1)l via the map ω → J(ω). Then ω(A) = (0, 1)l, and from (12.129), taking
into account (12.80), it follows that

|A\Aγ,µ| ≤ c−1(|(0, 1)l| − |Cγ,µ ∩ (0, 1)l|) ≤ c−1aγζ(µ+ 2− l). (12.130)

By Remark 12.12 γ = O(
√
ε), and hence the Lebesgue measure of the comple-

ment, in the phase space, of the set of invariant tori is O(
√
ε); therefore it tends

to 0 for ε → 0. �

Remark 12.14
The set Aγ,µ has a rather complex structure: it is closed but totally disconnected,
and it is a Cantor set.3 Because of the density in Rl of resonant frequencies, the
complement of Aγ,µ is dense. �

Remark 12.15
In practice, in the proof of the KAM theorem one constructs a canonical trans-
formation near the identity of the variables (J,χ) to new variables (J̃, χ̃) with
generating function χ · J̃+ εW̃ (χ, J̃, ε) and a new Hamiltonian K(J̃, ε), satisfying

H0(J̃+ ε∇χW̃ ) + εF (J̃+ ε∇χW̃ ,χ) = K(J̃, ε)

3 A closed set is a Cantor set if it is totally disconnected and has no isolated points.
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every time that J ∈ Aγ,µ. The Hamilton–Jacobi equation therefore admits a solu-
tion in the set of invariant tori Aγ,µ (see Chierchia and Gallavotti 1982, Pöschel
1982). Hence to the system (12.106) there are associated l first integrals of the
motions (the new actions). However, these integrals are not defined everywhere,
but only on Aγ,µ; hence, although the dependence on χ and on ε is regular, they
do not have a regular dependence on J, and the result is not in contradiction
with Theorem 12.8. �

For more details on this topic, which we had no pretension to treat exhaustively,
we recommend reading chapter 5 of Arnol’d et al. (1983).

12.7 Adiabatic invariants

Consider a Hamiltonian system with one degree of freedom, depending on one
parameter r, so that its Hamilton function has the form

H = H(p, q, r). (12.131)

As an example, we can consider a pendulum (see Example 11.11) and take as
parameter the length l, or a harmonic oscillator (see (11.28)) and treat the
frequency ω as a parameter.
If for every fixed value of the parameter r the system admits motions of rotation

or of libration, the Hamiltonian (12.131) is completely canonically integrable and
there exists a canonical transformation depending on the parameter r to action-
angle variables (J, χ). Let W (q, J, r) be the generating function of this canonical
transformation, where we emphasise the dependence on the parameter r.
We denote by K0(J, r) the Hamiltonian corresponding to the new variables,

and by ω0(J, r) = (∂K0/∂J)(J, r) the frequency of the motion. Note that the
action J is a function of (p, q, r).
Suppose that the system is subject to an external influence, expressed as a time

dependence r = r(t) of the parameter r. If the rate of change of the parameter is
comparable with the frequency ω0(J, r) of the motion of the system corresponding
to a fixed value of r, in general the system is no longer integrable, because of
the overwhelming effect of the external influence, and it is not possible to find
a first integral—not even in an ‘approximate’ sense (note that the energy is
not conserved, because dH/dt = ∂H/∂t = ∂H/∂rṙ). The situation is however
substantially different if the variation of the parameter in time is slow, and hence
if |ṙ| ≤ ε � 1, where r and t are dimensionless with respect to two respective
‘natural’ scales.4

4 It is however possible to introduce the notion of a smooth function on a Cantor set
(Whitney smoothness) and prove that in this wider sense the dependence of W on W̃ is
smooth; see Pöschel (1982) for details.
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In this case, the dependence on time of the parameter can be expressed through
the so-called slow time:

r = r(τ), τ = εt, (12.132)

and it is possible to find a constant of the motion in an approximate sense that
we now clarify.

Definition 12.11 A function A(p, q, r) is an adiabatic invariant of the system
(12.131) subject to a slow variation (12.132) of the parameter r, if for every δ > 0
there exists ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for every t ∈ [0, 1/ε]
we have

|A(p(t), q(t), r(εt))−A(p(0), q(0), r(0))| < δ, (12.133)

where (p(t), q(t)) is the solution of the system of Hamilton’s equations correspond-
ing to H(p, q, r(εt)):

ṗ = −∂H

∂q
(p, q, r(εt)),

q̇ =
∂H

∂p
(p, q, r(εt)),

(12.134)

with initial conditions (p(0), q(0)). �

Remark 12.16
An adiabatic invariant is an approximate constant of the motion of the Hamilto-
nian flow associated with (12.134) for a bounded time interval of length 1/ε,
which grows indefinitely if the rate of change of the parameter ε → 0. If for a
fixed value of ε > 0 a function A(p, q, r) satisfies equation (12.133) for all times
t ≥ 0, then A is a perpetual adiabatic invariant. �

Remark 12.17
It is immediate to realise that the energy is not, in general, an adiabatic invari-
ant. Consider, for example, a point particle in the absence of forces, whose mass
changes slowly with time, so that its Hamiltonian is H = p2/2m(εt). If m =
m0 (2− sin(πεt/2)), since p(t) = p(0), we have E (1/ε) = p2(0)/2m0 = 2E(0). �

Theorem 12.13 Assume that the Hamiltonian (12.131) is of class C3 and that
the dependence r(τ) of the parameter on the slow time has the same regularity.
If there exists a δ > 0 such that for all τ ∈ [0, 1] we have

ω0(J, r(τ)) > δ, (12.135)

the action J(p, q, r) is an adiabatic invariant.
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Proof
Since the parameter depends on time, r = r(εt), the function W (q, J, r(εt))
generates a canonical transformation depending on time, and the new Hamiltonian
is

K(J, χ, εt) = K0(J, r(εt)) +
∂W

∂t
(q(J, χ, r(εt)), J, r(εt))

= K0(J, r(εt)) + εf(J, χ, εt),
(12.136)

where f(J, χ, εt) = r′(εt)∂W/∂r. The corresponding Hamilton equations are

J̇ = −ε
∂f

∂χ
(J, χ, εt), χ̇ = ω0(J, r(εt)) + ε

∂f

∂J
(J, χ, εt). (12.137)

We now seek the generating function W̃ (χ, J̃, εt) of a canonical transformation
near the identity that would eliminate the dependence on the angle in the
Hamiltonian, to first order in ε, and hence a solution of

K0

(
∂W̃

∂χ
, r(εt)

)
+ εf

(
∂W̃

∂χ
, χ, εt

)
+

∂W̃

∂t
= K̃0(J̃ , εt) + εK̃1(J̃ , εt) + O(ε2).

(12.138)

Setting W̃ = χJ̃ + εW̃ (1)(χ, J̃, εt), substituting and equating the corresponding
terms in the expansion in ε we find:

K̃0(J̃ , εt) = K0(J̃ , r(εt)). (12.139)

To first order we therefore have

ω0(J̃ , r(εt))
∂W̃ (1)

∂χ
(χ, J̃, εt) + f(J̃ , χ, εt) = K̃1(J̃ , εt), (12.140)

since

∂W̃

∂t
= ε

∂W̃ (1)

∂t
= ε2

∂W̃ (1)

∂τ
= O(ε2). (12.141)

Condition (12.135) guarantees that the solution of (12.140) exists and (recall
Theorem 12.1) is given by

K̃1(J̃ , εt) =
1
2π

∫ 2π

0
f(J̃ , χ, εt) dχ,

W̃ (1)(χ, J̃, εt) =
1

ω0(J̃ , r(εt))

∫ χ

0
[K1(J̃ , εt)− f(J̃ , ξ, εt)] dξ.

(12.142)
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The hypothesis that H is of class C3 ensures that W̃ (1) is of class C2 and
generates a canonical transformation. From

˙̃
J = −∂K̃

∂χ
= O(ε2), (12.143)

it follows that, for every t ∈ [0, 1/ε],

|J̃(t)− J̃(0)| = O(ε), (12.144)

and therefore our claim holds, as

|J(t)− J(0)| ≤ |J(t)− J̃(t)|+ |J̃(t)− J̃(0)|+ |J̃(0)− J(0)|, (12.145)

and the transformation from J to J̃ is near the identity. �

Remark 12.18
Arnol’d (1963b) proved that the KAM theorem guarantees the perpetual adia-
batic invariance of the action if the dependence of the parameter r on the slow
time τ is periodic, and hence if there exists a T > 0 such that r(τ) = r(τ + T )
for every τ . It is however necessary to impose the condition of non-degeneracy:

∂2K0

∂J2
=

∂ω0
∂J

=/ 0, (12.146)

to assume that the Hamiltonian is an analytic function of (p, q, r), and that the
dependence of r on τ is also analytic. �

Remark 12.19
It is possible to extend Theorem 12.13 to the case of more degrees of free-
dom, but the proof is much more complicated (see Neishtadt 1976, Golin et al.
1989), because one must overcome the difficulties generated by the presence of
small denominators and by the dependence of the frequencies (and of the non-
resonance condition) on the parameter. The proof is much simpler, and similar
to that of Theorem 12.13, if the frequencies do not depend explicitly on the
parameter (see Golin and Marmi 1990).

12.8 Problems

1. Compute the first order of the canonical perturbation theory for the
Hamiltonian

H =
(
p2 + x2

2
√
2

)2
+

εx√
2
.

Write down explicitly the generating function W and the new action and angle
variables J ′ and χ′. (Solution: J ′ = J+(ε sinχ)/

√
J , χ′ = χ−(ε cosχ)/2J3/2,W =

J ′χ+ (εcosχ)/
√
J ′.)
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2. If V = − cosx− cos(x− t) compute u(1) in the expansion (12.36).
(Solution: u(1) = (1/ω2) sin ξ + [1/(ω − 1)2] sin(ξ − t).)

3. If V = −
∞∑
k=1

e−k cos(x− kt) compute u(1) in the expansion (12.36).

(Solution: u(1) =
∞∑
k=1

[e−k/(ω − k)2] sin(ξ − kt).)

4. Prove that if V is a trigonometric polynomial of degree r, then u(n) in the
expansion (12.36) is a trigonometric polynomial of degree nr for every n ≥ 1.

5. Check directly that F(1) and F(2) in equation (12.92) are homogeneous
trigonometric polynomials of degree 4 and 6, respectively. Prove that F(r) is a
homogeneous trigonometric polynomial of degree 2(r + 1).

6. Given the Hamiltonian

H = J1 + ωJ2 +
4ε
ω
J1J2 cos2 χ1 cos2 χ2,

prove that the Birkhoff series (12.86) to third order is given by

H ′ =J1 + ωJ2 + ε
J1J2
ω

− ε2
J1J2
ω2

[
J1
2ω

+
J2
2
+

J2 − J1
8(1− ω)

+
J1 + J2
8(1 + ω)

]
+ ε3

[
4J21J

2
2

ω3

(
1
ω2

+
2
ω

− 2ω
(1− ω2)2

)
+
J1 + ωJ2

ω2

(
J1 + J2
8(1 + ω)

+
J2 − J1
8(1− ω)

+
8J1
ω

+ 8J2

)]
+ ε3

[
J2 − J1
ω(1− ω)

(
J2 − J1
8(1− ω)

+ 4J2 +
4J1
ω

)
+

J1 + J2
ω(1 + ω)

(
J1 + J2
8(1 + ω)

+ 4J2 +
4J1
ω

)]
.

(The first two orders are computed quickly but the third order requires more
work.)

7. Given the Hamiltonian

H = J1 + ωJ2 + ε[J2 + F (χ1, χ2)],

where F (χ1, χ2) =
∑

m∈Z2\0
e−|m1|−|m2|ei(m1χ1+m2χ2) and ω is an irrational number,

prove that the formal solution of the Hamilton–Jacobi equation (12.14) for H is
given by

H ′ = J ′
1 + (ω + ε)J ′

2,

W = J ′
1χ1 + J ′

2χ2 + iε
∑

m∈Z2\0
e−|m1|−|m2|ei(m1χ1+m2χ2)

m1 +m2(ω + ε)
.
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Note that for every irrational ω there exists a sequence εn → 0 such that ω+ εn
is rational. Deduce from this fact the divergence of the series expansion of W .

8. Solve Hamilton’s equations for the Hamiltonian of the previous problem.
Prove that if ω + ε is rational, J1(t) and J2(t) are proportional to t.

9. Compute the first order of canonical perturbation theory for the
Hamiltonian

H =
(
p21 + ω21q

2
1

2

)3
+
(
p22 + ω22q

2
2

2

)3
+ εq21q

2
2p
2
1p
2
2.

Under which hypotheses is this procedure justified? (Solution: H ′ = (ω1J ′
1)
3 +

(ω2J ′
2)
3+(ε/4)(J ′

1J
′
2)
2 and the hypothesis is that k(ω1J1)3− j(ω2J2)3 =/ 0 for all

integers j and k with |k| ≤ 2.)
10. Consider a quasi-integrable system with two degrees of freedom described

by the Hamiltonian H(q1, q2, p1, p2, ε) = 1
2p

2
1 + q21 +

1
2p

2
2 + εq21p

2
2 cos

2 q2.

(a) Introduce the action-angle variables χ1, χ2, J1, J2 for the integrable system
obtained by setting ε = 0 and express the Hamiltonian H in these variables.

(b) Compute the Hamiltonian K(J̃1, J̃2, ε) obtained through the use of first-order
canonical perturbation theory, and the frequencies ω1(J̃1, J̃2), ω2(J̃1, J̃2) of
the motions.

(c) Under which conditions on J̃1, J̃2 is this procedure justified?
11. Consider the quasi-integrable system with two degrees of freedom described

by the Hamiltonian

H(p1, p2, q1, q2, ε) =
p21 + p22

2
+

3q21 + q22
2

+ εq21q
2
2 .

(a) Introduce the action-angle variables (J1, J2, χ1, χ2) for the integrable system
obtained by setting ε = 0 and express the Hamiltonian H in these variables.

(b) Compute the generating function W (χ1, χ2, J̃1, J̃2, ε) of the canonical trans-
formation near the identity to new variables χ̃1, χ̃2, J̃1, J̃2, transforming the
Hamiltonian H into a new Hamiltonian K which depends (up to terms of
order O(ε2)) only on the new action variables. Compute the new Hamiltonian
K(J̃1, J̃2, ε) and the frequencies of the corresponding motions.

(c) Under which conditions on (J̃1, J̃2) is this procedure justified?
(d) Compute the new Hamiltonian K which depends only on the new action

variables up to terms of order O(ε3).

12.9 Additional remarks and bibliographical notes

In this chapter we briefly introduced a few perturbation methods for studying the
motion of quasi-integrable Hamiltonian systems, and in particular we considered
the problem of the existence of (approximate) first integrals of the motion
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(Sections 12.4 and 12.5), of bounded and quasi-periodic motions (Section 12.6),
and of the existence of adiabatic invariants (Section 12.7).
In the last twenty years, the study of canonical perturbation theory saw a

very significant development, justified both by the new theoretical results on
the problem of convergence of the series expansions (in particular, the KAM
theorem), and because of the appearance of new fields of application (plasma
physics, elementary particle accelerators, physical chemistry, dynamics of galaxies,
etc.) which complement the classical domain of application of this theory, celestial
mechanics.
Although this is traditionally considered a ‘difficult’ subject, too difficult to

enter the syllabus of an undergraduate course, we thought that it was necessary,
from the point of view of general scientific culture, to present, if only briefly, the
general lines of the modern theory, skipping many mathematical details.
Chapters 5 and 6 of Arnol’d et al. (1983) contain a more detailed exposition,

of exceptional clarity, of the material we summarised and of many more results,
including a large bibliography.
The textbook by Gallavotti (1980) is also a good source for further study, as

is the excellent review article by the same author (Gallavotti 1984).
The Birkhoff series and their applications are discussed in detail in an article

by Moser (1968). See also Moser (1986), especially for the study (here omit-
ted) of discrete Hamiltonian dynamical systems which are quasi-integrable (see
Arrowsmith and Place (1990) for a short introduction, Moser (1973) and Siegel
and Moser (1971) for a more detailed exposition).
A very readable proof of the KAM theorem, developing the original argument

due to Kolmogorov (1954), is given by Benettin et al. (1984). More recent
developments of the KAM theory are discussed in Bost (1986) and Yoccoz (1992).
Finally, we must recommend the reading of the vast original work of Poincaré

on the subject (Poincaré 1892, 1893, 1899), which remains, after a century, a
constant source of inspiration for research in the field. It is not possible to
even hint at the richness of the topics considered, or to illustrate the depth
of Poincaré’s reasoning. The reader interested in the personality of one of the
founders of modern mathematics can find interesting material in Boutroux (1914).

12.10 Additional solved problems

Problem 1
Consider a harmonic oscillator with Hamiltonian

h(p, q, ε) =
p2

2m
+

1
2
mω2q2 + εaq3,

where ε is a small parameter. Compute, using the perturbation method, the
variation in the frequency of the motion to the first significant order in ε.
Compare the result obtained with the direct computation of the action and
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of the frequencies of the motions associated with the completely canonically
integrable Hamiltonian h(p, q, ε).

Solution
The action-angle variables associated with the unperturbed motion (ε = 0) are

p =
√
2mωJ cosχ, q =

√
2J
mω

sinχ.

Substituting in h, we obtain from this the expression for the Hamiltonian
H(J, χ, ε):

H(J, χ, ε) = ωJ + εa

(
2J
mω

)3/2
sin3 χ.

We seek a generating function W (J ′, χ, ε) = J ′χ+εW (1)(J ′, χ)+ε2W (2)(J ′, χ)+· · ·
which transforms H to K(J ′, ε) = ωJ ′ + εK1(J ′) + ε2K2(J ′) + · · · . Following the
procedure described in Section 12.1 we find the equations

ω
∂W (1)

∂χ
(J ′, χ) + F (J ′, χ) = K1(J ′),

ω
∂W (2)

∂χ
(J ′, χ) + F (2)(J ′, χ) = K2(J ′),

where

F (J ′, χ) = a

(
2J
mω

)3/2
sin3 χ, F (2)(J ′, χ) =

∂F

∂J ′ (J
′, χ)

∂W (1)

∂χ
(J ′, χ).

Since we are seeking the variation in the frequency of the motions and F (2)

depends only on ∂W (1)/∂χ, it is not necessary to compute explicitly W (1) and
W (2) and it is sufficient to compute K1 and K2.
From the first equation we obtain

K1(J ′) =
1
2π

∫ 2π

0
F (J ′, χ) dχ = 0,

and therefore

∂W (1)

∂χ
(J ′, χ) = −F (J ′, χ)

ω
,

from which it follows that

K2(J ′) =
1
2π

∫ 2π

0
F (2)(J ′, χ) dχ = − 1

2π

∫ 2π

0

3a2

2ω

(
2
mω

)3
(J ′)2 sin6 χdχ

= −3a2

2ω

(
2
mω

)3
(J ′)2

5
16

= −15
4
a2(J ′)2

m3ω4
.
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Hence the first significant variation in the frequency of the motions happens to
the second order in ε and has value

ω(J ′, ε) = ω + ε2
∂K2

∂J ′ + O(ε3) = ω − 15
2

a2J ′

m3ω4
ε2 + O(ε3).

Let us now see how, thanks to the integrability of the one-dimensional motions, it
is possible to arrive at the same conclusion by computing directly the dependence
of the energy on the action J̃ of the completely integrable Hamiltonian h(p, q, ε).
Indeed, from the equation

p2

2m
+

1
2
mω2q2 + εaq3 = E

one can deduce the relation between the action J̃ associated with the oscillations
(near q = p = 0) and the energy E and the parameter ε, through an elliptic
integral. Since we are only interested in small values of the parameter ε, we can
compute the variation of J̃ and E in the form of an expansion in series of powers
of ε.
Indeed, we have

p =
√
2mεaf(q),

where

f(q) = −q3 − mω2

2εa
q2 +

E

εa
= (e1 − q)(q − e2)(q − e3). (12.147)

For small values of ε two roots of the polynomial f(q), which we indicated by

e1, e2, are in a neighbourhood of the points ±
√
2E/mω2 and the oscillation takes

place in the interval e1 ≤ q ≤ e2. The third root e3 is of the order of −mω2/2εa.
We can therefore expand

√
f(q) =

√
−e3(e1 − q)(q − e2)

(
1− q

e3

)
=
√

−e3(e1 − q)(q − e2)
(
1− q

2e3
− q2

8e33
+ · · ·

)
,

from which it follows that

J̃ =
1
π

∫ e2

e1

√
2mεaf(q) dq =

√−2mεae3

(
J̃0 − 1

2e3
J̃1 − 1

8e23
J̃2 + · · ·

)
,

where

J̃k =
1
π

∫ e2

e1

qk
√
(e1 − q)(q − e2) dq, k = 0, 1, 2, . . . .
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Using the substitution [2q − (e1 + e2)]/(e1 − e2) = sinψ which transforms the

integration interval [e1, e2] into
[
1
2
π,

3
2
π

]
and explicitly computing we find

J̃0 =
(e1 − e2)2

8
, J̃1 =

(e1 + e2)2

2
J̃0, J̃2 =

J̃0
16

[5(e1 + e2)2 − 4e1e2].

We must now determine e1, e2, e3 as functions of ε. Identifying the coefficients in
(12.147) and setting θ = εa, we find

e1 + e2 + e3 = −mω2

2θ
, (e1 + e2)e3 = −e1e2, e1e2e3 =

E

θ
. (12.148)

Writing e1 = −√2E/mω2 + e1, e2 =
√
2E/mω2 + e2, e3 = ξ − mω2/2θ and

defining η = e1+ e2, ζ = e1− e2, from equations (12.148) we arrive at the system

η + ξ = 0, (12.149)

η

(
ηθ +

mω2

2

)2
= −Eθ, (12.150)

η

(
ηθ +

mω2

2

)
= − 2E

mω2
θ +

√
2E
mω2

ζθ +
η2 − ζ2

4
θ. (12.151)

From (12.150) one computes the values taken by η′, η′′, η′′′ at θ = 0:

η′
0 = −E

(
mω2

2

)−2
, η′′

0 = 0, η′′′
0 = −12E2

(
mω2

2

)−5
. (12.152)

From (12.151), by differentiating three times, we obtain the values of ζ ′, ζ ′′:

ζ ′
0 = 0, ζ ′′

0 = −5
2
E3/2

(
mω2

2

)−7/2
. (12.153)

We now only need to use that

e1 =
1
2

(
η′
0θ +

1
2
ζ ′′
0 θ

2
)
+ O(θ3), e2 =

1
2

(
η′
0θ − 1

2
ζ ′′
0 θ

2
)
+ O(θ3),

ξ = −η′
0θ + O(θ3)

to obtain

e1 = −
√

2E
mω2

− 1
2
E

(
mω2

2

)−2
θ − 5

8
E3/2

(
mω2

2

)−7/2
θ2 + O(θ3),

e2 =

√
2E
mω2

− 1
2
E

(
mω2

2

)−2
θ +

5
8
E3/2

(
mω2

2

)−7/2
θ2 + O(θ3),

e3 = −mω2

2θ
+ E

(
mω2

2

)−2
θ + O(θ3).
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Substituting the expansions of e1, e2, e3 into the expressions for J̃0, J̃1 and J̃2 we
finally find

J̃ =
E

ω

(
1 +

15
4
ε2a2E

m3ω6
+ · · ·

)
.

Inverting these relations, we have

E = ωJ̃ − 15ε2a2

4m3ω4
J̃2 + · · · ,

and finally the frequency

ω(J̃) =
dE

dJ̃
= ω − 15

2
ε2a2

m3ω4
J̃ + O(ε3).

Problem 2
Consider a harmonic oscillator with two degrees of freedom and Hamiltonian

h(p1, p2, q1, q2) =
p21 + p22
2m

+
1
2
m(ω21q

2
1 + ω22q

2
2) + a30q

3
1 + a21q

2
1q2 + a12q1q

2
2 + a03q

3
3 .

Introduce the action-angle variables (J1, J2, χ1, χ2) associated with the har-
monic part

h0(p1, p2, q1, q2) =
p21 + p22
2m

+
1
2
m(ω21q

2
1 + ω22q

2
2)

of the Hamiltonian h and determine an approximate first integral I in the form
I(J1, J2, χ1, χ2) = ω1J1 − ω2J2 + I(3)(J1, J2, χ1, χ2), where I(3)(J1, J2, χ1, χ2) =∑3

j=0 J
(3−j)/2
1 J

j/2
2 Pj(χ1, χ2) and Pj is a trigonometric polynomial of degree 3

(the adelphic integral of Whittaker, cf. Whittaker (1936, chapter XVI)).

Solution
With respect to the action-angle variables

pi =
√
2mωiJi cosχi, qi =

√
2Ji
mωi

sinχi, i = 1, 2,

the Hamiltonian h becomes

H(J,χ) = ω1J1 + ω2J2 + F (J1, J2, χ1, χ2),

F (J1, J2, χ1, χ2) = J
3/2
1 (F1 sinχ1 + F2 sin 3χ1)+J1J

1/2
2 [F3 sinχ2+F4 sin(2χ1+χ2)

+ F5 sin(2χ1 − χ2)] + J
1/2
1 J2[F6 sinχ1 + F7 sin(2χ2 + χ1)

+ F8 sin(2χ2 − χ1)] + J
3/2
2 [F9 sinχ2 + F10 sin 3χ2],
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where F1, . . . , F10 are constants depending on m,ω1, ω2, a30, a21, a12, a03 (for
example: F1 = 3

4 (2/mω1)
3/2

a30, F2 = − 1
4 (2/mω1)

3/2
a30, etc.).

Setting H0 = ω1J1+ω2J2 and I(2) = ω1J1−ω2J2 we must impose the condition

{H, I} = {H0 + F, I(2) + I(3)}
= {H0, I

(2)}+ {H0, I
(3)}+ {F, I(2)}+ {F, I(3)} = 0,

neglecting terms of degree ≥ 4 in J
1/2
1 , J

1/2
2 and in their products. Since

{H0, I
(2)} = 0 and {F, I(3)} is of degree 4 we arrive at the equation

{H0, I
(3)} = −{F, I(2)};

hence

ω1
∂I(3)

∂χ1
+ ω2

∂I(3)

∂χ2
= ω1

∂F

∂χ1
− ω2

∂F

∂χ2
,

from which it follows that to each term A sin(mχ1 + nχ2) appearing in F there
corresponds a term

ω1m− ω2n

ω1m+ ω2n
A sin(mχ1 + nχ2)

in I(3). Therefore the required integral is

I(3)(J, χ) =J3/21 [F1 sinχ1 + F2 sin 3χ1] + J1J
1/2
2

[
− F3 sinχ2

+
2ω1 − ω2
2ω1 + ω2

F4 sin(2χ1 + χ2) +
2ω1 + ω2
2ω1 − ω2

F5 sin(2χ1 − χ2)
]

+ J
1/2
1 J2

[
F6 sinχ1 +

ω1 − 2ω2
ω1 + 2ω2

F7 sin(2χ2 + χ1)

+
ω1 + 2ω2
ω1 − 2ω2

F8 sin(2χ2 − χ1)
]
+ J

3/2
2 [−F9 sinχ2 − F10 sin 3χ2].

The procedure followed is justified as long as

2ω1 ± ω2 =/ 0, ω1 ± 2ω2 =/ 0.
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Problem 3
Consider the motion of a ball of mass m bouncing elastically between two walls
that are slowly moving towards one another, and prove that the action is an
adiabatic invariant.

Solution
Consider the motion of a ball of mass m bouncing elastically between two fixed
walls at a distance d (see Percival and Richards 1986). Although this system
cannot be described by a regular Hamiltonian (because the speed v of the ball
varies discontinuously from v → −v at each hit), the motion can be studied
simply and the system is integrable. Let E = 1

2mv2 be the energy of the ball, q
be its position and p = mv be the momentum. The phase curves are rectangles
(Fig. 12.3), the action J is given by

J =
1
2π

(area of the rectangle) =
1
2π

(2mvd) =
d
π

√
2mE,

and the energy, as a function of the action, is given by

E =
1
2m

(
πJ

d

)2
.

p

mv

O

–mv

q

Fig. 12.3
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Suppose now that one of the two walls moves towards the other with a velocity
ε, such that at time t the distance between the walls is x(t) = d− εt. Let

ε � ω0 =
π2

md2
J =

π

d
v,

and indicate by vn the velocity of the ball just before the nth collision with the
moving wall, and by vn+1 the velocity immediately after the collision (Fig. 12.4).
Evidently

vn+1 = vn + 2ε,

from which it follows that

vn = v0 + 2nε.

If xn is the distance between the planes at the moment corresponding to the nth
collision, and ∆ tn measures the time interval between the (n+1)th and the nth
collisions, we have

∆ tn =
xn+1 + xn

vn+1
=

xn − xn+1
ε

,

from which we deduce

xn+1 =
vn+1 − ε

vn+1 + ε
xn,

∆ tn =
2xn

vn+1 + ε
.

(12.154)

«
vn

vn + 1

xn + 1

x = 0

xn

vn + 1

Fig. 12.4
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Table 12.1 x0 = 1, v0 = 1, m = 1, ε = 0.01.

n xn vn tn En π · Jn

0 1 1.0 0 0.5 1
10 0.835 1.2 16.5 0.72 1.002
50 0.502 2.0 49.8 2.0 1.005

100 0.336 3.0 66.4 4.5 1.007
500 0.092 11.0 90.8 60.5 1.009

1000 0.048 21.0 95.2 220.5 1.010

Table 12.2 x0 = 1, v0 = 1, m = 1, ε = 0.1.

n xn vn tn En π · Jn

0 1 1 0 0.5 1
10 0.355 3 6.45 4.5 1.065
50 0.099 11 9.01 60.5 1.089

100 0.052 21 9.48 220.5 1.092
500 0.01088 101 9.89 5100.5 1.099

1000 0.0055 201 9.95 20200.5 1.099

Since vj+1 − ε = vj + ε, iterating equation (12.154) we find

xn+1 = x0

n∏
j=0

vj + ε

vj+1 + ε
=

v0 + ε

vn+1 + ε
x0 =

v0 + ε

v0 + (2n+ 3)ε
x0, (12.155)

and hence the (n+ 1)th collision happens at the instant

tn+1 − t0 =
n∑

j=0
∆ tj =

x0 − xn+1
ε

=
2(n+ 1)ε

v0 + (2n+ 3)ε
.

The action between two successive collisions is given by

Jn =
m

π
vnxn

(the system keeps the memory of the last hit); therefore by equation (12.155) we
have

Jn =
m

π
(v0 + 2nε)

v0 + ε

v0 + (2n+ 1)ε
x0 = J0 + εx0

m

π

2nε
v0 + (2n+ 1)ε

, (12.156)

while

En =
1
2
mv2n =

1
2
m(v0 + 2nε)2 = E0 + 2εv0nm+ 2mn2ε2.
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It is immediate to check that from (12.156) it follows that

|Jn − J0| ≤ mεx0
π

,

for all n ∈ N . The action is therefore an adiabatic invariant, while the energy is
not, because

En − E0 = 2mεn(v0 + nε),

and therefore En − E0 = O(1) if n = O (1/ε). Tables 11.1 and 11.2 show the
values of E, J, x and t for n = 10, 50, 100, 500 and 1000, corresponding to x0 = 1,
v0 = 1 and ε = 0.01 and ε = 0.1, respectively. �



13 ANALYTICAL MECHANICS: AN INTRODUCTION
TO ERGODIC THEORY AND TO CHAOTIC
MOTION

The completely canonically integrable systems are the mechanical model for the
study of systems with an orderly and regular behaviour. The main idea in all
studies in the nineteenth century has been to reduce the study of mechanical
systems to the study of integrable systems, both exactly by using canonical
transformations and the Hamilton–Jacobi equations, and approximately using
the canonical theory of perturbations.
Poincaré proved however that this is not always possible, and that Hamiltonian

systems may exhibit a behaviour that is totally different from the behaviour
of integrable systems, exhibiting disorderly and chaotic orbits. The appropriate
language for the study of these systems connects the study of dynamical sys-
tems to probability theory (of which we recall the main introductory notions).
This is the point of view underlying ergodic theory, which we introduce in this
chapter.
We start by introducing the notions of measure and a measurable dynamical

system.

13.1 The concept of measure

Definition 13.1 Let X be a non-empty set. A non-empty family A of subsets
of X is a σ-algebra on X if it satisfies the following properties:

(1) A ∈ A ⇒ Ac ∈ A;
(2) for every sequence {Ai}, i ∈ N of elements in A we have ∪i∈NAi ∈ A. �

Any family of subsets of X for which (1) and (2) are valid for finite sequences
is called an algebra. It is immediate to verify that any σ-algebra is also an
algebra. In particular if A,B ∈ A then A ∪B ∈ A.

Example 13.1
For a given set X we can obtain trivial examples of σ-algebras by choosing

(a) the family of all subsets of X;
(b) the pair {∅, X}. �
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Remark 13.1
If A is a σ-algebra on X it is easy to prove that the following properties
hold.

(i) Imposing (2) is equivalent to imposing that ∩i∈NAi ∈ A (it is enough to
note that ∩i∈NAi = (∪i∈NAc

i )
c and Ac

i ∈ A); in particular A ∩ B ∈ A for
every A,B ∈ A.

(ii) ∅ ∈ A, X ∈ A (indeed A ∈ A ⇒ X = A ∪Ac ∈ A, ∅ = A ∩Ac ∈ A).
(iii) A,B ∈ A ⇒ A \B ∈ A (indeed A \B = A ∩Bc).
(iv) The intersection of σ-algebras on X is a σ-algebra (if I denotes the inter-

section, I � X and hence it is non-empty, the properties (1) and (2) of
Definition 13.1 are easily proved). �

The latter property allows us to generate the smallest σ-algebra on X containing
a prescribed family F of subsets of X.

Definition 13.2 Given a family F of subsets of X the σ-algebra on X generated
by F is the intersection of all σ-algebras A such that A ⊃ F. �

The definition is meaningful because there exists at least one σ-algebra A

such that A ⊃ F (the σ-algebra of all subsets of X). An important case is the
following.

Definition 13.3 Let X = Rl. We call a Borel σ-algebra on Rl (denoted by
B(Rl)) the one generated by the family of open subsets of Rl. The elements
of B(Rl) are called Borelian sets of Rl. More generally, if X is any topolo-
gical space, the Borel σ-algebra of X is the σ-algebra generated by the open
subsets of X. �

We can now define the concept of measure.

Definition 13.4 Given a set X and a σ-algebra A on X, a measure is a function
µ : A → [0,+∞] such that

(1 ) µ(∅) = 0,

(2 ) µ

( ⋃
i∈N

Ai

)
=

∑
i∈N

µ(Ai)

for every sequence {Ai} of disjoint elements of A. �

Note that the function µ is allowed to take the value +∞.

Definition 13.5 A triple (X,A, µ) of a set X, a σ-algebra A on X and a
measure µ are called a measure space. �

A set A ⊂ X has zero measure if there exists A1 ∈ A such that A ⊂ A1 and
µ(A1) = 0.
Two sets A1, A2 coincide (mod 0) and we write A1 = A2 (mod 0) if the

symmetric difference A1∆A2 has zero measure.
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If a property is valid for all points of A ⊂ X except for those in a set of
measure zero, we say that the property is true for µ-almost all x ∈ A (written
as µ-a.a. x ∈ A).
An important case is the case of R and of the Lebesgue measure on B(R)

which associates with intervals their lengths, and at the same time the case of
the Lebesgue measure on B(Rl). It can be shown that the Lebesgue measure
λ : B(Rl) → [0,+∞] is the only measure with the property that for every
A = (a1, b1)× · · · × (al, bl), we have

λ(A) = (b1 − a1)(b2 − a2) · · · (bl − al).

Example 13.2
A simple example of measure space is given by a finite set X = {x1, . . . , xN}
with the σ-algebra A = P(X), the set of parts of X. A measure is defined by
assigning to every element xi ∈ X a real number pi ≥ 0. The measure of the
subset {xi1 , . . . , xik} ⊂ X is therefore pi1 + . . .+ pik . If

∑N
i=1 pi = 1 the measure

is called a probability measure. Interesting examples are given by X = {0, 1} or
X = {1, 2, 3, 4, 5, 6} with probabilities p1 = p2 = 1

2 and p1 = p2 = . . . = p6 = 1
6 ,

respectively, which can be chosen to represent the probability spaces associated
with the toss of a coin or the roll of a die. �

Example 13.3
Let (Xi,Ai, µi), i = 1, . . . , l, be measure spaces. The Cartesian product X =
X1 × . . . × Xl has a natural structure of a measure space, whose σ-algebra A

is the smallest σ-algebra of subsets of X containing the subsets of the form
A1 × . . . × Al, where Ai ∈ Ai, i = 1, . . . , l. On these subsets the measure µ is
defined by

µ(A1 × . . .×Al) = µ1(A1) . . . µl(Al). (13.1)

It can be proved (see Lasota and Mackey 1985, theorem 2.2.2, p. 24) that there
exists a unique extension of the measure µ defined by (13.1) to the σ-algebra
A of X. The space (X,A, µ) thus obtained is called the product space and the
measure µ is called the product measure.
If X1 = . . . = Xl = {0, 1} or {1, 2, 3, 4, 5, 6} and the measures µi coincide with

the measure defined in the previous example, the product space coincides with
the space of finite sequences of tosses of a coin or rolls of a die, and the product
measure with the probability associated with each sequence. �

Definition 13.6 If µ(X) = 1, a measure µ is called a probability measure and
the triple (X,A, µ) is a probability space. �

In what follows we sometimes denote by M(X) the set of probability measures
on a measure space (X,A, µ).
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13.2 Measurable functions. Integrability

The theory of Lebesgue measurable functions (see Giusti 1989), with its most
significant results (the theory of integration, Fatou’s theorems on monotone and
dominated convergence, the absolute continuity of the integral, and so on), can
be easily extended to the functions f : X → R, where (X,A, µ) is an arbitrary
measure space (see Rudin 1974).
We recall first of all the notion of an integral of a measurable function.

Definition 13.7 Let f : A → [−∞,+∞] be defined on A ⊂ X belonging to a
σ-algebra A on X. The function f is called measurable (with respect to A) if
{x ∈ A | f(x) < t} ∈ A, ∀ t ∈ R. �

It is possible to prove that the inequality f(x) < t can be replaced by one of
the following: f(x) ≤ t, f(x) > t, f(x) ≥ t.
To define the integral on a measure space (X,A, µ) consider first the so-called

simple functions, of the form

g =
n∑

i=1
αiχAi , (13.2)

with n finite, αi ≥ 0, Ai ∈ A disjoint and χAi the characteristic function of Ai,
and hence

χAi(x) =

{
1, if x ∈ Ai,

0, if x ∈ Ac
i .

In this case we define ∫
X

g dµ =
n∑

i=1
αiµ(Ai). (13.3)

In particular
∫
X
χA dµ = µ(A), ∀A ∈ A.

If f : X → [0,+∞], we set∫
X

f dµ = sup
g∈G(f)

∫
X

g dµ, (13.4)

where G(f) is the set of simple functions such that g ≤ f .
Finally for a generic f : X → [−∞,+∞] we define∫

X

f dµ =
∫
X

f+ dµ−
∫
X

f− dµ, (13.5)

where f+(x) = max(0, f(x)), f−(x) = max(0,−f(x)), if at least one of these
integrals is finite. In this case f is called µ-summable. If

∫
X

|f |dµ < +∞ we
say that f is µ-integrable. Let A ∈ A; f is said to be µ-integrable on A if the
function fχA is µ-integrable on X.
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We set ∫
A

f dµ =
∫
X

fχA dµ. (13.6)

The space of µ-integrable functions on X is denoted by L1(X,A, µ).
Consider 0 < p < +∞. The space of functions f such that |f |p is µ-integrable

on X is denoted by Lp(X,A, µ).
A particular and well-known case is that of the functions on Rl which are

Lebesgue integrable.

Remark 13.2
Assume that X is a compact metric space and A is the σ-algebra of Borel
sets X. In this case one can define the support of a measure µ as the smallest
compact set K ⊂ X such that µ(A) = 0 for all A ⊂ X \ K. Moreover, it is
possible to endow M(X) with a topological structure by defining at every point
µ ∈ M(X) a basis of neighbourhoods

Vϕ,ε(µ) :=
{
ν ∈ M(X) |

∣∣∣∣ ∫
X

ϕ dν −
∫
X

ϕdµ
∣∣∣∣ ≤ ε

}
, (13.7)

where ε > 0 and ϕ : X → R is continuous. In this topology a sequence of
measures (µn)n∈N ⊆ M(X) converges to µ ∈ M(X) if for every ϕ : X → R
continuous we have ∫

X

ϕ dµn →
∫
X

ϕ dµ. (13.8)

�

Remark 13.3
In what follows we always assume that X is totally σ-finite, and hence that X =⋃∞

i=1Ai, where the sets Ai ∈ A have measure µ(Ai) < +∞ for every i ∈ N. �

Definition 13.8 Let X be a set, and A be a σ-algebra of subsets of X. If µ, ν :
A → [0,+∞] are two measures, we say that µ is absolutely continuous with respect
to ν if for every A ∈ A such that ν(A) = 0 we have µ(A) = 0. If µ is not absolutely
continuous with respect to ν then it is said to be singular (with respect to ν). �

An important characterisation of measures which are absolutely continuous
with respect to another measure is given by the following theorem. The proof,
that goes beyond the scope of this limited introduction, can be found in the
book of Rudin, already cited.

Theorem 13.1 (Radon–Nikodym) A measure µ : A → [0,+∞] is absolutely
continuous with respect to another measure ν : A → [0,+∞] if and only if there
exists a function ρ : X → R, integrable with respect to ν on every subset A ∈ A

such that ν(A) < +∞, and such that for every A ∈ A we have

µ(A) =
∫
A

ρdν. (13.9)
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The function ρ is unique (if we identify any two functions which only differ
on a set of ν measure zero), and it is called the Radon–Nikodym derivative of
µ with respect to ν, or density of µ with respect to ν, and it is denoted by
ρ = dµ/dν. �

Remark 13.4
We have that g ∈ L1(X,A, µ) if and only if gρ ∈ L1(X,A, ν). In this case∫

X

g dµ =
∫
X

gρdν. (13.10)
�

13.3 Measurable dynamical systems

The objects of study of ergodic theory are the dynamical systems that preserve
a measure, in a sense that we now make precise.

Definition 13.9 Let (X,A, µ) be a measure space. A transformation S : X → X
is said to be measurable if for every A ∈ A, we have S−1(A) ∈ A.
A measurable transformation is non-singular if µ(S−1(A)) = 0 for all A ∈ A

such that µ(A) = 0. �

Obviously S−1(A) = {x ∈ X | S(x) ∈ A} and S is not necessarily invertible.
For example, if X is a topological space, A is the σ-algebra of Borel sets and

S is a homeomorphism, then S is measurable and non-singular if and only if the
inverse map is measurable and non-singular.

Definition 13.10 Let (X,A, µ) be a measure space. A measurable non-singular
transformation S : X → X preserves the measure (i.e. the measure µ is invariant
with respect to the transformation S) if for every A ∈ A, we have µ(S−1(A)) =
µ(A). �

If S is invertible with a measurable non-singular inverse and if it preserves the
measure, then clearly µ(S−1(A)) = µ(A) = µ(S(A)), ∀A ∈ A.
If however S is not invertible, the following simple example highlights the

need to use the condition µ(S−1(A)) = µ(A) in the previous definition. Choose
X = (0, 1) and the σ-algebra A of Borel sets on (0, 1); the transformation
S(x) = 2x (mod 1) preserves the Lebesgue measure λ, while if we take an
interval (a, b) ⊂ (0, 1) then λ (S (a, b)) = 2λ ((a, b)).

Remark 13.5
Let f be µ-integrable and assume that S preserves the measure µ. Then∫

X

f(x) dµ =
∫
X

f(S(x)) ḋµ.

Conversely, if this property holds for every f : X → R continuous, then S
preserves the measure µ. �

Definition 13.11 A measurable dynamical system (X,A, µ, S) is constituted by
a probability space (X,A, µ) and by a transformation S : X → X which preserves
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the measure µ. The orbit of a point x ∈ X is the infinite sequence of points
x, S(x), S2(x) = S(S(x)), . . . , Sn+1(x) = S(Sn(x)), . . . obtained by iterating S. �

Remark 13.6
The recurrence theorem of Poincaré (Theorem 8.4) can be extended without
difficulty to the case of measurable dynamical systems (X,A, µ, S). We state it,
and leave the proof as an exercise: for every A ∈ A the subset A0 of all points
x ∈ A such that Sn(x) ∈ A for infinitely many values of n ∈ N belongs to A and
µ(A) = µ(A0).
A ‘topological’ version of the recurrence theorem of Poincaré is presented in

Problem 13.15. �

A particularly interesting case arises when X is a subset of Rl (or, more
generally, of a differentiable Riemannian manifold M of dimension l) and µρ is a
probability measure which is absolutely continuous with respect to the Lebesgue
measure

dµρ(x) = ρ(x) dx (13.11)

(or dµρ = ρdVg, where dVg =
√
det(gij) dlx is the volume element associated

with the metric g on the manifold M). The definition of a measure that is
invariant with respect to a non-singular transformation S : X → X is therefore
equivalent to ∫

S−1(A)
ρ(x) dx =

∫
A

ρ(x) dx, (13.12)

for every A ∈ A. A very important problem in ergodic theory is the problem of
determining all measures that are invariant for a given transformation. A case
when this is possible is given by the following systems.
Let X = [0, 1], and S : X → X be non-singular. Assume that S is piecewise

monotone and of class C1, and hence that there exists a finite or countable
decomposition of the interval [0, 1] into intervals [ai, ai+1], i ∈ I, on which S is
monotone (and C1 in the interior). On each of these subintervals the inverse S−1

i

of S is well defined. Let A = [0, x]. Equation (13.12) becomes∫ x

0
ρ(s) ds =

∑
i∈I

∫
S−1
i ([0,x])

ρ(s) ds,

from which, by differentiating with respect to x, we obtain

ρ(x) =
∑
i∈Ix

ρ(S−1
i (x))

|S′(S−1
i (x))| , (13.13)

where Ix indicates the subset of I corresponding to the indices i such that
S−1
i (x) =/ ∅. Equation (13.13) is therefore a condition (necessary and sufficient)
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for the density ρ for a measure that is absolutely continuous with respect to the
Lebesgue measure to be invariant with respect to S.

Example 13.4 (Ulam and von Neumann 1947)
Consider X = [0, 1], S(x) = 4x(1 − x). The probability measure dµ(x) =
dx/π

√
x(1− x) is invariant.

Indeed, to every point x ∈ X there correspond two preimages S−1
1 (x) =

1
2 (1− √

1− x) ∈ [0, 1/2] and S−1
2 (x) = 1

2 (1 +
√
1− x) ∈ [1/2, 1]. Therefore,

equation (13.13) becomes

1√
x(1− x)

=
1√

S−1
1 (x)(1− S−1

1 (x)) |4− 8S−1
1 (x)|

+
1√

S−1
2 (x)(1− S−1

2 (x)) |4− 8S−1
2 (x)|

,

which is immediately verified. �

Example 13.5: the p-adic transformation
Consider X = [0, 1], and p ∈ N, S(x) = px (mod 1), and hence S(x) = px − m
if m/p ≤ x < (m+ 1)/p, m = 0, . . . , p − 1, S(1) = 1. The p-adic transformation
preserves the Lebesgue measure. �

Example 13.6: the Gauss transformation
Consider X = [0, 1), S(x) = 1/x− [1/x] if x =/ 0, S(0) = 0, where [·] denotes the
integer part of a number. The probability measure dµ(x) = dx/(1 + x) log 2 is
invariant. Indeed, S is invertible on the intervals [1/(n+ 1), 1/n] , n ∈ N, with
inverse S−1

n (x) = 1/(n+ x), and

∞∑
n=1

1
1 + S−1

n (x)
1

|S′(S−1
n (x))| =

∞∑
n=1

1
1 + 1/(n+ x)

1
(n+ x)2

=
∞∑
n=1

1
(n+ x+ 1)(n+ x)

=
∞∑
n=1

(
1

n+ x
− 1

n+ x+ 1

)
=

1
x+ 1

. �

Example 13.7: the ‘baker’s transformation’
If X = [0, 1]× [0, 1], then

S(x, y) =

⎧⎪⎪⎨⎪⎪⎩
(
2x,

1
2
y

)
, if 0 ≤ x <

1
2
,(

2x− 1,
1
2
y +

1
2

)
, if

1
2

≤ x ≤ 1
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(Fig. 13.1) preserves the Lebesgue measure. From a geometrical point of view,
S transforms the square [0, 1]× [0, 1] in the rectangle [0, 2]× [0, 12 ], cuts out the
right half of this rectangle and translates it on top of the left half. �

Example 13.8
Let X be a Riemannian manifold, and S : X → X be an isometry. The measure
dVg is invariant with respect to S. �

Example 13.9
Let X = R2l, and S : X → X be a completely canonical transformation. By the
Liouville theorem, the Lebesgue measure is invariant with respect to S. �

Example 13.10: ‘Arnol’d’s cat’ (Arnol’d and Avez 1967)
If X = T2, then S(x1, x2) = (x1 + x2, x1 + 2x2) (mod 1) preserves the Lebesgue
measure. �

Assume that X is a Riemannian manifold and that S : X → X is a diffeo-
morphism of M such that, ∀ x ∈ X, |det(DS(x))| < 1. Then it can be shown that
there exists an attractor Ω ⊂ X and a basin of attraction U , i.e. a neighbourhood
of Ω such that S(U) ⊂ U and ∩n≥0Sn(U) = Ω. In addition, the volume of Ω
(with respect to the volume form induced by the Riemannian structure on X)
vanishes and all the probability measures that are invariant for S have support
contained in the attractor Ω.
Some obvious examples are X = R, S(x) = x/2, Ω = {0}, U = R, where the

only invariant measure is the Dirac measure δ0(x) at the point x = 0:

δ0(A) =

{
0, if 0 /∈ A,

1, if 0 ∈ A.

1
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In general

δy(A) =

{
0, if y /∈ A,

1, if y ∈ A.

Another example is given by X = R2, where S(x, y) is the flow at time t = 1
of the following system of ordinary differential equations:

ẋ = x(1− x2 − y2)− y,

ẏ = y(1− x2 − y2) + x.

Introducing polar coordinates x = r cos θ, y = r sin θ it is immediate to verify
that ṙ = r(1 − r2), θ̇ = 1, and therefore the circle r = 1 is an attractor. Note
that ṙ > 0 if 0 < r < 1, while ṙ < 0 if 1 < r < +∞.
In this case Ω = S1, U = R2 \ {0} and the invariant measure is dµ(r, θ) =

δr=1dθ/2π. The support of this measure is precisely the limit cycle S1 = {r = 1}.

13.4 Ergodicity and frequency of visits

Consider a measurable dynamical system (X,A, µ, S). The first fundamental
notion associated with such a system is its ‘statistics’, which is the frequency
with which the orbit {Sjx}j∈N of a point x ∈ X visits a prescribed measurable
set A ∈ A.
To this end, we define for every n ∈ N the number of visits T (x,A, n) of A

by the orbit of x:

T (x,A, n) :=
n−1∑
j=0

χA(Sjx), (13.14)

where χA indicates the characteristic function of the set A.

Definition 13.12 We call the frequency of visits ν(x,A) of the set A by the
orbit of x the limit (when it exists)

ν(x,A) = lim
n→+∞

1
n
T (x,A, n). (13.15)

�

The first important result for the study of the orbit statistics of a dynamical
system is the existence of the frequency of visits for µ-almost every initial
condition.
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Theorem 13.2 For µ-almost every x ∈ X the frequency of visits ν(x,A) exists.

Proof
Let n ∈ N be fixed, and set

ν(x,A, n) :=
1
n
T (x,A, n) (average frequency after n steps),

ν(x,A) := lim supn→+∞ν(x,A, n).

Obviously 0 ≤ ν(x,A) ≤ 1 and ∀ k ∈ N we have ν(Skx,A) = ν(x,A).
Analogous properties hold for ν(x,A) := lim inf

n→+∞ ν(x,A, n).

We want to prove that for µ-almost every x ∈ X, we have

ν(x,A) = ν(x,A).

To this end, introduce ε > 0 and the function

τA(x, ε) := min{n ∈ N such that ν(x,A, n) ≥ ν(x,A)− ε}

so that ν(x,A, τA(x, ε)) ≥ ν(x,A)−ε. Suppose that there exists M > 0 such that
τA(x, ε) ≤ M for every x ∈ X. In this case we can decompose the orbit of x up
to time n, i.e. the finite sequence (Sjx)0≤ j <n, in parts on each of which the
average frequency of visits of A is at least ν(x,A)−ε. Indeed, consider the points
x0 = x, x1 = SτA(x0,ε)x0, x2 = SτA(x1,ε)x1 = SτA(x1,ε)+τA(x0,ε)x0, and so on.
We then have

T (xj , A, τA(xj , ε)) = τA(xj , ε)ν(xj , A, τA(xj , ε))

≥ τA(xj , ε)(ν(xj , A)− ε)

= τA(xj , ε)(ν(x,A)− ε),

where we have used the previous remark ν(Skx,A) = ν(x,A) ∀ k ∈ N.
For fixed n > M , proceed in this way until a point xJ = SτJx, with τJ =∑J−1
j=0 τA(xj , ε) < n and τJ + τA(xJ , ε) ≥ n, is reached. We then have

T (x,A, n) =
J−1∑
j=0

T (xj , A, τA(xj , ε)) + T (xJ , A, n− τJ)

≥
⎛⎝J−1∑

j=0

τA(xj , ε)

⎞⎠ (ν(x,A)− ε) = τJ(ν(x,A)− ε).



556 Analytical mechanics 13.4

On the other hand, τJ ≥ n − τA(xJ , ε) ≥ n − M , and hence we found that
∀ n > M ,

T (x,A, n) ≥ (n−M)(ν(x,A)− ε).

Integrating this inequality over all the set X, since
∫
X
T (x,A, n) dµ =∑n−1

j=0
∫
X
χA(Sjx) dµ =

∑n−1
j=0

∫
X
χA(x) dµ = nµ(A), we find

nµ(A) ≥ (n−M)
∫
X

[ν(x,A)− ε] dµ;

hence we find that ∀ ε > 0,

µ(A) ≥
∫
X

ν(x,A) dµ− ε

or µ(A) ≥ ∫
X
ν(x,A) dµ.

It is now possible to repeat this procedure considering ν(x,A) in place of
ν(x,A), defining

τA(x, ε) := min{n ∈ N such that ν(x,A, n) ≤ ν(x,A) + ε}

and supposing that this is also bounded, to arrive at the conclusion that

∫
X

ν(x,A) dµ ≥ µ(A) ≥
∫
X

ν(x,A)ḋµ.

From this, taking into account that ν and ν are non-negative, it obviously follows
that ν(x,A) ≥ ν(x,A) µ-almost everywhere, and therefore that

ν(x,A) exists µ-almost everywhere.

We still need to consider the case that τA (or τA) is not a bounded function.
In this case, remembering the definition, we choose M > 0 sufficiently large, so
that we have

µ({x ∈ X | τA(x, ε) > M}) < ε.
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From this choice it follows that

A = A ∪ {x ∈ X | τA(x, ε) > M},

so we have µ(A) ≤ µ(A) + ε. Considering now the number of visits T (x,A, n)
relative to A, setting ν(x,A) as before, the function τA(x, ε) relative to A is now
bounded. Hence proceeding as above, we arrive at the inequality

µ(A) >
∫
X

ν(x,A) dµ− ε,

from which, taking into account that µ(A) ≤ µ(A)+ε and that ν(x,A) ≥ ν(x,A),
we deduce

µ(A) ≥
∫
X

ν(x,A) dµ− 2ε.

Since ε is arbitrary, µ(A) ≥ ∫
X
ν(x,A) dµ, exactly as in the case that τA is

bounded. �

The frequency of visits describes the ‘statistics’ of an orbit and can depend
essentially upon it.

Example 13.11: the square billiard
Consider a point particle of unit mass moving freely in a square of side 2π, and
reflected elastically by the walls.
To study the motion, instead of reflecting the trajectory when it meets a wall,

we can reflect the square with respect to the wall and consider the motion as
undisturbed (note that this argument shows how to extend the motion of the
particle to the case in which the trajectory meets one of the vertices of the
square). In this way each trajectory of the billiard corresponds to a geodesic of
the flat torus (recall the results of Sections I.7 and I.8), and hence we can apply
the results of Section 11.7. In particular we find that if α denotes the angle of
incidence (constant) of the trajectory on a wall, then the latter is periodic if tanα
is a rational number, and it is dense on the torus if tanα is irrational. Given any
measurable subset A of the torus T2 it is evident that the frequency of visits
of A by one of the billiard’s orbits depends essentially on the initial condition
(s, α). However, it is possible to compute it exactly thanks to Theorem 11.9 and
the following theorem of Lusin (see Rudin 1974, pp. 69–70).
There exists a sequence of continuous functions χj : T2 → [0, 1] such that

χj → χA for j → ∞ almost everywhere.
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Applying Theorem 11.9 to the sequence χj we find that if tanα is irrational,
we have

ν(s, α,A) = lim
T→∞

1
T

∫ T

0
χA(s+ t cosα, t sinα) dt

= lim
j→∞

lim
T→∞

1
T

∫ T

0
χj(s+ t cosα, t sinα) dt

= lim
j→∞

∫ 2π

0
dx1

∫ 2π

0
dx2 χj(x1, x2) = µ(A),

where µ denotes 1/(2π)2 multiplied by the Lebesgue measure on T2.
Therefore, for almost every initial condition, the frequency of visits of a meas-

urable set A by the corresponding trajectory of the billiard in the square is simply
equal to the measure of A, and is hence independent of the initial condition. �

What we have just discussed is a first example of an ergodic system.

Definition 13.13 A measurable dynamical system (X,A, µ, S) is called ergodic
if for every choice of A ∈ A it holds that ν(x,A) = µ(A) for µ-almost every
x ∈ X. �

We now turn to the study of ergodic systems and their properties.
We start with a remark: consider A ∈ A and let χA be its characteristic

function. Since µ(A) =
∫
X
χA(x) dµ, the ergodicity is equivalent to the statement

that ∀ A ∈ A and for µ-almost every x ∈ X one has

lim
n→∞

1
n

n−1∑
j=0

χA(Sjx) =
∫
X

χA(x) dµ. (13.16)

If instead of the characteristic function of a set we consider arbitrary integ-
rable functions f ∈ L1(X,A, µ), the following corresponding generalisation of
Theorem 13.2 is called Birkhoff’s theorem.

Theorem 13.3 Let (X,A, µ, S) be a measurable dynamical system, and let f ∈
L1(X,A, µ). For µ-almost every x ∈ X the limit

f̂(x) := lim
n→∞

1
n

n−1∑
j=0

f(Sjx) (13.17)

exists and it is called the time average of f along the orbit of the point
x ∈ X. �

For the proof of this theorem see Gallavotti (1981) and Cornfeld et al. (1982).
We remark however that from the proof of Theorem 4.1 it follows in fact that
the time average exists whenever f is a finite linear combination of characteristic
functions of measurable sets (hence every time that f is a simple function):

f =
m∑

k=1
ajχAj , aj ∈ R, Aj ∈ A, ∀ j = 1, . . . ,m. (13.18)
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Recall that every function f ∈ L1(X,A, µ) is the limit a.e. of a sequence of simple
functions.

Remark 13.7
It is obvious that f̂(Sx) = f̂(x), and hence that the time average depends
on the orbit and not on the initial point chosen along the orbit. In addition,
since µ is S-invariant, by Remark 13.5 we have∫

X

f(x) dµ =
∫
X

f(Sx) dµ,

from which it follows, by an application of the theorem of Lebesgue on dominated
convergence to (13.17):

〈f〉µ :=
∫
X

f(x) dµ =
∫
X

f̂(x) dµ. (13.19)

The quantity 〈f〉µ =
∫
X
f dµ is called the phase average of f (or expectation of

f) and equation (13.19) implies that f and its time average f̂ have the same
expectation value. �

The ergodicity of a dynamical system has as the important consequence that
the phase and time averages are equal almost everywhere, as the following theorem
shows (see property 4).

Theorem 13.4 Let (X,A, µ, S) be a measurable dynamical system. The following
properties are equivalent.

(1) The system is ergodic.
(2) The system is metrically indecomposable: every invariant set A ∈ A (i.e.

every set such that S−1(A) = A) has measure µ(A) either zero or equal to
µ(X) = 1.

(3) If f ∈ L1(X,A, µ) is invariant (i.e. f ◦S = f µ-almost everywhere) then f is
constant µ-almost everywhere.

(4) If f ∈ L1(X,A, µ) then 〈f〉µ = f̂(x) for µ-almost every x ∈ X.
(5) ∀ A,B ∈ A then

lim
n→+∞

1
n

n−1∑
j=0

µ(S−j(A) ∩B) = µ(A)µ(B). (13.20)

Proof
(1) ⇒ (2) Suppose that there exists an invariant set A ∈ A with measure
µ(A) > 0. Since A is invariant for every choice of x ∈ A the frequency of visits
of A is precisely ν(x,A) = 1. But since the system is ergodic for µ-almost every
x, then ν(x,A) = µ(A). The hypothesis that µ(A) > 0 then yields µ(A) = 1.
(2) ⇒ (3) If f ∈ L1(X,A, µ) is invariant, for every choice of γ ∈ R the

set Aγ = {x ∈ X | f(x) ≤ γ} is invariant. Since the system is metrically
indecomposable it follows that either µ(Aγ) = 0 or µ(Aγ) = 1. On the other
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hand, if γ1 < γ2 clearly Aγ1 ⊂ Aγ2 . Therefore setting γf = inf{γ ∈ R | µ(Aγ) = 1}
it follows that f(x) = γf for µ-almost every x.
(3) ⇒ (4) Since the time average f̂ is invariant we have that f̂ is constant

µ-almost everywhere. From equation (13.19) it then follows that f̂(x) = 〈f〉µ for
µ-almost every x ∈ X.
(4) ⇒ (1) It suffices to apply hypothesis (4) to the characteristic function χA

of the set A.
(4) ⇒ (5) Let f = χA. For µ-a.e. x ∈ X we have

µ(A) =
∫
X

χA dµ = χ̂A(x) = lim
n→∞

1
n

n−1∑
j=0

χA(Sj(x)).

By the dominated convergence theorem, we have

µ(A)µ(B) =
∫
X

lim
n→∞

1
n

n−1∑
j=0

χA(Sj(x))χB(x) dµ

= lim
n→∞

1
n

∫
X

n−1∑
j=0

χA(Sj(x))χB(x) dµ

= lim
n→∞

1
n

n−1∑
j=0

µ(S−j(A) ∩B).

(5) ⇒ (2) Let A be invariant. Setting B = Ac we have by (5) that

µ(A)µ(Ac) = lim
n→∞

1
n

n−1∑
j=0

µ(S−j(A) ∩Ac) = 0

because of the invariance of A. Hence µ(A) = 0 or µ(Ac) = 0. �

In general a dynamical system has more than just one invariant measure. For
example if it has a periodic orbit {xi}ni=1, xi+1 = S(xi) i = 0, . . . , n−1, x0 = S(xn),
the measure

µ(x) =
1
n

n∑
i=1

δxi(x) (13.21)

is invariant, where δy(x) denotes the Dirac measure at the point y:

δy(A) =

{
0, if y /∈ A,

1, if y ∈ A.
(13.22)

Given that a system often has many periodic orbits it follows that it also has
many distinct invariant measures, and (13.21) clearly implies that they are not
absolutely continuous with respect to one another. For ergodic transformations,
the distinct invariant measures are necessarily singular.

Theorem 13.5 Assume that (X,A, µ, S) is ergodic and that µ1 : A → [0, 1]
is another S-invariant probability measure. The following statements are then
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equivalent:

(1) µ1 =/ µ;
(2) µ1 is not absolutely continuous with respect to µ;
(3) there exists an invariant set A ∈ A such that µ(A) = 0 and µ1(A) =/ 0.

Proof
(1) ⇒ (2) If µ1 were absolutely continuous with respect to µ, the Radon–
Nykodim derivative dµ1/dµ would be an invariant function in L1(X,A, µ). Since
the system (X,A, µ, S) is ergodic it follows that (dµ1/dµ)(x) is constant µ-
almost everywhere and therefore it is necessarily equal to 1 as both µ and µ1
are probability measures. It follows that µ1 = µ, a contradiction.
(2) ⇒ (3) Since µ1 is not absolutely continuous with respect to µ there exists

B ∈ A such that µ(B) = 0, while µ1(B) =/ 0. Setting A =
⋃∞

i=0 S
j(B), it is

immediate to verify that A ∈ A, µ(A) = 0, µ1(A) =/ 0. �
(3) ⇒ (1) Obvious.

Suppose that X is a compact metric space and A is the σ-algebra of the Borel
sets of X.
In some exceptional cases, a dynamical system (X,A, µ, S) can have a unique

invariant measure. In this case the system is called uniquely ergodic. This has
the following motivation.

Theorem 13.6 Let (X,A, µ, S) be a uniquely ergodic system. Then the system
is ergodic and for every choice of f : X → R continuous and x ∈ X the sequence
(1/n)

∑n−1
j=0 f(S

j(x)) converges uniformly to a constant that is independent of x.
Therefore the time average exists for every x ∈ X and has value

∫
X
f dµ.

Proof
If the system were metrically decomposable, there would exist an invariant subset
A ⊂ X such that 0 < µ(A) < 1. The measure dν = χA(dµ/µ(A)) is an invariant
probability measure distinct from µ: µ(Ac) = 1 − µ(A) while ν(Ac) = 0. This
contradicts the hypothesis that the system is uniquely ergodic, and hence the
system cannot be metrically decomposable.
Suppose then that there exists a continuous function f : X → R for which

the sequence of functions
(
(1/n)

∑n−1
j=0 f ◦ Sj

)
n∈N

does not converge uniformly

to
∫
X
f dµ (because of ergodicity, this is the limit of the sequence µ-almost

everywhere). There then exist ε > 0, and two sequences (ni)i∈N ⊂ N, ni → ∞
and (xi)i∈N ⊂ X such that for every i ∈ N we have

∣∣∣∣∣ 1ni

ni−1∑
j=0

f(Sj(xi))−
∫
X

f dµ

∣∣∣∣∣ ≥ ε. (13.23)
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Consider the sequence of probability measures on X:

νi :=
1
ni

ni−1∑
j=0

δSj(xi). (13.24)

By the compactness of the space of probability measures on X (see Problem 1
of Section 13.13 for a proof) there is no loss of generality in assuming that the
sequence νi converges to a probability measure ν. We show that ν is invariant; to
this end, thanks to Remark 13.5, it is sufficient to show that for every continuous
g : X → R we have

∫
X
g(S(x)) dν =

∫
X
g(x) dν. On the other hand

∫
X

g(S(x)) dν = lim
i→∞

∫
X

g(S(x)) dνi = lim
i→∞

1
ni

ni−1∑
j=0

g(Sj+1(xi))

= lim
i→∞

[∫
X

g(x) dνi − 1
ni

g(xi) +
1
ni

g(Sni+1(xi))
]
.

(13.25)

Since X is compact and g is continuous, the second and third terms of the sum
in (13.25) have limits of zero. It follows that the measure ν is invariant. Recalling
equations (13.23) and (13.24) we have

∣∣∣∣∫
X

f dν −
∫
X

f dµ
∣∣∣∣ = lim

i→∞

∣∣∣∣∫
X

f dνi −
∫
X

f dµ
∣∣∣∣

= lim
i→∞

∣∣∣∣∣ 1ni

ni−1∑
j=0

f(Sj(xi))−
∫
X

f dµ

∣∣∣∣∣ ≥ ε,

which shows that ν =/ µ and contradicts the hypothesis that µ is the only
invariant measure of the system. �

Remark 13.8
It is not difficult to prove that if for every continuous function f : X → R the
limit limn→∞(1/n)

∑n−1
j=0 f(S

j(x)) exists for every fixed point x, independently
of x, then the system is uniquely ergodic. �

Example 13.12
Let ω ∈ Rl be such that ω · k + p �= 0 for every p ∈ Z and for every k ∈
Zl\{0}. Consider the measurable dynamical system determined by X = Tl, A

is the σ-algebra of Borel sets on Tl, χ ∈Tl, dµ(χ) = 1/(2π)ldlχ is the Haar
measure on Tl and Sχ = χ + ω (mod 2πZl). Theorem 11.9 guarantees that
the time average exists ∀χ ∈ Tl and it is independent of the choice of the
initial point χ ∈ Tl. Therefore, by the previous remark, the system is uniquely
ergodic. �
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13.5 Mixing

One of the equivalent characterisations of ergodicity for a measurable dynamical
system (X,A, µ, S) is the fact that on average the measure of the preimages
S−j(A) of any set A ∈ A is distributed uniformly on the whole support of the
measure µ in the sense described by (13.20) (see Theorem 13.4). However, the
existence of the limit in (13.20) does not guarantee that the limit of the sequence
µ(S−j(A) ∩B) exists, but it guarantees that if this sequence converges, then its
limit is µ(A)µ(B).1

It is therefore natural to consider the dynamical systems satisfying the following
definition.

Definition 13.14 A measurable dynamical system (X,A, µ, S) is mixing if
∀ A,B ∈ A one has

lim
n→+∞µ(S−n(A) ∩B) = µ(A)µ(B). (13.26)

�

Since equation (13.26) implies (13.20) every mixing system is ergodic. An
independent verification of this fact can be obtained assuming that A is invariant,
in which case from (13.26) it follows that

µ(A)µ(Ac) = lim
n→∞µ(S−n(A) ∩Ac) = µ(A ∩Ac) = 0,

and therefore either µ(A) = 0 or µ(Ac) = 0, and the system is metrically
indecomposable.
The converse is false: the irrational translations on tori (see Example 13.12)

are uniquely ergodic but not a mixing (see Problem 9 of Section 13.12). A
simple example of a mixing dynamical system is given by the so-called ‘baker’s
transformation’ of Example 3.4, as we shall see below (see Problem 2 of Section
13.13).
Just as ergodicity has an equivalent formulation in terms of the behaviour of

the time average of integrable functions, mixing can be characterised by studying
the functions f : X → R which are measurable and square integrable.

Definition 13.15 Let the measurable dynamical system (X,A, µ, S) be given.
The linear operator US : L2(X,A, µ) → L2(X,A, S) defined by

USf = f ◦ S (13.27)

is called Koopman’s operator. �

Recalling the definition of the scalar product of two functions f, g ∈ L2(X,A, µ):

〈f, g〉 :=
∫
X

fg dµ, (13.28)

1 Recall that in a probability space (X,A, µ, S), two sets (or events) A,B ∈ A are
independent if µ(A ∩B) = µ(A)µ(B).
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it is immediate to verify that since S preserves the measure µ, US is an isometry:

〈USf, USg〉 = 〈f, g〉, ∀ f, g ∈ L2(X,A, µ). (13.29)

Theorem 13.7 A necessary and sufficient condition for the measurable dynamical
system (X,A, µ, S) to be mixing is that

lim
n→∞〈Un

S f, g〉 = 〈f, 1〉 〈1, g〉 (13.30)

for every f, g ∈ L2(X,A, µ). �

Remark 13.9
The quantity

〈Un
S f, g〉 − 〈f, 1〉 〈1, g〉 =

∫
X

f ◦ Sng dµ−
∫
X

f dµ
∫
X

g dµ

is also called the correlation between f and g at time n. Theorem 13.7 therefore
states that a system is mixing if and only if the correlation between any two
functions tends to zero as n → ∞. �

Proof of Theorem 13.7
It is immediate to verify that (13.30) implies that the system is mixing; it is
enough to apply it to f = χA and g = χB , A,B ∈ A.
Conversely, assuming that (X,A, µ, S) is mixing, then (13.26) implies that

equation (13.30) holds when f and g are two characteristic functions of sets
belonging to A. By linearity, we therefore find that equation (13.30) is valid
when f and g are two simple functions.
Recall now that simple functions are dense in L2(X,A, µ) (see Rudin 1974);

hence it follows that ∀ f, g ∈ L2(X,A, µ) and ∀ ε > 0 there exist two simple
functions f0, g0 ∈ L2(X,A, µ) such that

‖f − f0‖ =
√

〈f − f0, f − f0〉 ≤ ε

‖g − g0‖ =
√

〈g − g0, g − g0〉 ≤ ε

lim
n→∞〈Un

S f0, g0〉 = 〈f0, 1〉 〈1, g0〉.

Writing

〈Un
S f, g〉 = 〈Un

S f0, g0〉+ 〈Un
S f, g − g0〉+ 〈Un

S (f − f0), g0〉

since US is an isometry, using the Schwarz inequality |〈f, g〉| ≥ ‖f‖ ‖g‖ one has

|〈Un
S f, g〉 − 〈f, 1〉 〈1, g〉| ≤ |〈Un

S f0, g0〉 − 〈f0, 1〉 〈1, g0〉|
+ ‖f‖ ‖g − g0‖+ ‖f − f0‖ ‖g0‖+ ε‖f‖+ ε‖g0‖.
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There then exists a constant c > 0 such that if n is sufficiently large

|〈Un
S f, g〉 − 〈f, 1〉 〈1, g〉| ≤ cε,

and hence (13.30) follows. �

Example 13.13: linear automorphisms of the torus T2

Consider the flat two-dimensional torus with the σ-algebra of Borel sets, and the
Haar measure dµ (χ) = (1/4π2) dχ1 dχ2. A linear automorphism of the torus is
given by

S(χ1, χ2) = (aχ1 + bχ2, cχ1 + dχ2)mod 2πZ2, (13.31)

where a, b, c, d ∈ Z and |ad− bc| = 1. It is easy to verify that the Haar measure
is S-invariant.

We now prove that if the matrix σ =
(
a b
c d

)
has no eigenvalue with unit

modulus, then the system is mixing.
To this end, we check that (13.30) is satisfied by the functions fk(χ) = eik·χ,k ∈

Z2, which form a basis of L2(T2). We want to show therefore that for every pair
k,k′ ∈ Z2 we have

lim
n→∞

∫
T2

fk(Sn(χ))fk′(χ) dµ(χ) =
∫
T2

fkχdµ(χ)
∫
T2

fk′χdµ(χ). (13.32)

If k = k′ = 0 the two sides are constant and equal to 1 for every n ∈ N. It
is not restrictive to assume that k �= 0 which yields immediately that the right-
hand side is equal to 0. On the other hand, we have fk(S(χ)) = fσTk(χ) hence
fk(Sn(χ)) = f(σT )nk(χ) and since σ has an eigenvalue with absolute value > 1
the norm is |(σT )nk| → ∞.2 It follows that if n is sufficiently large we necessarily
have (σT )nk �= k′ and as the basis (fk)k∈Z2 is orthonormal, then the left-hand
side of (13.32) vanishes. This concludes the proof that the system is mixing. �

13.6 Entropy

Let (X,A, µ, S) be a measurable dynamical system. Ergodicity and mixing give
two qualitative indications of the degree of randomness (or stochasticity) of the
system. An indication of quantitative type is given by the notion of entropy
which we shall soon introduce.
We start by considering the following situation. Let α be an experiment with

m ∈ N possible mutually exclusive outcomes A1, . . . , Am (for example the toss of

2 Since σ transforms the vectors of Z2 into vectors of Z2 and is invertible, no non-zero
vector with integer components can be entirely contained in the eigenspace corresponding to
the eigenvalue less than 1, because this would imply that by iterating σ a finite number of
times the vector has norm less than 1, contradicting the hypothesis that it belongs to Z2.
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a coin m = 2 or the roll of a die m = 6). Assume that each outcome Ai happens
with probability pi ∈ [0, 1]:

∑m
i=1 pi = 1.

In a probability space (X,A, µ, S) this situation is described by assigning a
finite partition of X = A1 ∪ . . . ∪ Am (mod 0), Ai ∈ A, Ai ∩ Aj = ∅ if i =/ j,
µ(Ai) = pi.
The following definition describes the properties which must hold for a function

measuring the uncertainty of the prediction of an outcome of the experiment
(equivalently, the information acquired from the execution of the experiment α).
Let ∆(m) be the (m− 1)-dimensional standard symplex of Rm, given by

∆(m) =

{
(x1, . . . , xm) ∈ Rm | xi ∈ [0, 1],

m∑
i=1

xi = 1

}
.

Definition 13.16 A family of continuous functions H(m) : ∆(m) → [0,+∞],
where m ∈ N, is called an entropy if the following properties hold:

(1) symmetry: ∀ i, j ∈ {1, . . . ,m} we have

H(m)(p1, . . . , pi, . . . , pj , . . . , pm) = H(p1, . . . , pj , . . . , pi, . . . , pm);

(2) H(m)(1, 0, . . . , 0) = 0;
(3) H(m)(0, p2, . . . , pm) = H(m−1)(p2, . . . , pm), ∀ m ≥ 2,∀ (p2, . . . , pm) ∈ ∆(m−1);
(4) ∀ (p1, . . . , pm) ∈ ∆(m) we have H(m)(p1, . . . , pm) ≤ H(m)(1/m, . . . , 1/m) and

the equality holds if and only if pi = 1/m for every i = 1, . . . ,m;
(5) consider (π11, . . . , π1l, π21, . . . , π2l, . . . , πm1, . . . , πml) ∈ ∆(ml); then for every

(p1, . . . , pm) ∈ ∆(m) we have

H(ml)(π1l, . . . , π1l, π21, . . . , πml)

= H(m)(p1, . . . , pm) +
m∑
i=1

piH
(l)
(
πi1
pi

, . . . ,
πil
pi

)
. �

Property (2) expresses the absence of uncertainty of a certain event. Property
(3) means that no information is gained by impossible outcomes and (4) means
that the maximal uncertainty is attained when all outcomes are equally probable.
Property (5) describes the behaviour of the entropy when distinct experiments

are compared. Let β be another experiment with possible outcomes B1, . . . , Bl

(i.e. another partition of (X,A, µ, S)). Let πij be the probability of Ai and Bj

together. The probability of Bj conditional on the fact that the outcome of α
is Ai is prob (Bj | Ai) = πij/pi(= µ(Ai ∩ Bj)). Clearly the uncertainty in the
prediction of the outcome of the experiment β when the outcome of α is Ai is
measured by H(l)(πi1/pi, . . . , πil/pi). From this fact stems the requirement that
(5) be satisfied. In the following, we use the simpler notation H(p1, . . . , pm).

Theorem 13.8 The function

H(p1, . . . , pm) = −
m∑
i=1

pi log pi (13.33)
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(with the convention 0 log 0 = 0) is, up to a constant positive multiplier, the only
function satisfying (1)–(5).

Proof (see Khinchin 1957, pp. 10–13).
Let H(p1, . . . , pm) be an entropy function, and for any m set K(m) =
H(1/m, . . . , 1/m). We show first of all that K(m) = +c logm, where c is a
positive constant.
Properties (3) and (4) imply that K is a non-decreasing function. Indeed,

K(m) = H

(
0,

1
m
, . . . ,

1
m

)
≤ H

(
1

m+ 1
, . . . ,

1
m+ 1

)
= K(m+ 1).

Consider now any two positive integers m and l. The property (5) applied to
the case πij ≡ 1/ml, pi ≡ 1/m yields

K(lm) = K(m) +
m∑
i=1

1
m
K(l) = K(m) +K(l),

from which it follows that

K(lm) = mK(l).

Given any three integers r, n, l let m be such that lm ≤ rn ≤ lm+1, i.e.

m

n
≤ log r

log l
≤ m

n
+

1
n
.

We know that

mK(l) = K(lm) ≤ K(rn) = nK(r) ≤ K(lm+1) = (m+ 1)K(l),

from which it follows that

m

n
≤ K(r)

K(l)
≤ m

n
+

1
n
, i.e.

∣∣∣∣K(r)
K(l)

− log r
log l

∣∣∣∣ ≤ 1
n
.

Because of the arbitrariness of n we deduce that K(r)/ log r = K(l)/ log l and
therefore K(m) = c logm, c > 0.
Assume now that p1, . . . , pm are rational numbers. Setting the least common

multiple of the denominators equal to s, we have pi = ri/s, with
∑m

i=1 ri = s. In
addition to the experiment α with outcomes A1, . . . , Am with respective probabil-
ities p1, . . . , pm we consider an experiment β constituted by s outcomes B1, . . . , Bs

divided into m groups, each containing, respectively, r1, . . . , rm outcomes.
We now set πij = pi/ri = 1/s, i = 1, . . . ,m, j = 1, . . . , ri.
Given any outcome Ai of α, we therefore have that the outcome β is the

outcome of an experiment with ri equally probable outcomes, and hence

H

(
πi1
pi

, . . . ,
πiri
pi

)
= c log ri
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and

m∑
i=1

piH

(
πi1
pi

, . . . ,
πiri
pi

)
= c

m∑
i=1

pi log ri = c

m∑
i=1

pi log pi + c log s.

On the other hand, H(π11, . . . , πmrm) = c log s and by property (5) we have

H(p1, . . . , pm) = H(π11, . . . , πmrm)−
m∑
i=1

piH

(
πi1
pi

, . . . ,
πiri
pi

)
= −c

m∑
i=1

pi log pi.

The continuity of H ensures that the formula (13.33), proved so far when pi ∈ Q,
is also valid when pi is a real number. �

Remark 13.10
H can be characterised as the (−1/N)× logarithm of the probability of a ‘typical’
outcome of the experiment α repeated N times. Indeed, if N is large, repeating
the experiment α N times one expects to observe each outcome Ai approximately
piN times (this is a formulation of the so-called law of large numbers).
The probability of a typical outcome containing p1N times A1, p2N times A2,

etc. is therefore

pp1N
1 pp2N

2 . . . ppmN
m .

From this it follows precisely that

H(p1, . . . , pm) = − 1
N

log
[
pp1N
1 . . . ppmN

m

]
= −

m∑
i=1

pi log pi. �

Remark 13.11
The maximum value of H is attained when pi = 1/m, i = 1, . . . ,m (as required
by property (4)) and has value H (1/m, . . . , 1/m) = logm. �

We now consider how to extend the notion of entropy to measurable dynamical
systems (X,A, µ, S).
We introduce some notation. If α and β are two partitions of A, the joined

partition α ∨ β of α and β is defined by the subsets {A ∩B, A ∈ α, B ∈ β}. If
α1, . . . , αn are partitions, we write

∨n
i=1 αi for the joined partition of α1, . . . , αn.

If S is measurable and non-singular, and α is a partition, S−1α is the partition
defined by the subsets {S−1A, A ∈ α}. Finally, we say that a partition β is finer
than α, which we denote by α < β, if ∀ B ∈ β there exists A ∈ α such that B ⊂ A.
Obviously, the joined partitions are finer than the starting ones. The entropy
H(α) of a partition α = {A1, . . . , Am} is given by H(α) = −∑m

i=1 µ(Ai) logµ(Ai).
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Definition 13.17 Let (X,A, µ, S) be a measurable dynamical system, and let α
be a partition. The entropy of S relative to the partition α is defined by

h(S, α) := lim
n→∞

1
n
H

(
n−1∨
i=0

S−iα

)
. (13.34)

The entropy of S is

h(S) := sup{h(S, α), α is a finite partition of X}. (13.35)
�

Remark 13.12
It is possible to prove, exploiting the strict convexity of the function x logx
on R+, that the limit (13.34) exists. Indeed, the sequence (1/n)H

(∨n−1
i=0 S

−iα
)

is monotone non-increasing and non-negative. Hence h(S, α) ≥ 0 for every α. �

Remark 13.13
The entropy of a partition α measures the quantity of information acquired by
observing the system using an instrument that distinguishes between the points
of X with the resolution given by the sets of the partition {A1, . . . , Am} = α.
For x ∈ X, consider the orbit of x up to time n− 1:

x, Sx, S2x, . . . , Sn−1x.

Since α is a partition of X, the points Six, 0 ≤ i ≤ n − 1, belong to precisely
one of the sets of the partition α: setting x0 = x, xi = Six, we have xi ∈ Aki

with ki ∈ {1, . . . ,m} for every i = 0, . . . , n− 1.
H
(∨n−1

i=0 S
−iα

)
measures the quantity of information deduced from the know-

ledge of the distribution with respect to the partition α of a segment of ‘duration’
n of the orbit. Therefore (1/n)H

(∨n−1
i=0 S

−iα
)
is the average quantity of inform-

ation per unit of time and h(S, α) is the the quantity of information acquired
(asymptotically) at each iteration of the dynamical system, knowing how the
orbit of a point is distributed with respect to the partition α. �

This remark is made rigorous by the following theorem. The proof can be
found in Mañe (1987).

Theorem 13.9 (Shannon–Breiman–McMillan) Let (X,A, µ, S) be a measurable
ergodic dynamical system, and α be a finite partition of X. Given x ∈ X let
αn(x) be the element of

∨n−1
i=0 S−iα which contains x. Then for µ-almost every

x ∈ X we have

h(S, α) = lim
n→∞ − 1

n
logµ(αn(x)). (13.36)

�
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An interpretation of the Shannon–Breiman–McMillan theorem is the following.
For an ergodic system there exists a number h such that ∀ ε > 0, if α is a
sufficiently fine partition of X, then there exists a positive integer N such that
for every n ≥ N there exists a subset Xn of X of measure µ(Xn) > 1−ε made of
approximately enh elements of

∨n−1
i=0 S−iα, each of measure approximately e−nh.

If X is a compact metric space and A is the σ-algebra of Borel sets X, Brin
and Katok (1983) have given an interesting topological version of the Shannon–
Breiman–McMillan theorem. Let B(x, ε) be the ball of centre x ∈ X and radius
ε. Assume that S : X → X is continuous and preserves the probability measure
µ : A → [0, 1]. Consider

B(x, ε, n) := {y ∈ X | d(Six, Siy) ≤ ε for every i = 0, . . . , n− 1},

i.e. B(x, ε, n) is the set of points y ∈ X whose orbit remains at a distance less
than ε from that of x for at least n − 1 iterations. It is possible to prove the
following.

Theorem 13.10 (Brin–Katok) Assume that (X,A, µ, S) is ergodic. For µ-almost
every x ∈ X we have

sup
ε>0

lim supn→∞ − 1
n
logµ(B(x, ε, n)) = h(S). (13.37)

�

An interesting corollary of the previous theorem is that the entropy of the
translations over tori Tl is zero. Indeed, in this case d(Sx, Sy) = d(x, y) and
therefore ∀ n ∈ N and ∀ ε > 0 we have B(x, ε, n) = B(x, ε), from which it
follows that h(S) = 0.
The same is true, more generally, if S is an isometry of the metric space (X, d).
The notion of entropy allows one to distinguish between systems in terms of

the ‘predictability’ of their observables. When the entropy is positive, at least
part of the observables cannot be computed from the knowledge of the past
history.
Chaotic systems are therefore the systems that have positive entropy. Taking

into account the Brin–Katok theorem and the recurrence theorem of Poincaré, one
sees how in chaotic systems the orbits are subject to two constraints, apparently
contradicting each other. On the one hand, almost every orbit is recurrent and in
the future will pass infinitely many times near the starting-point. On the other
hand, the probability that two orbits remain close for a given time interval n
decays exponentially as n grows.
Since two orbits, that were originally close to each other, must return infinitely

many times near the starting-point, they must be entirely uncorrelated if the
entropy is positive, and hence they must go far and come back in different times.
This complexity of motions is called chaos, and it clearly shows how difficult

(or impossible) it is to compute the future values of an observable (corresponding
to a function f : X → R) simply from the knowledge of its past history.
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13.7 Computation of the entropy. Bernoulli schemes. Isomorphism
of dynamical systems

In the definition of entropy h(S) of a measurable dynamical system, it is necessary
to compute the supremum of h(S, α) as α varies among all finite partitions of
X. This seems to exclude the practical possibility of computing h(S). In reality,
this is not the case, and one can proceed in a much simpler way.
In this section we identify a partition α with the σ-algebra generated by α, and∨∞
i=0 S

−iα with the smallest σ-algebra containing all the partitions
∨n−1

i=0 S−iα
for every n ∈ N.
Recall that two σ-algebras A and B are equal (mod 0), denoted by A = B (mod

0), if ∀ A ∈ A there exists B ∈ B such that µ(A∆B) = 0, and vice versa.
The discovery of Kolmogorov and Sinai, which makes possible the computation

of the entropy overcoming the need to compute the supremum in (13.35), is that
it suffices to consider the finite partitions α that generate the σ-algebra A, and
hence such that

∨+∞
−∞ S−iα = A (mod 0) if S is invertible, or

∨∞
i=0 S

−iα = A (mod
0) if S is not invertible. Indeed one can prove the following.

Theorem 13.11 (Kolmogorov–Sinai) If α is a partition of X generating the
σ-algebra A, the entropy of the measurable dynamical system (X,A, µ, S) is
given by

h(S) = h(S, α). (13.38)
�

The proof of this theorem does not present special difficulties but it is tedious
and will be omitted (see Mañe 1987).
Among the measurable dynamical systems for which it is possible to compute

the entropy, the Bernoulli schemes, which we now introduce, constitute the
fundamental example of systems with strong stochastic properties.
Consider the space X of infinite sequences x = (xi)i∈N, where the variable xi

can only take a finite number of values which, for simplicity, we assume to be
the integers {0, . . . , N − 1} (we sometimes use the notation ZN to denote the
integers {0, 1, . . . , N − 1}). The space of sequences X is often denoted by ZN

N .
3

When we want to model an infinite sequence of outcomes of the toss of a coin
(or the roll of a die) we fix N = 2 (respectively N = 6) and each possible value
of xi is equally probable.
Consider on X the transformation S : X → X defined by

(S(x))i = xi+1, ∀ i ∈ N, (13.39)

usually known as a shift.

3 If instead of one-sided sequences (xi)i∈N ∈ ZN
N the space X is made of two-sided

(doubly infinite) sequences (xi)i∈Z ∈ ZZ
N we have a so-called bilateral Bernoulli scheme. All

considerations to be developed trivially extend to the case of bilateral Bernoulli schemes.
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We proceed as in Example 13.2, associating with ZN a probability measure and
assigning to the value j ∈ ZN a probability equal to pj > 0, with the condition∑N−1

j=0 pj = 1.
This choice induces a probability measure on the space of sequences X that

we now describe.
Consider first of all the σ-algebras A on X generated by the cylinders, i.e.

the subsets of X corresponding to sequences for which a finite number of values
is fixed. Given k ≥ 1 elements j1, . . . , jk ∈ ZN , not necessarily distinct, and k
distinct positions i1 < i2 < . . . < ik ∈ N, the corresponding cylinder is

C = C

(
j1, . . . , jk
i1, . . . , ik

)
= {x ∈ X | xi1 = j1, xi2 = j2, . . . , xik = jk}. (13.40)

Therefore all sequences in X which take the prescribed values in the positions
corresponding to the indices i1, . . . , ik belong to C.
We therefore define the measure µ on A by prescribing its value on cylinders:

µ

(
C

(
j1, . . . , jk
i1, . . . , ik

))
= pj1 . . . pjk . (13.41)

Note that in (13.41) the positions i1, . . . , ik do not play any role. Hence it is
immediate to deduce that if C is a cylinder, then µ(S−1(C)) = µ(C), and recalling
that the σ-algebra A is generated by cylinders we conclude that (X,A, µ, S) is
a measurable dynamical system (hence that S preserves the measure µ). This
system is known as a Bernoulli scheme with probability (p0, . . . , pN−1) and it is
denoted by SB(p0, . . . , pN−1).
We leave as an exercise the verification that a Bernoulli scheme is mixing (see

Problem 10 of Section 13.12) but we show that the entropy of SB(p0, . . . , pN−1)
is −∑N−1

i=0 pi log pi.
The partition α into the cylinders

{
C
(
j
0

)}
j=0,...,N−1 generates the σ-algebra

A. Indeed we have

α ∨ S−1α =
{
C

(
j0 j1
0 1

)}
j0, j1=0,...,N−1

,

α ∨ S−1α ∨ S−2α =
{
C

(
j0 j1 j2
0 1 2

)}
ji = 0, . . . , N − 1

i = 0, 1, 2

,
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and so on. The corresponding entropies are (use (13.41)):

H(α) = −
N−1∑
j=0

pj log pj ,

H(α ∨ S−1α) = −
N−1∑
j0=0

N−1∑
j1=0

pj0pj1 log pj0pj1

= −
N−1∑
j0=0

(pj0 log pj0)
N−1∑
j1=0

pj1 −
N−1∑
j1=0

(pj1 log pj1)
N−1∑
j0=0

pj0

= −2
N−1∑
j=0

pj log pj ,

H(α ∨ S−1
α ∨ S−2

α ) = −
∑

j0,j1,j2
pj0pj1pj2 log pj0pj1pj2 = −3

N−1∑
j=0

pj log pj ,

and so on. From this it follows that h(S, α) = −∑N−1
j=0 pj log pj and thus the

entropy of SB(p0, . . . , pN−1) also follows by the Kolmogorov–Sinai theorem.
We examine again the p-adic transformation S of Example 13.5 and consider

the partition α = {(j/p, (j + 1)/p)}j=0,...,p−1. Using the fact that ∨n
i=0S

−iα =
{(j/(pn+1), (j + 1)/(pn+1))}j=0,...,pn+1−1 it is not difficult to verify that α is a
generating partition and therefore h(S) = h(S, α).
On the other hand,

H

(
n∨

i=0

S−iα

)
= pn+1 · p−(n+1) log p−(n+1) = −(n+ 1) log p,

from which it follows that h(S, α) = log p.
Note that SB (1/p, . . . , 1/p) has the same entropy. It is indeed possible to pass

from one system to the other by a very easy construction.
With every point ξ ∈ (0, 1) we associate the sequence x ∈ ZN

p defined as
follows: for every i = 0, 1, . . . we set

xi = j ⇔ Si(ξ) ∈
(
j

p
,
j + 1
p

)
. (13.42)

Denote by (X,A, µ, S) and by (X ′,A′, µ′, S′), respectively, the two 4-tuples: ((0,1),
σ-algebra of Borel sets of (0,1), Lebesgue measure, p-adic transformation) and
(ZN

p , the σ-algebra generated by the cylinders, the measure corresponding to
SB (1/p, . . . , 1/p), and the shift).
In addition, denote by T : X → X ′ the transformation defined in (13.42).
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The following facts are of immediate verification:

(a) T is measurable;
(b) ∀ A′ ∈ A′, µ(T−1A′) = µ′(A′);
(c) for µ-a.e. x ∈ X, T (S(x)) = S′(T (x));
(d) T is invertible (mod 0), i.e. there exists a measurable transformation T ′ :

X ′ → X, which preserves the measures (so that ∀ A ∈ A, µ′(T ′−1A) = µ(A)),
such that T ′(T (x)) = x for µ-a.e. x ∈ X and T (T ′(x′)) = x′ for µ′-a.e. x′ ∈ X ′.

In general, we have the following.

Definition 13.18 Let (X,A, µ, S), (X ′,A′, µ′, S′) be two measurable dynamical
systems. A transformation T : X → X ′ satisfying the conditions (a), (b), (c), (d)
is called an isomorphism of measurable dynamical systems and the two systems
are then isomorphic. �

Ergodic theory does not distinguish between isomorphic systems: two iso-
morphic systems have the same ‘stochastic’ properties.
It is an exercise to prove the following.

Theorem 13.12 Two isomorphic systems have the same entropy. If one system
is mixing, then the other is also mixing. If one system is ergodic, then the other
is also ergodic. �

In the particular case of the Bernoulli schemes the equality of entropy is
not only a necessary condition but it is also sufficient for two schemes to be
isomorphic.

Theorem 13.13 (Ornstein) Two Bernoulli schemes with the same entropy are
isomorphic. �

The proof of this result goes beyond the scope of this book. Besides the original
article of Ornstein (1970), see also Cornfeld et al. (1982, section 7, chapter 10).
A consequence of this theorem of Ornstein is that the Bernoulli schemes

are completely classified (up to isomorphism) by their entropy. The last result
we quote in this section shows how the entropy also classifies the hyperbolic
isomorphisms of tori (see Example 13.13): these are given by matrices σ ∈ GL(l,Z)
with no eigenvalue of absolute value = 1.

Theorem 13.14 (Katznelson) Every linear hyperbolic automorphism of Tl is
isomorphic to a Bernoulli scheme. �

Due to the theorem of Ornstein the classification of the ergodic properties of
the automorphisms of Tl is given by the entropy.
It can be proved (see Walters 1982, sections 8.4 and 8.10) that if ν1, . . . , νl are

the eigenvalues of the automorphism σ then

h(σ) =
∑

{i||νi|>1}
log |νi|. (13.43)

We conclude with the definition of Bernoulli systems.
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Definition 13.19 A measurable dynamical system (X,A, µ, S) is a Bernoulli
system if it is isomorphic to a Bernoulli scheme. �

Bernoulli systems exhibit the most significant stochastic properties. Their equi-
valence classes up to isomorphism, due to the theorem of Ornstein, are completely
classified by only one invariant, the entropy.

13.8 Dispersive billiards

Many important models of classical statistical mechanics are systems of point
particles or rigid spheres moving freely except for the effect of elastic collisions,
either with fixed obstacles or among themselves. To study the behaviour of
electron gases in metals, Lorentz introduced in 1905 the following model: a point
particle moves in Rl subject only to elastic collisions with a distribution of
infinitely many fixed rigid spheres (see Fig. 13.2).
Another important model is the hard spheres gas: a system of spheres which

move freely in a domain V ⊂ Rl interacting through elastic collisions between
them and with the boundary ∂V of the domain (see Fig. 13.3).
In all these cases, the main element of the model is the condition that the

collision be elastic. This is the characterising feature of all dynamical systems of
billiard type.

Definition 13.20 A billiard is a dynamical system constituted by the motion of
a point particle with constant velocity inside a bounded open subset V ⊆ Rd with
piecewise smooth boundary (C∞), and with a finite number of smooth components
intersecting transversally. The particle is subject to elastic reflections when it
collides with ∂V (see Fig. 13.3): the incidence angle is equal to the reflection
angle and the energy is conserved. �

Fig. 13.2 Lorentz gas.
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V

−V

Fig. 13.3 Hard spheres gas.

the ‘stadium’

Fig. 13.4 Examples of plane billiards.

In our short introduction to the study of billiards we shall restrict ourselves to
the plane case, when l = 2 (See Fig. 13.4 for some examples of plane billiards).
This is the only case whose stochastic properties are sufficiently understood.
Since the absolute value of the velocity is constant, it is possible to describe

the motion using a system with discrete time.
We parametrise ∂V using the natural parameter s and suppose that the length

of ∂V is equal to 2π; we can then characterise x ∈ ∂V by choosing arbitrarily
the origin corresponding to s = 0 and via the application S1 � s �→ x(s) (note
that x(s+2π) = x(s)) (see Fig. 13.5). The elastic collision with ∂V is completely
described by assigning the pair (s, α) ∈ S1 × (0, π), where x(s) is the collision
point in ∂V and α is the angle formed by the reflected velocity (i.e. the velocity
immediately after the collision) and the unit vector tangent to ∂V .
Consider the phase space X = S1 × (0, π) with the σ-algebra A of Borel sets,

and the transformation S : X → X which associates with (s, α) the next collision
point and reflection angle (s′, α′).

Proposition 13.1 S preserves the probability measure dµ(s, α)=1/4π sinα dsdα.
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s�
s

x(s)

x(s�)

a

V

−V

a�

0

S1

Fig. 13.5 Parametrisation of the billiard.

Proof
Let l(s, s′) be the length of the segment [x(s),x(s′)] ⊂ V . It is immediate to
verify that

∂l

∂s
(s, s′) = − cosα,

∂l

∂s′ (s, s
′) = cosα′,

from which it follows that

dl = − cosα ds+ cosα′ ds′.

Since d2l = 0 we deduce

sinα dα ∧ ds = sinα′ dα′ ∧ ds. �

Remark 13.14
If the boundary of V is not smooth, but it is in fact constituted by a finite
number of smooth arcs that intersect transversally, the transformation S is not
defined in correspondence to the values s1, . . . , sN associated with the vertices of
the billiard. This set has µ measure equal to zero. �

The measurable dynamical system (X,A, µ, S) is in general not ergodic. An
important class of ergodic billiards was discovered by Sinai (1970). These billiards
have a piecewise smooth boundary ∂V whose smooth components are internally
strictly convex (see Fig. 13.6) and intersect transversally.
A beam made of parallel rays, after reflection on one side of the Sinai billiard,

becomes dispersive (see Fig. 13.6c). Each consecutive reflection forces the beam
to diverge further. This property is at the origin of the stochastic behaviour of
the orbits in dispersive billiards. Indeed, we have the following two results.

Theorem 13.15 (Sinai 1970) Dispersive billiards are ergodic. �

Theorem 13.16 (Gallavotti andOrnstein 1974) Dispersive billiards are Bernoulli
systems. �
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(a) (b) (c)

Fig. 13.6 Billiards of Sinai. Dispersion.

The proofs are very technical and go beyond the scope of this book.
A good introduction to the study of billiards can be found in the monograph

by Tabachnikov (1995).

13.9 Characteristic exponents of Lyapunov. The theorem of Oseledec

A necessary condition for a measurable dynamical system (X,A, µ, S) to be
strongly stochastic (e.g. a Bernoulli system) is that orbits corresponding to
initial conditions that are close will quickly get away from each other (hence are
unstable). For example, in the case of the p-adic map S (Example 13.5) consider
two initial conditions x1, x2 ∈ (0, 1) and write the corresponding expansions in
base p: xi =

∑∞
j=1 xi,jp

−j , where xi,j ∈ Zp for every i = 1, 2 and j ∈ N. Two
initial conditions can be made arbitrarily close to each other by making the first
digits of the corresponding expansions in base p coincide up to a sufficiently high
order: x1,j = x2,j for every j = 1, 2, . . . , j0, while x1,j0+1 =/ x2,j0+1, in which case
(x1 − x2) < p−j0 .
Recall that S acts as a shift on the expansions in base p. Hence we immediately

find that if 0 < k < j0 we have

|Sk(x1)− Sk(x2)| = pk|x1 − x2|.

In this case, the exponential rate at which the two orbits distance themselves
from one another is given by 1/k log(|Sk(x1)− Sk(x2)|)/|x1 − x2| = log p, and
hence it is the entropy of the map S. This is far more than a coincidence, as
we shall discuss in the next section, but it is useful to introduce quantities that
measure the exponential rate of divergence of orbits corresponding to nearby
initial conditions: the Lyapunov characteristic exponents.
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Before considering the most interesting case, when a measurable dynamical
system (X,A, µ, S) also has the property that the transformation S and the
space X are regular in some sense (e.g. X is a smooth differentiable manifold
and S is a piecewise C1 map), we introduce Lyapunov’s characteristic exponents
through a more abstract procedure.
The fundamental result on which our construction is based, and which we do

not prove, is the following.

Theorem 13.17 (Multiplicative ergodic theorem, Oseledec 1968) Let (X,A, µ, S)
be an ergodic system. Let T : X → GL(m,R) be a measurable map such that∫

X

log+ ‖T (x)‖dµ < +∞, (13.44)

where log+ u = max(0, logu). Set

Tn
x := T (Sn−1(x))T (Sn−2(x)) · · ·T (x) =

n∏
j=1

T (Sn−j(x)) (13.45)

for µ-almost every x ∈ X. Then the limit

lim
n→∞((Tn

x )
TTn

x )
1/2n = Λx (13.46)

exists (where (Tn
x )

T denotes the transpose matrix of Tn
x ) and it is a symmetric

positive semidefinite matrix. �

Definition 13.21 The logarithms of the eigenvalues of the matrix Λx are called
Lyapunov’s characteristic exponents of the system (X,A, µ, S, T ). �

In what follows the characteristic exponents are ordered in a decreasing
sequence λ1(x) ≥ λ2(x) ≥ · · · . Note that for ergodic systems, they are constant
µ-almost everywhere. Now let λ(1) > λ(2) > · · · be the characteristic exponents
again, but now not repeated according to their multiplicity, and let m(i) be the
multiplicity of λ(i). Let E

(i)
x be the vector subspace of Rm corresponding to the

eigenvalues ≤ expλ(i) of Λx. We thus obtain a ‘filtration’ of Rm in subspaces:

Rm = E(1)
x ⊃ E(2)

x ⊃ · · · , (13.47)

and moreover the following refinement of Theorem 13.17 holds.

Theorem 13.18 Let (X,A, µ, S) be as in Theorem 13.17. For µ-almost every
x ∈ X, if v ∈ E

(i)
x \ E(i+1)

x , we have

∃ lim
n→∞

1
n
log ‖Tn

x v‖ = λ(i). (13.48)

In particular for all vectors v ∈ Rm \E(2)
x (hence for almost every vector v ∈ Rm

with respect to the Lebesgue measure) the limit (13.48) is the highest characteristic
exponent λ(1). �



580 Analytical mechanics 13.9

Remark 13.15
For the case m = 1 the multiplicative ergodic Theorem 13.18 reduces to the
Birkhoff Theorem 13.3 (with the restriction that the functions f in (13.17) are
the logarithm of a measurable positive function). Oseledec overcame the additional
difficulty that the products of matrices are non-commutative for m > 1. �

Suppose now that X is Rl or a compact Riemannian manifold, A is the
σ-algebra of Borel sets, S : X → X is a piecewise differentiable transformation
and µ is an invariant ergodic probability measure (if X = Rl we assume that
the support of µ is compact).
Choose

T (x) =
(
∂Si

∂xj
(x)

)
i,j=1,...,l

∈ GL(l,R), (13.49)

the Jacobian matrix of S. The hypotheses of the theorem of Oseledec are satisfied
and Lyapunov’s characteristic exponents are defined for the system (X,A, µ, S).
From the chain rule it follows that(

∂(Sn)i
∂xj

(x)
)
=

n∏
k=1

T (Sn−k(x)) = Tn
x , (13.50)

and therefore if we consider an infinitesimal change δx(0) ∈ Rl in the initial
condition, after n iterations of S the latter becomes

δx(n) = Tn
x δx(0). (13.51)

By Theorem 13.18, for almost every choice of δx(0) we have

δx(n) ∼ enλ
(1)
δx(0) (13.52)

and the (exponential) instability of the trajectories corresponds to λ(1) > 0, where
λ(1) is the largest Lyapunov characteristic exponent.
In the one-dimensional case (l = 1) it is possible to compute Lyapunov’s

characteristic exponent by using the Birkhoff theorem; indeed for µ-a.e. x ∈ X
we have

λ = lim
n→∞

1
n
log |Tn

x | = lim
n→∞

1
n
log

n∏
j=1

S′(Sn−j(x))

= lim
n→∞

1
n

n−1∑
j=0

log |S′(Sj(x))| =
∫
X

log |S′(x)|dµ,
(13.53)

where S′ denotes the derivative of S.

Example 13.14
Consider the transformation of Example 13.4: X = [0, 1],A = Borel sets, S(x) =
4x(1− x),dµ(x) = dx/[π

√
x(1− x)] and assume known that it is ergodic.
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We now apply the ergodic theorem (of Birkhoff or of Oseledec; in a one-
dimensional situation there is no difference) and set Tn

x =
∏n

j=1 S
′(Sn−j(x)):

lim
n→∞

1
n
log |Tn

x | = 1
π

∫ 1

0

log |4(1− 2x)|√
x(1− x)

dx

=
1
π

[
2 arcsin

√
x log |4(1− 2x)| ]10 − 2

π

∫ 1

0

arcsin
√
x

4(1− 2x)
dx

= log 2.

It follows that the characteristic exponent of S is λ = log 2. Since the isomorphism
Φ : [0, 1] → [0, 1], Φ(x) = 2/π arcsin

√
x transforms S in the diadic map x �→ 2x

(mod 1) which is also isomorphic to the Bernoulli scheme SB (1/2, 1/2) it follows
that S is ergodic and also that h(S) = log 2 = λ. �

In the general case l > 1 there are no formulae that allow the explicit
computation (in general) of the characteristic exponents of Lyapunov.

13.10 Characteristic exponents and entropy

In the previous section, we saw that Lyapunov’s characteristic exponents measure
the exponential rate of divergence of two orbits which are initially close. Therefore
these exponents give a ‘geometric’ measure of the complexity of a measurable
dynamical system.
On the other hand, the entropy is a purely probabilistic notion, and it measures

the complexity of a transformation in the sense of information theory.
These seem at first to be two completely different approaches. However The-

orem 12.10 (Brin–Katok) shows how the entropy is also created by the exponential
divergence of close orbits, measured by the rate of exponential decrease of the
sets

B(x, ε, n) = {y ∈ X | d(Six, Siy) ≤ ε, ∀ i = 0, 1, . . . , n− 1}.

Just as the rate of exponential growth of an infinitesimal vector δx(n) is given
by enλ

(1)
, where λ(1) is the largest Lyapunov exponent, the rate of growth of the

kth element of volume δ1x(n) ∧ . . . ∧ δkx(n) is given by exp[n(λ1 + . . .+ λk)].
These heuristic remarks suggest that there exists a relation between the positive

characteristic exponents of Lyapunov and the entropy.
In what follows we assume that X is a compact Riemannian manifold, that

S : X → X is a diffeomorphism of X of class C2, A is the σ-algebra of the Borel
sets X and µ is an ergodic invariant probability measure for S.
We denote by λ(1) > λ(2) > . . . Lyapunov’s characteristic exponents of (X,A, µ,

S, S′) and by m(i) the multiplicity of λ(i). Finally we set u+ = max(0, u), so that
{λ(i)+} is the set of positive characteristic exponents.
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The following are the two fundamental results linking entropy and characteristic
exponents.

Theorem 13.19 (Ruelle’s inequality)

h(S) ≤
∑

λ(i)+mi. (13.54)
�

Theorem 13.20 (Pesin’s formula) If the invariant measure µ is equivalent to
the volume associated with the Riemannian metric on X then

h(S) =
∑

λ(i)+mi. (13.55)
�

For a proof of these results, besides the original articles of Pesin (1977) and
Ruelle (1978), we recommend Mañe (1987) and Young (1995).

Example 13.15
Take X = Tl with the flat metric, µ the Haar measure (= [1/(2π)l]× Lebesgue
measure), and S a hyperbolic automorphism. In this case S′ = S and if
ν1 ≥ ν2 ≥ . . . ≥ νl are the eigenvalues of S the characteristic exponents are
λi = log |νi|. Since the Haar measure (Example 13.12) is equivalent to the
Lebesgue measure (differing from it only in the choice of normalising factor),
the hypotheses of Pesin’s formula hold and

h(S) =
∑

λ(i)+mi =
∑

|νj |>1
log |νj |,

i.e. formula (13.43). �

13.11 Chaotic behaviour of the orbits of planets in the Solar System

The problem of the long-term behaviour of the planets in the Solar System has
been central to the investigation of astronomers and mathematicians. Newton
was convinced that the Solar System is unstable: he believed that perturba-
tions between the planets are sufficiently strong to destroy in the long term the
Keplerian orbits. Newton even conjectured that from time to time God inter-
vened directly to ‘reorder things’ so that the Solar System could survive. In the
Principia we find:

Planetae sex principales revolvuntur circum solem in circulis soli concentricis, eadem
motus directione, in eodem plano quamproxime. Lunae decem revolvuntur circum
terram, jovem et saturnum in circulis concentricis, eadem motus directione, in planis
orbitum planetarum quamproxime. Et hi omnes motus regulares originem non habent
ex causis mechanicis (...). Elegantissima haecce solis, planetarum et cometarum compage
non nisi consilio et dominio entis intelligentis et potentis oriri potuit.4

4 Newton I., Principia Mathematica Philosophiae Naturalis, Liber Tertius: De Mundi Sys-
temate. Pars II Scholium Generale 672–3 (‘The six primary planets revolve about the sun in
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Already in the seventeenth century the stability of the orbits of the planets
in the Solar System was considered as a concrete problem: Halley, analysing
Chaldean observations reported in Ptolemy’s work, proved that Saturn was dis-
tancing itself from the Sun, while Jupiter was approaching it. An extrapolation
of those data leads to a possible collision between the two planets in 6 million
years.
From a mathematical point of view, arguments in favour of the stability of

the orbits of planets were advocated by Lagrange, Laplace and Poisson in the
eighteenth century. Using the theory of perturbations, they could prove the
absence of ‘secular terms’ (hence terms with polynomial dependence on time) in
the time evolution of the semi-major axes of the planets, up to errors of third
order in the planetary masses. The extrapolation just mentioned is therefore not
justified.
On the contrary, the research of Poincaré and Birkhoff showed the possibility

of strong instability in the planets’ dynamics and found that the phase space
must have a very complex structure.
Modern theoretical research, mostly based on the KAM theorem, suggests that

the situation could have two aspects: the majority of the orbits in the sense of
measure theory (hence corresponding to the majority of initial conditions with
respect to the Lebesgue measure) would be stable, but in any neighbourhood
of them there exist unstable orbits. ‘Therefore, although the motion of a planet
or of an asteroid is regular, an arbitrarily small perturbation of the initial
conditions is sufficient to transform the orbit in a chaotic orbit’ (Arnol’d 1990,
p. 82).
It is a delicate issue, even if one neglects the actual physical data of the problem

(masses and orbital data of the planets of the Solar System), to consider just
idealised and simplified problems. For example, at a recent International Congress
of Mathematicians, in one of the plenary talks the following question was posed,
whose answer appears to be very difficult:

Consider the n-body problem (n ≥ 3) in which one of the masses is much greater
than all others, and a solution with circular orbits around the principal mass, which
lie in the same plane and are traced in the same direction. Do there exist wandering
domains5 in every neighbourhood of it? 6

circles concentric with the sun, with the same direction of motion, and very nearly in the
same plane. Ten moons revolve about the earth, Jupiter, and Saturn in concentric circles,
with the same direction of motion, very nearly in the planes of the orbits of the planets.
And all these regular motions do not have their origin in mechanical causes (. . .) This most
elegant system of the sun, planets, and comets could not have arisen without the design and
dominion of an intelligent and powerful being.’ (Translated by I. Bernard Cohen and Anne
Whitman, University of California Press.)

5 An open set V is called wandering in the Hamiltonian flow f t if there exists a time
t0 > 0 such that f t(V ) ∩ V = ∅ for every t > t0.

6 Herman M. R., Some open problems in dynamical systems, International Congress of
Mathematicians, Berlin, 1998.
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The problem of the stability of the orbits of the planets has also been studied
by the numerical integration of the Newton equations. A severe limitation of this
approach is the small size of the time-step necessary (from about 40 days for
Jupiter down to 12 hours for Mercury). Hence, until 1991 the only numerical
integration of a realistic model of the Solar System could simulate its evolution
only for 44 centuries.
This limitation forces, even for numerical studies, an analytical approach using

the appropriate variables and ideas from the canonical theory of perturba-
tions. Therefore one can replace Newton’s equations by the so-called secular
system introduced by Lagrange, where the rapidly varying angular paramet-
ers, i.e. the mean anomalies, are eliminated, together with the corresponding
canonically conjugate variables, i.e. the action variables (proportional to the
semi-major axes of the orbits). The system thus obtained describes the slow
deformation of the orbits of the planets since the remaining variables are pro-
portional to the eccentricity, to the inclination of the orbit, to the longitude
of the ascending node and to the argument of the perihelion. Considering the
eight principal planets, we obtain in this way a system with 16 degrees of
freedom.
Laskar integrated numerically a model of a secular system for the Solar System

(Laskar 1989b, 1990), accurate to second order in masses and to fifth order in the
eccentricities and inclinations. The result is a system containing approximately
150 000 polynomial terms.
The main result of this numerical study is that the inner Solar System (Mercury,

Venus, Earth and Mars) is chaotic, with a Lyapunov exponent of the order of
1/5 (million years)−1. This result indicates that it is impossible in practice to
predict exactly the motion of the planets for a period longer than 100 million
years. This sensitivity to initial conditions leads to a total lack of determination
for the orientation of the orbit (hence to the impossibility of predicting the time
evolution of the longitude of the ascending node and of the perihelion). The
variations in the eccentricity and in the inclination are much slower, and become
relevant only on a time-scale of the order of a billion years.
Additional numerical studies have shown that in a time of the order of 4 billion

years the eccentricity of Mercury might increase to a value 0.5, which would bring
it to intersect the orbit of Venus. In this case, the expulsion of Mercury from
the Solar System cannot be excluded.

13.12 Problems

1. Prove that the σ-algebra B(R) of Borel sets is generated not only by the
open sets of R but also by each of the following families: the closed sets of R;
the intervals of the type (a, b]; the intervals of the type (−∞, b].

2. Consider a measurable dynamical system (X,A, µ, S). Prove that if there
exists a set F ⊆ L1(X,A, µ) dense in L1(X,A, µ) and such that for every f ∈ F

then f̂(x) = 〈f〉µ for µ-almost every x, the system is ergodic.
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3. Let 1 < p < ∞ and (X,A, µ, S) be a measurable dynamical system. Prove
that the system is ergodic if and only if every S-invariant function f ∈ Lp(X,A, µ)
is constant µ-almost everywhere.

4. Let X be a compact metric space, S : X → X a continuous map, and B

the σ-algebra of Borel sets on X. Prove that there exists at least one probability
measure on X which is invariant for S.
(Hint: associate with S the continuous transformation S∗ : M(X) → M(X) defined
by (S∗µ)(A) = µ(S−1(A)) for every A ∈ B. An invariant probability measure
µ satisfies S∗µ = µ. Given any measure µ0 ∈ M(X) consider the sequence
µm = 1/m

∑m−1
j=0 S∗mµ0 and use the compactness of M(X) (see Problem 1).)

5. Let X be a topological space (locally compact, separable and metrisable)
and let S : X → X be continuous. S is topologically transitive if for every pair of
non-empty open sets U, V ⊂ X there exists an integer N = N(U, V ) such that
SN (U) ∩ V �= ∅. S is topologically mixing if for every pair U, V as above there
exists N = N(U, V ) such that Sn(U) ∩ V �= ∅ for every n ≥ N .
(1) Prove that if S is topologically transitive, then there exists x ∈ X whose

orbit (Sn(x))n∈N is dense in X.
(2) If S is topologically transitive, the only continuous functions f : X → R

which are S-invariant are the constant functions.
(3) Prove that irrational translations on the tori (Example 13.12) are not

topologically mixing but they are topologically transitive.
(4) Prove that for every integer m ≥ 2 the transformation S : S1 → S1, χ �→ mχ

(mod 2πZ) is topologically mixing.
6. Let X be a topological space, and S : X → X measurable with respect to

the σ-algebra A of Borel sets in X preserving the measure µ. If S is mixing and
µ(A) > 0 for every open set A ∈ A then S is topologically mixing.

7. Prove that if (X,A, µ, S) is mixing, equation (13.30) is valid also ∀ f ∈
L∞(X,A, µ) and ∀ g ∈ L1(X,A, µ).

8. Let (X,A, µ, S) be a mixing dynamical system. Assume that λ : A → [0, 1]
is another probability measure not necessarily preserved by S but absolutely
continuous with respect to µ. Prove that limn→+∞ λ(S−n(A)) = µ(A) for every
A ∈ A.

9. Prove that the irrational translations on the tori (described in
Example 13.12) are not mixing.
10. Prove that a Bernoulli scheme is mixing. (Hint: prove first that equation

(13.27) is satisfied if A and B are cylindrical sets.)
11. Let (X,A, µ, S) be a measurable dynamical system. Prove that, for every

m ∈ N, h(Sm) = mh(S). Show also that if S is invertible then h(Sm) = |m|h(S)
for every m ∈ Z (equivalently, S and its inverse have the same entropy).
12. Let (X1,A1, µ1, S1) and (X2,A2, µ2, S2) be two measurable dynamical

systems. Consider X = X1 × X2 with the measure space structure induced
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by the product (see Example 13.3). Prove that S : X → X, defined by
setting S(x1, x2) = (S1(x1), S2(x2)), preserves the product measure and that
h(S) = h(S1) + h(S2).
13. Prove Theorem 13.12.
14. Prove that the transformation of Gauss (Example 13.6) is exact (see

Problem 3 of Section 13.13), and therefore ergodic. Then prove that the Lya-
punov exponent of the transformation is π2/6 log 2. (Hint: expanding 1/1 + x =∑∞

n=0(−1)nxn show that
∫ 1
0 logxdx/(1 + x) =

∑∞
n=1 (−1)n/n2. To see that∑∞

n=1 (−1)n/n2 = −π2/12 compute the Fourier series expansion of the 2π-periodic
function which takes value −x2/4 in the interval (−π, π) and evaluate it at x = 0.)
15. Let X be a separable metric space, d the metric, A the associated σ-algebra

of Borel sets, µ a probability measure and S : X → X a map preserving the
measure µ. With every point x ∈ X we associate the ω-limit set

ω(x) := {y ∈ X | lim inf
n→∞ d(Sn(x), y) = 0}.

From the theorem of Poincaré (Remark 13.6) we deduce that µ({x ∈ X |
x /∈ ω(x)}) = 0. Since ω(x) is the set of accumulation points of the orbit
x, S(x), S2(x), . . ., the previous statement shows that µ-a.e. point x ∈ X is an
accumulation point for its own orbit.

13.13 Additional solved problems

Problem 1
Let X be a compact metric space and let M(X) be the set of invariant measures
on X with the usual topology. Prove that M(X) is a compact metric space (see
Mañe 1987).

Solution
Consider the Banach space C(X) of continuous functions f : X → R with the
usual norm

‖f‖ = sup
x∈X

|f(x)|. (13.56)

Since X is metric and compact it is also separable, and therefore there exists
a countable set (gi)i∈N ⊂ C(X) that is dense in the unit ball B = {f ∈ C(X) |
‖f‖ ≤ 1}.
Using the functions (gi)i∈N it is possible to define a metric on M(X): if µ and

ν are two probability measures on X we define

d(µ, ν) =
∞∑
j=1

2−j

∣∣∣∣∫
X

gj dµ−
∫
X

gj dν
∣∣∣∣ . (13.57)
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It is trivial to verify that d satisfies the triangle inequality and moreover ∀ i ∈ N
we obviously have ∣∣∣∣∫

X

gi dµ−
∫
X

gi dν
∣∣∣∣ ≤ 2i d(µ, ν).

This shows that if d(µn, µ) → 0 for n → ∞ then for every i ∈ N it follows that∫
X
gi dµn → ∫

X
gi dµ. Using the density of the functions (gi)i∈N in B we can

conclude that for every function g ∈ C(X) we have

lim
n→∞d(µn, µ) = 0 ⇔ lim

n→∞

∣∣∣∣∫
X

g dµn −
∫
X

g dµ
∣∣∣∣ = 0.

Therefore the topology induced by the metric (13.57) is the same as that defined
by (13.7) (or (13.8)).
Since M(X) is a metric space its compactness is equivalent to compactness for

sequences, and hence we only need to show that every sequence (µn)n∈N ⊂ M(X)
has a convergent subsequence. The fundamental ingredient in the proof is given
by the Riesz theorem (see Rudin 1974) given as follows.

Let Φ : C(X) → R be a positive linear functional (hence such that Φ(f) ≥ 0 if
f ≥ 0). There exists a unique probability measure µ ∈ M(X) such that∫

X

f dµ = Φ(f) (13.58)

for every f ∈ C(X).
Let there be given a bounded sequence (µn)n∈N ⊂ M(X). With every measure

µn we associate the sequence (µ̃n,i)i∈N ⊂ [−1, 1] defined by setting

µ̃n,i =
∫
X

gi dµn.

By the compactness in the space of sequences in [−1, 1] there exists a subsequence
(µnm)m∈N such that for every i ∈ N the sequence (µ̃nm,i)m∈N ⊂ [−1, 1] is
convergent, i.e. for every i ∈ N the sequence in m given by

∫
X
gi dµnm converges.

Using again the density of the sequence of functions (gi)i∈N it follows that
for every g ∈ C(X) the sequence

(∫
X
g dµnm

)
m∈N ⊂ R is convergent. Now let

Φ : C(X) → R be defined by

Φ(f) = lim
m→∞

∫
X

f dµnm . (13.59)

It is immediate to verify that Φ is a positive linear functional, and therefore by
Riesz’s theorem there exists µ ∈ M(X) such that for every f ∈ C(X) we have

Φ(f) =
∫
X

f dµ. (13.60)
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Comparing (13.59) with (13.60) shows that µnm → µ; hence the subsequence µnm

is convergent, and the proof is finished.

Problem 2
Prove that the baker’s transformation (Example 13.7) is a Bernoulli system, and
compute its entropy.

Solution
We note first of all that the baker’s transformation S is invertible: its inverse is

S−1(x, y) =

⎧⎪⎨⎪⎩
(x
2
, 2y

)
, if y ∈ (

0, 12
)
,(

x+ 1
2

, 2y − 1
)
, if y ∈ ( 1

2 , 1
)
.

(13.61)

We can then construct an isomorphism between S and a bilateral Bernoulli
scheme, namely SB (1/2, 1/2). From this fact it immediately follows that h(S) =
log 2.
Consider the map T : ZZ

2 → [0, 1]× [0, 1] defined as follows: if ξ = (ξi)i∈Z ∈ ZZ
2

set

(x, y) = T (ξ) =

(+∞∑
i=0

ξi2−i−1,
−∞∑
i=−1

ξi2i
)
. (13.62)

The map T therefore associates with a doubly infinite sequence ξ the point in the
square whose base 2 expansion of the x and y coordinates is given, respectively,
by (ξi)i≥0 and (ξi)i<0. It is immediate to verify that the properties (a) and (b)
of Definition 13.18 are satisfied. In addition we have

T (σ(ξ)) = T ((ξi+1)i∈Z) =

(+∞∑
i=0

ξi+12−i−1,
−∞∑
i=−1

ξi+12i
)

=

(
2
+∞∑
i=1

ξi2−i−1,
1
2

−∞∑
i=0

ξi2i
)

=
(
2x− ξ0,

y + ξ0
2

)
= S(x, y)

(13.63)

since ξ0 = 1 if x ≥ 1
2 and zero otherwise. It follows that (c) is also fulfilled.

To conclude the proof, it is enough to construct the inverse map T ′ (mod 0)
of T . Taking into account the interpretation of T in terms of the expansions
x =

∑∞
i=1 xi2

−i, y =
∑∞

i=1 yi2
−i, it is immediate to check that

ξ = (ξi)i∈Z = T ′(x, y) =

{
xi+1, i ≥ 0,
y−i, i < 0

(13.64)

is the sought transformation and satisfies all the conditions of (d).
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Problem 3
Let (X,A, µ, S) be a measurable dynamical system and let S be non-invertible
(mod 0). The system is exact if

+∞⋂
n=0

S−nA = N, (13.65)

where N is the trivial σ-algebra of measurable sets A ∈ A such that (modifying
A mod 0 if necessary) A = S−n(Sn(A)). Prove that:

(a) S is exact if and only if ∀ A ∈ A such that µ(A) > 0 and SjA ∈ A, ∀ j ≥ 0
we have

lim
j→+∞

µ(Sj(A)) = 1; (13.66)

(b) every exact system is ergodic.7

Solution
Let A be as in (a) and let us show that if S is exact, limj→∞ µ(Sj(A)) = 1.
Since the sequence A,S−1(S(A)), S−2(S2(A)), . . . is increasing, the union B =
∪+∞
k=0S

−k(Sk(A)) satisfies

B =
+∞⋃
k=n

S−k(Sk(A)) = S−n(Sn(B))

for every n ∈ N. Hence B ∈ ∩∞
n=0S

−nA and since µ(B) > µ(A) > 0 it necessarily
follows that µ(B) = 1, and therefore that

lim
j→∞

µ(Sj(A)) = lim
j→∞

µ(S−j(Sj(A))) = µ(B) = 1. (13.67)

Conversely, let us assume (13.66) holds and show how to deduce (13.65). Let
A ∈ A be such that S−n(Sn(A)) = A for every n ∈ N. Clearly µ(Sn(A)) = µ(A)
and lim

n→∞µ(Sn(A)) = µ(A). Then if µ(A) > 0 necessarily µ(A) = 1. This ends

the proof of (a).
We now show that an exact system is metrically indecomposable. Let AS

be the sub-σ-algebra of A of all S-invariant sets. The fact that the system is
metrically indecomposable is equivalent to the condition that AS ⊂ N, and hence
every S-invariant set has measure zero or one.
It is clear that AS ⊂ S−nA for every n ∈ N. Therefore

AS ⊂
+∞⋂
n=0

S−nA = N.

7 It can be proved (see Rohlin 1964) that exact systems are mixing.
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13.14 Additional remarks and bibliographical notes

Our brief introduction to ergodic theory has been strongly influenced by the
beautiful monograph of Mañe (1987) and by the excellent article of Young (1995).
The relation with the more physical aspects of the theory and in particular

with ‘strange’ attractors and turbulence is discussed in the review by Eckmann
and Ruelle (1985), where it is possible to also find an interesting discussion of the
various notions of fractal dimensions and of how to compute them experimentally
using time series.
A great impulse to the development of ergodic theory came also from the prob-

lem of the foundations of classical statistical mechanics. In addition to reference
works (Khinchin 1949, Krylov 1979), now slightly dated, for an introduction to a
modern point of view we recommend Gallavotti and Ruelle (1997) and Gallavotti
(1998) for their originality.
To read more about the chaotic behaviour of the orbits of the planets of the

solar system we recommend Laskar (1992) and Marmi (2000).
The collection of articles by Bedford et al. (1991) can be useful to the reader

looking for an introduction to the study of hyperbolic dynamical systems (see
Yoccoz 1995), of which an important example is given by geodesic flows on
manifolds with constant negative curvature (Hadamard 1898; Anosov 1963, 1967).



14 STATISTICAL MECHANICS: KINETIC THEORY

14.1 Distribution functions

In this chapter we present a brief introduction to the statistical approach to
mechanics, developed by Ludwig Boltzmann. The great importance and immense
bearing of the ideas of Boltzmann deserves ampler space, but this is not feasible
within the context of the present book. We recommend the monographs of
Cercignani (1988, 1997) and the deep analysis of Gallavotti (1995), in addition
to the treatise of Cercignani et al. (1997).
Consider a gas of N particles, which for simplicity we assume to be identical.

The gas is contained in a volume V . The typical values of N and V , at standard
conditions of temperature and pressure (T = 300K, P = 1atm) are N = 6.02×
1023 (Avogadro’s number) and V = 22.7 l. We assume from now on that all
collisions with the walls of the container are non-dissipative.
It is clearly impractical to follow the motion of the single particles taking

into account their mutual interactions and possible external forces. In fact this
is impossible, for example because we cannot know the initial conditions of all
particles. Statistics proves to be a more appropriate tool. Thus the methodology
of kinetic theory to study the evolution of a system and the achievement of an
equilibrium state is the following. We introduce a six-dimensional space, which we
use as phase space with momentum and position coordinates (p,q), and we plot
in this space the representative points of each particle. This space is traditionally
called the space µ.
We neglect the internal degrees of freedom of the particles, treating them

effectively as points. In what follows we always use this simplification to avoid
a heavily technical exposition, but this is only a reasonable assumption for
monatomic gases.
Consider in the space µ a cell of volume ∆ and count at a given time t the

number ν(∆, t) of representative points contained in this cell. If the ratio N/V

is, e.g. of order 1018 cm−3, we note that the ratio ν(∆)/∆ stabilises, as the
diameter of the cell becomes sufficiently (but not excessively) small, to a value
depending on the centre of the cell (p,q) and on the time t considered. The
value thus obtained defines a function f(p,q, t) called the distribution function.
This procedure is analogous to the procedure defining the density of a system in
the mathematical model adopted by the mechanics of continuous systems.
Thus the set of representative points in the space µ is treated as a continuous

distribution. Therefore the number of particles ν(Ω, t), whose kinematic state at
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time t is described by a point that belongs to a given measurable subset Ω of
the space µ, is given by the integral

ν(Ω, t) =
∫
Ω

f(p,q, t) dpdq. (14.1)

Hence

N =
∫

f(p,q, t) dpdq, (14.2)

where the domain of integration is the whole space µ.
If the spatial distribution of the particles is uniform, the distribution function

is independent of the space vector q inside the container (and it is zero outside)
and the integration with respect to the q in (14.2) simply leads to factorisation
of the volume V occupied by the system. In this case, we obtain the following
expression for the number n of particles per unit of volume, relative to the whole
system:

n =
N

V
=
∫

f(p, t) dp, (14.3)

where the domain of integration is R3.

The states of the system are described by the distribution function f , and
therefore it must in principle be possible to derive from this function the
thermodynamical properties of the system.

14.2 The Boltzmann equation

In this section we want to describe the line of thought that led Boltzmann to
deduce the equation governing the distribution function. Maxwell had assumed
the system to be in equilibrium (hence a distribution function independent of
time) and had looked for the conditions on f such that the equilibrium would be
stable. On the other hand, Boltzmann was interested by the problem, logically
very important, of how such equilibrium—whose experimental evidence is given by
the success of classical thermodynamics—can be achieved through the collisions
between the molecules.
The rate at which the distribution function f varies in time is given by

df
dt

=
∂f

∂t
+∇qf · p

m
+∇pf · F,

where we take into account that q̇ = p/m and ṗ = F, where F is any external
force acting on the system.
If the dilution of the gas were so strong that we could neglect the interaction

between the molecules, we would have that df/dt = 0. This can be proved
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starting from the conservation of the volume occupied by each set of representative
points in the space µ (Liouville’s theorem, Theorem 8.3). The variations of f
can therefore be attributed to the ‘collisions’ between molecules, where the term
‘collision’ is used in the generic sense of a short-range interaction. We mean
therefore that the molecules interact only when they arrive at a mutual distance
comparable to their diameters.
In the simplest model we make the following assumptions.

(1) Hard spheres; we assume that the molecules are identical hard spheres, of
radius R and mass m.1

(2) Strong dilution; if n = N/V , we assume that

nR3 � 1,

and therefore the probability that two molecules are at a distance of order
R (hence ‘colliding’) is very small.

(3) Perfectly elastic binary collisions; we exclude all situations where three or
more molecules collide at the same time. From a physical point of view, this
assumption is reasonable if the gas is strongly diluted, because the mean free
path of a molecule (the average distance between between two consecutive
collisions) is then much larger than the average diameter of the molecules.

(4) Molecular chaos (Stosszahlansatz);2 the distribution function of a pair of
colliding molecules—hence the probability that at time t we can determine
a binary collision at a position q between two molecules with momenta p1
and p2—is proportional to the product

f(q,p1, t)f(q,p2, t). (14.4)

The statistical significance of (14.4) is the weak correlation between the motion
of the two colliding particles before the collision. Hence we neglect the possibility
that the two particles have already collided with each other or separately with
the same particles.
From the assumption that the collisions are non-dissipative, it follows that the

two colliding molecules with initial momenta p1, p2 emerge from the collision with
new momenta p′

1, p
′
2, which must satisfy the fundamental laws of conservation

of momentum and energy:

p1 + p2 = p′
1 + p′

2 = P, (14.5)

p21 + p22 = p′2
1 + p′2

2 = 2mE. (14.6)

1 The typical order of magnitude of R is 10−7 − 10−8 cm, and the order of magnitude of
m is 10−22 − 10−24 g.

2 This assumption is still discussed today, and it is essentially statistical, as opposed to
the assumption that the collisions are only binary. The rigorous deduction of the assumption
of molecular chaos for appropriate initial conditions f0 for the distribution function (in the
so-called Grad–Boltzmann limit R → 0 and n → ∞, so that nR2 → constant, corresponding
to fixing the mean free path, as we shall see in Section 14.6) is an important success of
modern mathematical physics, due to Lanford (1975).
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In reality, the following considerations apply to any interaction model
satisfying (14.5), (14.6).
The transitions of the pair (p1,p2) to the admissible pairs (p′

1,p
′
2) do not,

in general, have equal probability, but they are described by a transition kernel
τ(p1,p2,p′

1,p
′
2) which must be symmetric with respect to the interchange of the

pairs (p1,p2) and (p′
1,p

′
2), because the inverse transition has the same probability,

due to the reversibility of the microscopic evolution equations (the equations of
Hamilton). The kernel is also symmetric separately for the interchange of p1 and
p2 and of p′

1 and p′
2, since we assumed that the particles are identical.

Finally, it is reasonable to assume that τ depends on the modulus of the
relative velocity of the colliding particles, in addition to the angular coordinates
of the collision, for reasons of isotropy.
If we now consider the function

f1 = f(p1,q, t), (14.7)

we see that its total derivative with respect to time is the sum of a negative term
due to the transitions (p1,p2) → (p′

1,p
′
2) for any p2, and of a positive term due

to the inverse transitions. For fixed p1, we must consider all the possible vectors
p2 and all the possible pairs (p′

1,p
′
2) that are compatible with the conservation

laws (14.5) and (14.6).
Because of the assumption (14.4) the frequency of the transitions (p1,p2) →

(p′
1,p

′
2) and the frequency of the inverse ones are proportional to the products

f1f2 and f ′
1f

′
2, respectively, by where analogy with (14.7) we have used the

symbols fi = f(pi,q, t), f ′
i = f(p′

i,q, t), i = 1, 2. The transition kernel weighs
such products to obtain the respective frequencies. Hence at every point q, for
fixed p1 and p2, the frequency of the collisions that make a particle leave the class
described by the function f1 is τ(p1,p2,p′

1,p
′
2)f1f2, while the frequency of the

collisions that enrich this class is τ(p1,p2,p′
1,p

′
2)f

′
1f

′
2. To obtain the collision term

that equates with df1/dt we must therefore integrate the expression τ(f ′
1f

′
2−f1f2)

over all the momenta p2 and on the regular two-dimensional submanifold of R6

made of the pairs (p′
1,p

′
2) subject to the constraints (14.5), (14.6), where the

invariants P, E are fixed in correspondence to p1,p2. Denoting by Σ(P, E) this
manifold, we can finally write the balance equation for f1 in the form(

∂

∂t
+
p1
m

· ∇q + F · ∇p

)
f1 =

∫
R3

dp2
∫

Σ(P,E)

τ(p1,p2,p′
1,p

′
2)(f

′
1f

′
2 − f1f2) dΣ

(14.8)

(Boltzmann equation). The surface Σ(P, E) is a sphere (see Problem 1 of Section
14.9) with radius pr/2, where pr = p1−p2 is the relative momentum. Hence the
integral on the right-hand side of the Boltzmann equation (14.8) can be written,
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in angular coordinates (colatitude θ and longitude ϕ) with respect to the polar
axis pr: ∫

R3

dp2

2π∫
0

dϕ

π∫
0

dθ τ̃(pr, θ, ϕ)(f ′
1f

′
2 − f1f2) (14.9)

where τ̃(pr, θ, ϕ) = p2r/4 sin θ τ(p1,p2,p
′
1,p

′
2) has dimensions [τ̃ ] = [l3t−1]. The

kernel τ̃ can be interpreted, for the transitions described by (pr, θ, ϕ), as an
‘effective volume’ traced in the unit of time by the incident particle. Making the
dependence on the modulus of the velocity of the latter, i.e. pr/m, explicit we
obtain a particularly transparent form of τ̃ :

τ̃(pr, θ, ϕ) =
pr
m
σ(pr, θ, ϕ), (14.10)

where [σ] = [l2], so that σ(pr, θ, ϕ) is the area of an ideal disc, with centre in
the incident particle and normal to its velocity, which traces the effective volume
for collisions. In particular, since the product f1f2 is independent of θ and ϕ, it
makes sense to consider the integral

ΣTOT(pr) =

2π∫
0

dϕ

π∫
0

σ(pr, θ, ϕ) dθ, (14.11)

called the total cross-section (irrespective of the outcome of the collision). The
role of the partial cross-section σ can be clarified by considering the classical
example of when the particles are modelled as hard spheres (see the next section).
In this simple case, σ depends only on θ.
The Boltzmann equation is a fundamental tool for the study of systems with

many particles, whose evolution is due to the interactions between the particles.
There exists a great variety of situations, each requiring the correct description of
the collision term. There are systems of charged particles (plasma), heterogeneous
systems, systems of particles which collide with the molecules of a fixed structure
with possible absorption. A relevant example is a neutron gas in a nuclear reactor,
where it is known that the cross-section necessary to capture a neutron by a
uranium isotope U235 depends on the energy of the incident particle. A classical
reference is the treatise of Cercignani (1988).

Remark 14.1
Integrating the right-hand side of (14.8) with respect to p1 we find zero. Indeed
the substitution of (p1,p2) with (p′

1,p
′
2) formally changes the integral into its

opposite. However the integral is symmetric in the four momenta, and hence it is
itself invariant. This fact has a simple interpretation. If for example we consider
f to be independent of q and assume f(p, t) is zero for |p| → ∞ then the integral
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of the left-hand side of (14.8) reduces to dn/dt and its vanishing corresponds to
the conservation of the density of the particles. �

Remark 14.2
The mathematical literature on the Boltzmann equation is very extensive. An
existence and uniqueness theorem for a model of a gas with hard spheres with
perfectly elastic collisions was proved by Carleman (1957).
The initial value problem turns out to be of extreme complexity. While several

results have been obtained under particular assumptions, in its generality the
problem has only recently been solved by Di Perna and Lions (1990). �

14.3 The hard spheres model

We compute the cross-section for a hard spheres gas of radius R, interacting
via elastic collisions, neglecting as usual the energy associated with the rotations
of the spheres. In addition to the reference frame in which the particle with
momentum p2 (in the laboratory system) is at rest, it is convenient to also
consider the centre of mass frame. In the latter frame the momenta p̂i, p̂′

i (i = 1, 2)
are obtained by subtracting from pi,p′

i the momentum of the centre of mass
p0 = 1

2 (p1 + p2). It follows that

p̂1 =
1
2
pr, p̂2 = −1

2
pr.

The outgoing momenta must be opposite and with the same magnitude as the
incoming momenta:

p̂′
1 = −p̂′

2, p̂′
1 = p̂′

2 =
1
2
pr.

To establish the direction of p̂′
1, p̂

′
2 we say that in the centre of mass frame

the collision between two spheres follows the optical reflection law: the angles
between p̂1 and p̂′

1 with the line O1O2 joining the centres of the two spheres
are equal, and the four momenta all lie in the same plane (Fig. 14.1a).
Adding to all the momenta 1

2pr we return to the frame where p̃2 = 0; hence
we deduce that, in the latter frame,

p̃′
i = p̂′

i +
1
2
pr.

This has the following interpretation: the momenta p̃′
1, p̃

′
2 are the diagonals of

the parallelograms with sides ±p̂′
1 and 1

2pr (Fig. 14.1b).
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Therefore

(a) p̃′
1 and p̃′

2 are orthogonal;
(b) p̃′

2 has the direction of O1O2.

We now compute the cross-section. We choose the reference frame where
p̃1 = pr, p̃2 =0. It is clear that the frequency of such collisions is equal to
the number of spheres whose centres are in the cylinder of radius 2R and height
pr/m. Hence the total cross-section is Σ = 4πR2. To determine σ(θ) we endow
the sphere of radius 2R and centre O1 with a spherical coordinate system with
polar axis pr and we fix the unit vector e of p̃′

2. For an amplitude dθ,dϕ between
two meridians and two parallels, we have on the sphere the area 4R2 sin θ dθ dϕ,
whose projection on the equatorial plane is (Fig. 14.2)

4R2 sin θ cos θ dθ dϕ.

pr

u
e

2R

Fig. 14.2
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Integrating with respect to dϕ we find

σ(θ) = 8πR2 sin θ cos θ

(integrating in dθ between 0 and π/2 gives naturally ΣTOT = 4πR2).
Do not confuse the present coordinate θ (the incidence angle, varying between

0 and π/2) with the colatitude used in (14.10), which is twice the incidence
angle.

14.4 The Maxwell–Boltzmann distribution

The equilibrium states of a system governed by equation (14.8) are described
by the stationary solutions. We seek such solutions assuming that F = 0 and that
the distribution function f does not depend on the position coordinates q. In
other words, we look for an equilibrium solution of the kind of f0(p). A sufficient
condition for f0(p) to be a stationary solution of the Boltzmann equation is that
it satisfies the equality

f0(p1)f0(p2) = f0(p′
1)f0(p

′
2) (14.12)

for every pair of states (p1,p2), (p′
1,p

′
2) satisfying (14.5) and (14.6). We shall see

in what follows that this condition is also necessary (‘theorem H’ of Boltzmann).
Equation (14.12) expresses a conservation law for the product f0(p1)f0(p2).

However our hypotheses (in particular the absence of internal structure in the
molecules) imply that the only conserved quantities in the collision are the kinetic
energy and the total momentum. Therefore the function f0(p) must be such that
the product f0(p1)f0(p2) depends only on the invariants P and E. Note that
for an arbitrary vector p0 we have

(p1 − p0)2 + (p2 − p0)2 = 2mE − 2P · p0 + 2p20,

and hence a possible choice of f0 satisfying (14.12) (and in addition such that
f0(p) → 0 for |p| → ∞) is

f0(p) = Ce−A(p−p0)2 , (14.13)

with A and C positive constants, whose meaning will be elucidated.
We now define the mean value of a quantity G(p) relative to the distribution

(14.13) by the formula

〈G〉 =
∫
G(p)f0(p) dp∫

f0(p) dp
. (14.14)

Recall that by the definition of the distribution function, as we saw in (14.3),
the denominator in (14.14) represents the density n = N/V of particles.
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We can therefore easily compute that the mean value of the momentum p is
given by

〈p〉 =
∫
pf0(p) dp∫
f0(p) dp

= p0, (14.15)

since ∫
pf0(p) dp = C

∫
(p+ p0)e−Ap2

dp = p0

∫
f0(p) dp.

Hence p0 expresses a uniform translation of the whole frame. It is always possible
to choose a reference frame moving with this translation, so that in it we have
p0 = 0.
The normalising condition ∫

f0(p) dp = n (14.16)

fixes the constant C in terms of

n =
∫

f0(p) dp = 4πC

∞∫
0

p2e−Ap2
dp = C

( π
A

)3/2
(see Appendix 8), and therefore

C = n

(
A

π

)3/2
. (14.17)

The constant A is in turn linked to the average kinetic energy ε of a molecule:

ε =
∫
p2/2mf0(p) dp∫

f0(p) dp
. (14.18)

Indeed from (14.13) and (14.17) it follows that

ε =
2π
m

(
A

π

)3/2 ∞∫
0

p4e−Ap2
dp =

3
4Am

,

and hence

A =
3

4εm
. (14.19)

This yields the following expression for the equilibrium distribution, called the
Maxwell–Boltzmann distribution:

f0(p) = n

(
3

4πεm

)3/2
exp

[
−p2

2m

/(
2ε
3

)]
. (14.20)
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Equation (14.20) was deduced by Maxwell in the essay On the Dynamical
Theory of Gases, assuming the statistical independence of the velocities of two
colliding molecules, and using the conservation of the total kinetic energy during
an elastic collision. These are the same assumptions that we adopted in the
previous section to derive the Boltzmann equation.
If the gas is subject to an external conservative force,

F = −∇q Φ(q), (14.21)

and occupies a bounded region V , we can show that the Boltzmann equation
admits the stationary solution

f(p,q) = f0(p)
[
1

|V |
∫
V

e−Φ(q)/(2ε/3)dq
]−1

e−Φ(q)/(2ε/3). (14.22)

Indeed, we note that equation (14.12) is still obviously satisfied. Therefore, if we
seek f(p,q) in the form f = f0(p)g(q), we have on the left-hand side of (14.8)
that

f0∇qg · p
m

+ g∇pf0 · (−∇q Φ) = 0,

which yields the equation for g:

∇qg + g∇q Φ

/(
2ε
3

)
= 0,

with solution g(q) = c exp[−Φ(q)/(2ε/3)]. The constant c is a result of the
normalisation

∫
f0(p) dp

∫
V
g(q) dq = N .

Note that the equilibrium distributions (14.20) and (14.22) are independent of
the function τ appearing in the Boltzmann equation, and hence of the kind of
two-body interaction between the molecules of the gas.
It is interesting to note, in view of future developments, that once the kernel τ

is defined, the mechanics of the collision do not depend on the identification of the
particles. Indeed, the indices of the outgoing particles are assigned for convenience,
but the symmetry properties of the kernel allow them to be interchanged, so that
the outgoing particles are not only identical, but also indistinguishable.

14.5 Absolute pressure and absolute temperature in
an ideal monatomic gas

Consider a surface exposed to the action of the gas molecules, and assume that
it is perfectly reflecting.
By definition, the force acting (on average) on any of its infinitesimal elements

dσ is in magnitude equal to P dσ, where P is the pressure. This force can be
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computed by observing that every molecule colliding with dσ is subject to a
variation of its momentum in the direction normal to dσ and equal to twice the
normal component pn of its momentum preceding the collision. The force exerted
on dσ is obtained by multiplying 2pn by the number of collisions experienced
in one unit of time by particles with momentum component pn, and integrating
on the space of momenta which produce collisions (pn > 0). We compute the
expression for P corresponding to the distribution (14.20).
Since 1/mpnf0(p) dσ dp is the number of collisions per unit time due to the

particles with momentum in the cell dp centred at p, we find the expression

P =
1
m

∫
pn>0

2p2nf0(p) dp =
1
m

∫
p2nf0(p) dp, (14.23)

which is proportional to the average 〈p2n〉.
Because of the symmetry of f0(p), it follows that 〈p2〉 is equal to the sum

of the averages 〈p2i 〉, where pi are the projections in three mutually orthogonal
directions, which are all equal. It follows that 〈p2n〉 = 1

3 〈p2〉 and therefore we can
substitute 1

3 p
2 for p2n in (14.23).

Hence we find

P =
4π
3m

∞∫
0

p4f0(p) dp,

and we arrive at the so-called state equation:

P =
2
3
nε. (14.24)

Equation (14.24) expresses a relation between two macroscopic quantities, which
we can make more explicit by introducing the absolute temperature in the
following way.

Definition 14.1 The absolute temperature T is related to the average kinetic
energy ε of the gas by

ε =
3
2
kT, (14.25)

where k is the Boltzmann constant (1.380× 10−16 erg/K). �

This definition may appear rather abstract, and can be reformulated differently.
What is important is that it is consistent with classical thermodynamics.
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Considering (14.24) and (14.25) together we obtain the well-known relation

P = nkT (14.26)

(which could have been used as the definition of T ).3 In addition, equation (14.25)
yields the following alternative form for (14.20):

f0(p) = n(2πmkT )−3/2 exp
[
− p2

2mkT

]
. (14.27)

Remark 14.3
With reference to the more general case, when there is also the action of an
external field, we note that the equilibrium distribution (14.22) contains the factor
e−βh(p,q), where β = 1/kT and h(p,q) = (p2/2m) + Φ(q) is the Hamiltonian of
each particle, but where the internal forces do not contribute (confirming the fact
that in our assumptions these do not change the structure of the equilibrium,
although they play a determining role in leading the system towards it). �

For a prescribed value of the mean kinetic energy of the molecules, the following
definition appears natural, and links the total kinetic energy to the state of
molecular motion, under the usual assumptions (monatomic gas, non-dissipative
collisions, etc.).

Definition 14.2 We call the internal energy of the system the quantity

U(T ) = Nε =
3
2
NkT. (14.28)

�

The definition of the internal energy allows us to complete the logical path
from the microscopic model to the thermodynamics of the system.
In an infinitesimal thermodynamical transformation the work done by the

system for a variation dV of its volume is clearly P dV . If the transformation is
adiabatic the work is done entirely at the expense (or in favour) of the internal
energy, i.e. dU + P dV = 0. If the transformation is not adiabatic the energy
balance is achieved by writing

dQ = dU + P dV. (14.29)

The identification of dQ with the quantity of heat exchanged with the exterior
leads to the first principle of thermodynamics. We can now use dQ, defined

3 Since N = νNA we again find the well-known law PV = νRT , where the universal gas
constant is R = kNA = 8.31 × 107 erg/mole K.
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by equation (14.29), to introduce the thermal capacity C (relative to a generic
transformation):

C dT = dQ. (14.30)

Since dU = 3
2 Nk dT , we easily find the expression for the thermal capacity at

constant volume of a monatomic gas:

CV =
3
2
Nk. (14.31)

14.6 Mean free path

We can now obtain the expression for the mean free path in a hard sphere gas
following the Maxwell–Boltzmann distribution. Recall that if δ is the diameter
of the spheres, the cross-section is measured by πδ2.
If we consider the pairs of molecules with momenta p1 and p2 and we fix

a reference frame translating with one of the particles, the magnitude of the
velocity of one with respect to the other particle is 1/m |p1 − p2|. In a time dt
only the particles within a volume πδ2/m |p1 − p2|dt can collide. To find the
number of collisions per unit volume, we must multiply the latter volume by
the functions f0(p1) and f0(p2) (in agreement with (14.4)) and then integrate
on p1 and p2. Dividing by dt we find the frequency of the collisions per unit
volume as

νu =
πδ2

m

∫
|p1 − p2|f0(p1)f0(p2) dp1dp2. (14.32)

Since every collision involves two and only two particles, the total number of
collisions to which a molecule is subject per unit time can be found by dividing
2νu by the density n of molecules.
The mean free path is then obtained by dividing the average velocity by the

number of collisions found above:

λ =
n〈v〉
2νu

. (14.33)

It is not difficult to compute that 〈v〉 = 2
√
2kT/πm (of the order of magnitude

of 105 cm s−1 at T = 300K and m ∼ 10−23 g), so that

λ =
n

νu

√
2kT
πm

. (14.34)

The computation of νu can be easily achieved recalling that (see (14.27))

f0(p1)f0(p2) =
n2

(2πmkT )3
exp

[
−p21 + p22

2mkT

]
.



14.7 Statistical mechanics: kinetic theory 605

It is convenient to change variables to

P = p1 + p2, η = p1 − p2,

thus expressing the integral in (14.32) in the form

νu =
1
8m

(
nδ

π

)2 1
(2mkT )3

∫
|η| exp

(
− P 2

4mkT

)
exp

(
− η2

4mkT

)
dP dη

=
25

m
(nδ)2

√
mkT

∞∫
0

ξ2e−ξ2
dξ

∞∫
0

ξ3e−ξ2
dξ = 4

√
π (nδ)2

√
kT

m
.

Finally, from this it follows that

λ =
1

2
√
2

1
πδ2n

, (14.35)

independent of the temperature (n ∼ 1018 cm−3, δ ∼ 10−7 cm yields λ ∼ 10−5

cm). We remark that equation (14.35) justifies our previous statement that the
product nδ2 determines the mean free path.

14.7 The ‘H theorem’ of Boltzmann. Entropy

We now examine again the Boltzmann equation (14.8) to show that the condition
(14.12) (from which we deduced the Maxwell–Boltzmann distribution (14.20)) is
not only sufficient but also necessary for the distribution f0 to be an equilibrium
distribution. This is a consequence of the ‘H theorem’, which we state below. Its
implications are far more relevant, as they yield the concept of entropy.
Assume for simplicity that the molecular distribution is spatially uniform (hence

that f does not depend on the coordinates q) and that the gas is not subject
to external forces. The distribution function f(p, t) then satisfies the equation

∂f

∂t
(p1, t) =

∫
dp2

∫
Σ(P ,E)

τ(p1,p2,p′
1,p

′
2)[f(p

′
1, t)f(p

′
2, t)− f(p1, t)f(p2, t)] dΣ,

(14.36)

where the manifold Σ has been described in Section 14.2.
We now want to use equation (14.36) to describe the time evolution of the H

functional of Boltzmann, defined by

H(t) =
∫

f(p, t) log f(p, t) dp. (14.37)

Obviously when writing equation (14.37) one must only consider the functions
f(p, t) whose integral is convergent; we assume that this is the case in what
follows.
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Remark 14.4
Considering that f/n plays the role of a probability density, we note the analogy
of (14.37) with the definition of entropy given in the study of ergodic theory (see
(13.33)). �

We have the following theorem.

Theorem 14.1 (Boltzmann’s H theorem) If the distribution f(p, t) appearing in
the definition (14.37) of H(t) is a solution of equation (14.36), then

dH
dt

≤ 0. (14.38)

In expression (14.38) equality holds if and only if f1f2 = f ′
1f

′
2.

Proof
Substituting (14.36) into the expression

dH
dt

=
∫
R3

∂f

∂t
[1 + log f(p, t)] dp

we find (setting p = p1)

dH
dt

=
∫
R3

dp1
∫
R3

dp2
∫

Σ(P,E)

τ(p1,p2,p′
1,p

′
2)

× [f(p′
1, t)f(p

′
2, t)− f(p1, t)f(p2, t)][1 + log f(p1, t)] dΣ .

(14.39)

In view of future developments, it is preferable to treat symmetrically the
four momentum vectors p1, p2, p′

1, p
′
2 and to define the manifold Ω of 4-tuples

(p1,p2,p′
1,p

′
2) satisfying (14.5) and (14.6).

By the symmetry of the kernel τ with respect to the interchange of p1 with
p2 we find an equation analogous to (14.39), i.e.

dH
dt

=
∫
Ω

τ(p1,p2,p′
1,p

′
2)[f(p

′
1, t)f(p

′
2, t)− f(p1, t)f(p2, t)][1 + log f(p2, t)] dΩ,

(14.40)

where f(p2, t) has simply replaced f(p1, t) in the last term. Adding
equations (14.39) and (14.40), we find

dH
dt

=
1
2

∫
Ω

τ(p1,p2,p′
1,p

′
2) · [f(p′

1, t)f(p
′
2, t)− f(p1, t)f(p2, t)]

× [2 + log(f(p1, t)f(p2, t))] dΩ .

(14.41)
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Recalling the symmetry of the kernel τ with respect to the interchange of the
pairs (p1,p2) and (p′

1,p
′
2), we also have

dH
dt

= −1
2

∫
Ω

τ(p1,p2,p′
1,p

′
2) · [f(p′

1, t)f(p
′
2, t)− f(p1, t)f(p2, t)]

× [2 + log(f(p′
1, t)f(p

′
2, t))] dΩ .

(14.42)

Adding (14.41) and (14.42), we finally find the expression

dH
dt

=
1
4

∫
Ω

τ(p1,p2,p′
1,p

′
2)[f(p

′
1, t)f(p

′
2, t)− f(p1, t)f(p2, t)]

× [log(f(p1, t)f(p2, t))− log(f(p′
1, t)f(p

′
2, t))] dΩ,

(14.43)

which is clearly non-positive, since for each pair of positive real numbers (x, y)
we have

(y − x)(log x− log y) ≤ 0,

with equality only if x = y. �

We can also deduce from the proof of the H theorem the following corollaries.

Corollary 14.1 The condition (14.12) for a distribution to be in equilibrium
is not only sufficient but also necessary.

Proof
For a stationary solution we have dH/dt = 0 that necessarily—from
equation (14.43)—yields (14.12). �

The monotonicity of H finally yields the following.

Corollary 14.2 For any initial distribution f(p, 0) the system converges
asymptotically towards the stationary solution. �

The H theorem plays a fundamental role in the kinetic theory of gases, as it
allows the introduction of entropy and the deduction of the second law of ther-
modynamics. Indeed, it is enough to define the entropy so that it is proportional
to −H(t) and also that it is extensive (i.e. increasing proportionally with the
volume, when the average density n is fixed).

Definition 14.3 If V indicates the volume occupied by the gas, we call entropy
the extensive quantity

S = −kV H + constant. (14.44)

�
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Remark 14.5
In the definition (14.37) of H we assume that the argument of the logarithm is
dimensionless (and that modifying it we modify H by a constant proportional to
n). It follows that H has the dimension of V −1 and in equation (14.44) S has
the same dimensions as the Boltzmann constant k. �

The relation between the H theorem and the second law of thermodynamics is
an immediate consequence of Definition 14.3 of entropy: the entropy of a system
grows until equilibrium is achieved.
The H functional computed corresponding to the Maxwell–Boltzmann distri-

bution (14.27) is

H0 = n

{
log

[
λ−1n

(
1

2πmkT

)3/2]
− 3

2

}
, (14.45)

where λ > 0 is a factor yielding a dimensionless quantity, and therefore

S0(E, V ) = kN

{
log

[
λ̂
V

N

(
E

N

)3/2]
+

3
2

}
, λ̂ = λ

(
4
3
πm

)3/2
. (14.46)

This formula emphasises the additivity of S0.
The computation of (14.45) is simple, since when we set f = f0(p) in (14.37)

the integrand depends on p2. Hence

H0 =

∞∫
0

4πp2f0(p) log[λf0(p)] dp.

From (14.46) it is immediate to check that

∂S0
∂E

=
3
2
k
N

E
=

1
T
,

which is simply the usual definition of absolute temperature (note that we could
avoid expressing ε through equation (14.25) and introduce the temperature at
this point). Indeed, setting in (14.29) U = E and dQ = T dS(E, V ), we find
precisely

∂S

∂E
=

1
T

and

∂S

∂V
=

P

T
.

This last relation is easily verified for (14.46).
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Remark 14.6
The equation T (∂S/∂V ) = P can in general be deduced from (14.44). Indeed,
setting f(p) = nϕ(p) with

∫
R3

ϕ(p) dp = 1, we can write

H =
N

V

∫
R3

ϕ log
(
N

V
ϕ

)
dp,

yielding

∂H

∂V
= − 1

V
(H + n)

and eventually T (∂S/∂V ) = nkT = P . �

Remark 14.7
We cannot discuss here the many ‘paradoxes’ stemming from the interpreta-
tion of the H theorem as the manifestation of the irreversibility of the process
achieving macroscopic equilibrium, as opposed to the reversible and recurrent
behaviour (see Theorem 5.1) of the Hamiltonian flow governing the microscopic
dynamics of the system. For a discussion of these important problems, we refer
the reader to the texts of Uhlenbeck and Ford (1963), Thompson (1972) and
Huang (1987). We also note the pleasant article by Cercignani (1988). �

14.8 Problems

1. The Ehrenfest model (1912). Consider a gas of N molecules ‘P’ non inter-
acting and moving in the plane. We also introduce the obstacles ‘Q’ modelled by
squares of side a with diagonals parallel to the axes x and y. The obstacles Q
are fixed, uniformly but randomly distributed, and they model a strongly diluted
gas (the average distance between any two of them is much larger than a). The
molecules P are moving at constant speed c, equal for all of them, uniquely in the
directions of the axes x or y (positive or negative); when they meet the obstacles
Q they undergo an elastic collision. We denote by f1(t), f2(t), f3(t) and f4(t)
the number of molecules P which at time t move, respectively, in the positive x
direction (direction 1), the positive y direction (2), the negative x direction (3)
and the negative y direction (4). Clearly f1 + f2 + f3 + f4 = N . The functions
fi play the same role as the distribution function. Let N12∆ t be the number of
molecules P which, after collision with an obstacle, in the time interval ∆ t, pass
from moving in the direction 1 to motion in the direction 2. The assumption of
molecular chaos (Stosszahlansatz ) can be formulated for this model as follows:
N12∆ t = αf1∆ t, where α = nca/

√
2 and n is the density of obstacles Q in the

plane; analogously for the other transitions. Note that α∆ t is the ratio of the
total area occupied by the strips Sij which are parallelograms of length c∆ t and
basis resting on each of the obstacles Q on the side where the collision occurs,
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changing the direction of the motion of the molecules P from i to j. Prove that
the average number of collisions in the interval ∆ t is given by 2Nα∆ t and
that the average time interval between any two collisions is T = 1/

√
2acnN .

Prove that the equation modelling the evolution of the distribution functions
(Boltzmann equation) is given by the system of ordinary differential equations

df1
dt

= α(f2 + f4 − 2f1),

df2
dt

= α(f3 + f1 − 2f2),

df3
dt

= α(f4 + f2 − 2f3),

df4
dt

= α(f1 + f3 − 2f4).

Verify that the equilibrium distribution (stationary) is given by f1 = f2 = f3 =
f4 = N/4. Prove that an arbitrary initial distribution converges to the equilibrium
distribution and that the time τ of relaxation is of the order of 1/α, and
therefore much larger than T . Finally, if H(t) = f1(t) log f1(t)+ f2(t) log f2(t)+
f3(t) log f3(t) + f4(t) log f4(t), prove that dH/dt ≤ 0, and that the derivative
vanishes only for the equilibrium distribution. (Hint: show that dH/dt as a
function of f1, f2, f3, f4 subject to the constraint

∑4
i=1 fi = N has an absolute

maximum equal to zero in correspondence with f1 = f2 = f3 = f4 = N/4.)

14.9 Additional solved problems

Problem 1
Prove that the surface Σ(P, E) is a sphere and deduce the expression (14.9) for
the integral on the right-hand side of the Boltzmann equation (14.8).

Solution
In the reference frame in which the particle with momentum p2 is at rest
(which is uniformly translating with respect to the laboratory frame), the new
momenta are

p̃1 = pr , p̃2 = 0 , p̃′
1 = p′

1 − p2 , p̃′
2 = p′

2 − p2,

and equations (14.5), (14.6) become

p̃′
1 + p̃′

2 = pr, p̃′2
1 + p̃′2

2 = p2r.

Therefore the vectors p̃′
1 and p̃′

2 are the sides of a right-angled triangle with
hypotenuse pr and Σ(P, E) is the sphere of diameter pr. The form (14.9) of
the integral on the right-hand side of (14.8) can be deduced immediately after
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introducing angular coordinates (colatitude and longitude), choosing pr as the
polar axis of the sphere Σ(P, E).

Problem 2
Let F (p,q) be some observable quantity, associated with the molecules at q with
momentum p, and preserved by binary collisions; hence such that

F (p1,q) + F (p2,q) = F (p′
1,q) + F (p′

2,q). (14.47)

Prove that its expectation 〈F 〉 does not vary with time.

Solution
From equation (14.8) we find

d〈F 〉
dt

=
∫

dq
∫

dp1 F (p1,q)
∫
R3

dp2
∫

Σ(P,E)

d
∑

τ(p1,p2,p′
1,p

′
2)(f

′
1f

′
2 − f1f2).

Using the same kind of argument as used to prove the H theorem, considering
the possible exchanges of variables (p1 with p2; p1 with p′

1 and p2 with p′
2; p1

with p′
2 and p2 with p′

1) and adding all contributions thus obtained, we find

4
d〈F 〉
dt

=
∫

dq
∫

dp1
∫
R3

dp2
∫

Σ(P,E)

d
∑

τ(p1,p2,p′
1,p

′
2)

× (f ′
1f

′
2 − f1f2)(F1 + F2 − F ′

1 − F ′
2), (14.48)

where we set Fi = F (pi,q), F ′
i = F (p′

i,q). Thanks to the conservation law
(14.47) the right-hand side of (14.82) vanishes, and the proof follows.

14.10 Additional remarks and bibliographical notes

Kinetic theory is a field with many applications to a variety of different phys-
ical situations (fluid dynamics, plasma physics, many-body dynamics, etc.). In
addition to the mentioned treatise of Cercignani (1988) the reader interested in
physical applications can refer to Bertin (2000).
In our brief introduction we have deliberately avoided the discussion of the

problem of irreversibility; for an introduction to the most recent developments,
see Sinai (1979).
The statistical mechanics of equilibria, to be discussed in the next chapter, in

addition to being extremely successful, has many connections with the ergodic
theory of dynamical systems. Recently, newly-opened research directions aim to
describe the statistical mechanics of non-equilibrium states through the intro-
duction of stationary states described by probability measures invariant for the
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microscopic description. In the presence of a thermostat the stationary states cor-
respond to the SRB measures (after Sinai, Ruelle, Bowen) of ergodic theory. In
particular, the recent proof given by Gallavotti and Cohen (1995) of a fluctuation
theorem for the production of entropy (Ruelle 1996, 1997) is significant progress
towards a dynamical approach to the statistical mechanics of non-equilibrium.
The reader interested in learning more about this fascinating subject can refer

to the review work of Gallavotti (1998) and Ruelle (1999).



15 STATISTICAL MECHANICS: GIBBS SETS

15.1 The concept of a statistical set

In the previous chapter we considered the study of the evolution of a diluted gas,
disregarding the (impossible) task of describing the motion of each molecule, and
referring instead to a quantity, the distribution function, with an extrapolation to
the continuous setting in the space µ. We then related the distribution function
to thermodynamical quantities through averaging, and to entropy through the H
functional.
The procedure we followed was based on rather restrictive assumptions on the

structure and the kind of interaction between particles, for example the assump-
tion that the particles are elastic spheres. In other words, we used repeatedly the
laws governing particle collisions in the construction of the evolution equation
for the distribution function. At the same time, we concluded that, within the
same approximation, the way in which binary interactions between particles take
place is not essential (as long as it is of collisional type) for determining the
equilibrium distribution. Such a distribution contains the factor e−βh, where h
is the Hamiltonian without the interaction potential.
The statistical mechanics in the treatment of Gibbs, presented in the famous

treatise of 1902, focuses on the states of equilibrium of systems with many degrees
of freedom, with the aim of deducing their thermodynamical behaviour starting
from their mechanical nature, and hence from the Hamiltonian. On the one hand,
if this aim may seem more restrictive, one should recall that Gibbs’ studies led
to the creation of statistical mechanics as an independent discipline, and yielded
a great number of applications and discoveries. We must state that it would
be wrong, historically and scientifically, to contrast the ideas of Boltzmann and
Gibbs, not only because Gibbs’ work is based on the work of Boltzmann, but
also because many of the basic points in Gibbs’ theory had already been stated
by Boltzmann, within a different formalism. It is therefore not surprising to find
many contact points between the two theories, the one presented in the previous
chapter and the one that we are about to discuss.
Consider a system of N identical particles, with fixed total mechanical

energy E, contained in a bounded region of the space R3 of volume V (the
walls of the container are assumed to be perfectly reflecting). The evolu-
tion of such a system in the 6N -dimensional phase space with coordinates
(P,Q) = (p1, . . . ,pN ,q1, . . . ,qN ), the so-called space Γ, is governed by a
Hamiltonian H which for simplicity we assume to have the following form:

H(P,Q) =
N∑
i=1

p2i
2m

+
∑

1≤i<j≤N
Φ(qi − qj) +

N∑
i=1

Φe(qi). (15.1)
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Naturally (pi,qi) are the momentum and position coordinates of the ith particle,
Φ is the interaction potential energy between pairs of molecules and Φe is the
potential energy of possible external fields. Writing the expression (15.1) we
tacitly assume that H = +∞ outside the accessible region, according to the
discussion in Section 2.6. As in the previous chapter, we neglect the internal
degrees of freedom of the particles and the associated energy. In addition we can
possibly consider that the system is subject to external random perturbations,
in a sense to be made precise.
The objective of statistical mechanics is evidently not to follow the traject-

ories in the space Γ (as impossible as following the trajectories in the space
µ), but rather deriving the macroscopic properties of the system starting from
its Hamiltonian (15.1). These macroscopic properties are determined by a few
thermodynamical quantities which are experimentally observable, whose values
determine macroscopic states. The macroscopic variables must be derived from
the microscopic ones (position and momentum of each molecule) through certain
averaging operations. We then confront two fundamental problems: the justific-
ation for the interpretation of averages as physical macroscopic quantities, and
the development of methods to compute such averages, typically via asymptotic
expressions reproducing the thermodynamical quantities in the limit that the
number of degrees of freedom tends to infinity.
Note that to any given macroscopic state there corresponds a set of repres-

entative points in the space Γ, associated with different microscopic states which
reproduce the given macroscopic state. For example, interchanging two molecules
we obtain a new point in the space Γ, but this evidently does not change the mac-
roscopic state (as the distribution function in the space µ is unaffected). These
considerations justify the introduction of the set of points E in the space Γ with
which it is possible to associate a prescribed macroscopic state. At the same time
we need to define a procedure to compute the macroscopic quantities. To solve
this problem, and to visualise the set E, Gibbs considered a family (he called it an
ensemble) constituted by a large number of copies of the system. A point in the
set of representative points corresponding to the thermodynamical equilibrium
considered is associated with each such copy. Therefore it is possible to consider
the Gibbs ensemble as being produced by an extremely numerous sampling of kin-
ematic states of the system in the same situation of thermodynamical equilibrium.
It is reasonable to expect that the points of E are not uniformly distributed in

Γ and therefore that they contribute differently to the average of any prescribed
quantity. Using a limiting procedure analogous to the one adopted with the
distribution function in the space µ, we can treat E as a continuous set, endowed
with a density function ρ(X) ≥ 0, integrable on E. Hence the number ν(Ω) of
the states of E contained in a region Ω of the space Γ is given by

ν(Ω) =
∫
Ω
ρ(X) dX. (15.2)
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We can therefore define the average of a quantity F (X) over a statistical set E

with density ρ:

〈F 〉ρ =
∫
E F (X)ρ(X) dX∫

E ρ(X) dX
, (15.3)

where we clearly mean that the product Fρ is integrable over E. In Gibbs’
interpretation, this value corresponds to the value attained by the corresponding
macroscopic quantity at the equilibrium state described by the density ρ.
These considerations justify the following.

Definition 15.1 A statistical set according to Gibbs is described by a density
ρ(X) ≥ 0 in the space Γ. The set E of points where ρ > 0 is called the support
of the density ρ. If the density ρ is normalised in such a way that

∫
E
ρ(X) dX = 1,

then it is called a probability density. We denote a statistical set by the
symbol (E, ρ). �

The fundamental problem of statistical mechanics is the quest for statistical
sets on which it is possible to define, through averages of the type (15.3), the
macroscopic quantities satisfying the known laws of thermodynamics. A statist-
ical set which constitutes a good model of thermodynamics is called (following
Boltzmann) orthodic.
The theory of statistical sets presents three important questions:

(1) existence and description of orthodic statistical sets;
(2) equivalence of the thermodynamics described by these sets;
(3) comparison between experimental data and the predictions of the state

equations derived starting from such statistical sets.

Before considering these questions, it is useful to briefly discuss the justification
for the interpretation of observable quantities as averages, i.e. the so-called ergodic
hypothesis. We shall present here only brief introductory remarks, and refer to
Chapter 13 for a more detailed study of this question. However the present
chapter can be read independently of Chapter 13.
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15.2 The ergodic hypothesis: averages and measurements of
observable quantities

Firstly, we need to make precise the fact that, assuming the number of particles
to be constant, we confront two clearly distinct situations:

(a) the system is isolated, in the sense that the value of the Hamiltonian (15.1)
is prescribed;

(b) the system is subject to external random perturbations (in a precise
thermodynamical context) which make its energy fluctuate.

It is intuitively clear that the structure of the statistical set (E, ρ) is different
in the two cases. From the physical point of view, we can state that what
distinguishes (a) and (b) is that in the first case the value of the energy is
fixed, while in the second case, the average energy, and hence the temperature, is
fixed.
In the case (a) we know that the Hamiltonian flow defines a group of one-

parameter transformations St (the parameter is time) of the space Γ into itself.
The set E is a (6N − 1)-dimensional manifold H(P,Q) = E (we shall see in the
following how to define density on it). In addition if X and X0 belong to the
same trajectory, and hence if X = StX0 for some t, there exists between them a
deterministic correspondence, and therefore we must attribute to the two points
the same probability density (because the volume of a cell containing X0 is not
modified by the Hamiltonian flow). We can then state the following.

Theorem 15.1 If the Hamiltonian H(X) is a first integral, then the same is
true of the density ρ(X). �

The case (b) presents a different picture. The typical realisation that we
consider is the one where the system of Hamiltonian (15.1), which we denote
now by H1, is in contact with a second ‘much larger’ system, of Hamiltonian
H2. The resulting system has Hamiltonian Htot = H1 + H2 + Hint (the last is
the coupling term) and is isolated, in the sense that Htot = Etot, a constant. In
the corresponding space Γtot we could apply the considerations just discussed.
If, however, we restrict our observation to the projection Γ1 of Γtot, which is
the phase space of the first system, then the Hamiltonian H1 is not constant
along the trajectories in Γ1, but instead fluctuates because of the action of
Hint, which is perceived as a random perturbation. This explains why ρ is
also not constant along the trajectories in Γ1, which do not establish between
their points a deterministic correspondence. As we shall see, the presence of the
second system (the so-called thermostat) is needed to fix the temperature, in
the sense that the energy of the first system must fluctuate near a prescribed
average.
We can now deduce a simple but very useful result.
If M ⊂ Γ is a measurable subset of the phase space, and we denote by

Mt = StM the image of M according to the Hamiltonian flow at time t, for
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every integrable function f we have

∫
M

f(X) dX =
∫
Mt

f(S−tY) dY, (15.4)

where X = (P,Q) ∈ Γ indicates a generic point in the phase space and Y = StX.

Definition 15.2 A set M is called invariant if StM = M for every t ∈ R �

Clearly if M is invariant, equation (15.4) yields

∫
M

f(StX) dX = constant. (15.5)

Definition 15.3 To every statistical set (E, ρ) one can associate a measure | · |ρ
in the space Γ defined by

|M |ρ =
∫
M

ρ(X) dX, (15.6)

where M is any subset of Γ measurable with respect to the Lebesgue measure. Any
property that is satisfied everywhere except than in a set A of measure |A|ρ = 0
is said to hold ρ-almost everywhere. A function f : E → R is ρ-integrable if and
only if

∫
E |f(X)|ρ(X) dX < +∞. �

For an introduction to measure theory, see Sections 13.1 and 13.2.

Remark 15.1
Clearly |Γ |ρ = |E|ρ. If ρ is an integrable function and a set A has Lebesgue
measure |A| = 0 then |A|ρ = 0. �

If we apply equation (15.1) to the density ρ(X) and take into account
Theorem 15.1, we arrive at the following conclusion.

Corollary 15.1 In the case that H = constant the measure | · |ρ is invariant
with respect to the one-parameter group of transformations St: for every measurable
subset M of Γ we have

|Mt|ρ = |M |ρ, (15.7)

for every time t ∈ R. �

Remark 15.2
Consider the map S = S1 and denote by B(Γ) the σ-algebra of Borel sets
on Γ. The system (E,B(Γ), ρ, S) is an example of a measurable dynamical system
(see Section 13.3 and, in particular, Example 13.9). �
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Remark 15.3
From what we have just seen, the measure |M |ρ is proportional (equal if ρ
is a probability density) to the probability that the system is in a microscopic
state described by a point in the space Γ belonging to M . �

It is not obvious, and it is indeed a much debated issue in classical statistical
mechanics, that one can interpret the average 〈f〉ρ as the value to attribute to
the quantity f in correspondence to the equilibrium described by the statistical
set (E, ρ).
In an experimental measurement process on a system made up of a large

number of particles, the system interacts with the instrumentation for a certain
time, which—although short on a macroscopic scale—is typically very long with
respect to the characteristic times involved at the microscopic level. We mean that
the observation of the quantity is not done by picking up a precise microscopic
state, and hence a point of the space Γ, but rather it refers to an arc of the
trajectory of a point in the space Γ (even neglecting the non-trivial fact that the
system itself is perturbed by the observation—this point is crucial in quantum
statistical mechanics).
Thus it seems closer to the reality of the measurement process to consider the

time average of f on arcs of the trajectory of the system. The first problem
we face is then to prove the existence of the time average of f along the
Hamiltonian flow St. This is guaranteed by an important theorem due to Birkhoff
(see Theorem 13.2).

Theorem 15.2 Let M be an invariant subset with finite Lebesgue measure |M |
in the phase space Γ, and let f be an integrable function on M . The limit

f̂(X) = lim
T→+∞

1
T

∫ T

0
f(StX) dt (15.8)

exists for almost every point X ∈ M with respect to the Lebesgue measure. The
same conclusion holds if +∞ is replaced by −∞ in (15.8). In addition, it is
immediate to verify that for every t ∈ R we have

f̂(StX) = f̂(X). (15.9)
�

The limit (15.8) defines the time average of a function f . The time average of
a given quantity along an arc of a trajectory (corresponding to the time interval
during which the measurement is taken) can take—in general—very different
values on different intervals. The theorem of Birkhoff guarantees the existence,
for almost every trajectory, of the time average, and it establishes that the
averages over sufficiently long intervals are approximately equal (as they must
all tend to f̂(X) for T → ∞).
However, as we have already stated many times, the computation of averages

is only a hypothetical operation, as it is not practically possible to determine
a Hamiltonian flow of such complexity nor know its initial conditions. This
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question is at the heart of Gibbs’ approach: if the Hamiltonian flow is such
that it visits every subset of E with positive measure, then we can expect that
the time average can be identified with the ensemble average (15.3), a quantity
that can actually be computed. To make this intuition precise we introduce the
concept of metric indecomposability.

Definition 15.4 An invariant subset M of Γ is called metrically indecomposable
(with respect to the measure | · |ρ) if it cannot be decomposed into the union of
disjoint measurable subsets M1 and M2, each invariant and of positive measure.
Equivalently, if M = M1 ∪ M2, with M1 and M2 measurable, invariant and
disjoint, then |M1|ρ = |M |ρ and |M2|ρ = 0, or vice versa. A statistical set is
metrically indecomposable if E is metrically indecomposable with respect to the
measure | · |ρ. �

If a set is metrically indecomposable, necessarily its time average is constant
almost everywhere, and vice versa, as the following theorem states.

Theorem 15.3 Let (E, ρ) be metrically indecomposable with respect to the
measure | · |ρ. Then for any ρ-integrable function f on E, the time average
f̂(X) is constant ρ-almost everywhere. Conversely, if for all integrable func-
tions the time average is constant ρ-almost everywhere, then (E, ρ) is metrically
indecomposable. �

The proof of this theorem is the same as the proof of the equivalence of (2) and
(4) in Theorem 13.4. The importance of the notion of metric indecomposability
in the context of statistical mechanics of equilibrium is due to the following
fundamental result.

Theorem 15.4 If (E, ρ) is metrically indecomposable and f is ρ-integrable, then

f̂(X) =
1

|E|ρ

∫
E
f(X)ρ(X) dX = 〈f〉ρ (15.10)

for almost every X ∈ E. �

Once again, for the proof see Section 13.4.
Metric indecomposability therefore implies the possibility of interpreting the

set average (15.3) as the result of the measurement of f .
The hypothesis that the support of a Gibbs statistical set is metrically indecom-

posable is known as the ergodic hypothesis. We saw that this hypothesis is
equivalent to the condition (15.10) that the time average is equal to the set
average. This fact justifies the following definition.

Definition 15.5 A statistical set (E, ρ) is ergodic if and only if condition (15.10)
is satisfied for every ρ-integrable f (hence the time average is equal to the set
average). If a Hamiltonian system admits an ergodic statistical set, then we say
that it satisfies the ergodic hypothesis. �
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Remark 15.4
We have deliberately neglected so far a critical discussion of the identification
of the result of a measurement with the time average. We would then face the
following problem: how much time must pass (hence how large must T be in
(15.8)) for the difference between the average of a quantity f on the interval
[0, T ] and the time average f̂ (hence the set average 〈f〉ρ) to be less than a
prescribed tolerance? This problem is known as the problem of relaxation times
at the equilibrium value for an observable quantity. It is a problem of central
importance in classical statistical mechanics, and it is still the object of intense
research (see Krylov (1979) for a detailed study of this problem). �

15.3 Fluctuations around the average

In order to understand what is the degree of confidence we may attach to 〈f〉ρ
as the equilibrium value of an observable it is convenient to analyse the quadratic
dispersion (f2−〈f〉ρ)2. Weighing this with the density ρ, we obtain the variance:
〈(f − 〈f〉ρ)2〉ρ = 〈f2〉ρ − 〈f〉2ρ. The ratio between the latter and 〈f2〉ρ (or 〈f〉2ρ)
is the mean quadratic fluctuation:

η =
〈f2〉ρ − 〈f〉2ρ

〈f2〉ρ . (15.11)

Usually we consider extensive quantities, for which 〈f2〉ρ and 〈f〉2ρ ∼ O(N2).
Hence what is required for 〈f〉ρ to be a significant value is that η � 1 for N � 1
(typically η ∼ O (1/N)). Hence instead of (15.11) it is equivalent to consider (as
we shall do in what follows)

η =
〈f2〉ρ − 〈f〉2ρ

〈f〉2ρ
. (15.12)

In the same spirit, we can interpret 〈f〉ρ as the by far most probable value of
f if the contribution of the average comes ‘mainly’ from a ‘very thin’ region
of Γ, centred at the level set A(〈f〉ρ), where A(ϕ) = {X ∈ Γ | f(X) = ϕ}. We
refer here to C1 functions. To make this concept more precise, we consider the
set Ωδ defined by Ωδ = {X ∈ Γ | |f − 〈f〉ρ| < δ/2}. We say that Ωδ is ‘thin’ if
ε = δ/〈f〉ρ � 1 for N � 1 (we still refer to the case that 〈f〉ρ = O(N)). We
say that 〈f〉ρ is the by far most probable value of f if for some δ satisfying the
condition above, we have

〈f〉ρ � 1
|E|ρ

∫
Ωδ

ρ(X) f(X) dX (15.13)

up to O(δ).
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In typical cases, ∇Xf =/ 0 on A(〈f〉ρ) and to the same order of approximation
we can write ∫

Ωδ
ρf dX � δ〈f〉ρ

∫
A(〈f〉ρ)

ρ

|∇Xf | dΣ, (15.14)

and hence (15.13) is equivalent to

δ

|E|ρ

∫
A(〈f〉ρ)

ρ

|∇Xf | dΣ = 1 + O(ε). (15.15)

The meaning of (15.15) is that when this condition is valid with δ/〈f〉ρ � 1,
the ‘overwhelming majority’ of the states contributing to the average 〈f〉ρ is
concentrated (in the sense of the density ρ) close to Ωδ.
Equation (15.14) suggests that the value f of f which naturally takes the role

of most probable value is the value maximising the function

F (ϕ) = ϕ

∫
A(ϕ)

ρ

|∇Xf | dΣ . (15.16)

If F (ϕ) decays rapidly in a neighbourhood of ϕ = f then we expect that f � 〈f〉ρ.
We conclude by observing that if Ωδ gives the main contribution to the averages

〈f〉ρ and 〈f2〉ρ, then we can write

η � 1
|E|ρ

∫
Ωδ

ρ
f2 − 〈f〉2ρ

〈f〉2ρ
dX

up to order O(δ2/N2). Since in Ωδ we have |(f−〈f〉ρ)(f+〈f〉ρ)| ≤ 1
2δ(2|〈f〉ρ|+ 1

2δ),
implying η ≤ O(ε), the same conditions guaranteeing that 〈f〉ρ is the most
probable value also ensure that the mean quadratic fluctuation is small.

15.4 The ergodic problem and the existence of first integrals

We saw how the ergodic hypothesis is the basis of the formalism of statistical
sets, and allows one to interpret the averages of observable thermodynamical
quantities as their equilibrium values.
A condition equivalent to ergodicity, which highlights even more clearly the

connection with the dynamics associated with the Hamiltonian (15.1) when the
latter is constant, is given by the following theorem.

Theorem 15.5 Consider a system described by the Hamiltonian (15.1) and isol-
ated (in the sense that H = constant). The corresponding statistical set (E, ρ) is
ergodic if and only if every first integral is constant almost everywhere on E. �

For the proof we refer to Section 13.4.
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Remark 15.5
In the previous statement, a first integral is any measurable function f(X),
invariant along the orbits of the Hamiltonian flow: for any X in the domain of
f , f(StX) = f(X) for every time t ∈ R. �

At this point, it is appropriate to insert a few general remarks on the ergodic
hypothesis, connected with the results of the canonical theory of perturbations
considered in Chapter 12. These remarks can be omitted in a first reading of
this chapter.
For systems which are typically studied by statistical mechanics, it is possible

in general to recognise in the Hamiltonian a part corresponding to a completely
canonically integrable system. The difference between the Hamiltonian (15.1) and
this integrable part is ‘small’, and the system is therefore in the form (12.4) of
quasi-integrable systems which are the object of study of the canonical theory of
perturbations:

H = H0(J) + εF (J, χ), (15.17)

where (J, χ) are the action-angle variables associated with the completely canon-
ically integrable system described by the Hamiltonian H0 and ε is a small
parameter, 0 ≤ |ε| � 1.
As an example, for a sufficiently diluted particle gas (where the particles do

not necessarily all have the same mass), the integrable part of the Hamiltonian
(15.1) corresponds to the total kinetic energy

T =
N∑
j=1

p2j
2mj

, (15.18)

and the interaction potential V can be considered almost always as a ‘small
perturbation’, because it can always be neglected except during collisions, and
can then be expressed in the form V = εF .

Remark 15.6
The possibility that the quasi-integrable system (15.17) is ergodic is encoded
in the presence of the perturbation (the foliation in invariant tori implies metric
decomposability). Nevertheless, in the course of the computation of thermody-
namical quantities, in the formalism of statistical sets the contribution of εF is
usually neglected. �

On the other hand, in Section 12.4, we discussed and proved the non-existence
theorem of first integrals, due to Poincaré (Theorem 12.8). The latter states that,
under appropriate regularity, genericity and non-degeneracy assumptions, actually
satisfied by many systems of interest for statistical mechanics, there do not exist
first integrals regular in ε, J, χ and independent of the Hamiltonian (15.17).



15.4 Statistical mechanics: Gibbs sets 623

In a series of interesting papers, Fermi (1923a,b,c, 1924) discussed the con-
sequences of the theorem of Poincaré for the ergodic problem of statistical
mechanics, and proved the following theorem.

Theorem 15.6 (Fermi) Under the assumptions of the theorem of Poincaré (The-
orem 12.8) a quasi-integrable Hamiltonian system (15.17) with l > 2 degrees of
freedom does not have (2l − 1)-dimensional manifolds which depend regularly on
ε and are invariant for the Hamiltonian flow, with the exception of the manifold
with constant energy. �

The proof of Fermi’s theorem is evidently obtained by showing that there
does not exist a regular function f(J, χ, ε) (whose zero level set Mf,0 defines the
invariant manifold) which is at the same time regular in its arguments, a solution
of {f,H} = 0 and independent of H (in the sense that at every point of Mf,0 the
gradients of f and of H are linearly independent). Fermi’s proof is very similar
to the proof of the theorem of Poincaré. The interested reader is referred to the
original paper of Fermi (1923b) or to the recent, excellent exposition of Benettin
et al. (1982).
It is interesting to remark how Fermi tried to deduce from this result the

(wrong) conclusion that generally, quasi-integrable systems with at least three
degrees of freedom are ergodic, and in particular the metric indecomposability of
the constant energy surface. Fermi’s argument (1923a,c) is roughly the following:
if the manifold of constant energy

ME = {(J, χ)|H(J, χ, ε) = E}
were metrically decomposable into two parts with positive measure, the set sep-
arating these two parts, and hence their common boundary, could be interpreted
as (a part of) an invariant manifold distinct from the manifold of constant energy
ME , contradicting the previous theorem.
As was immediately remarked by Urbanski (1924) and recognised by Fermi

himself (1924), Fermi’s theorem only excludes the possibility that the manifold
of constant energy is decomposable into two parts with a regular interface, while
it is possible for the boundary to be irregular, i.e. not locally expressible as the
graph of a differentiable function but at most a measurable one. This is in fact
the general situation. The Kolmogorov–Arnol’d–Moser theorem (see Section 12.6)
ensures, for sufficiently small values of ε, the existence of an invariant subset of the
constant energy surface (which is the union of the invariant tori corresponding to
diophantine frequencies) and of positive measure, whose boundary is not regular,
but only measurable. We may therefore end up in the paradoxical situation that
we can ‘prove’ that quasi-integrable Hamiltonian systems are not ergodic for
‘small’ values of ε. The situation is, however, much more complicated, especially
as the maximum values εc of ε admitted under the assumptions of the theorem
depend heavily on the number of degrees of freedom of the system,1 for example

1 In Remark 6.3 we did not stress the dependence of εc on l but only on γ, since we
considered µ > l − 1 fixed.
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through laws such as |εc| ≤ constant l−l, which make the KAM theorem not
of practical applicability to systems of statistical interest. On the other hand,
we do not know any physical system that is both described by a Hamiltonian
such as (15.1) (or (15.17)), where the potential energy is a regular function of
its arguments (excluding therefore the possibility of situations such as that of
a ‘hard sphere gas with perfectly elastic collisions’), and for which the ergodic
hypothesis has been proved. The problem of the ergodicity of Hamiltonian systems
is therefore still fundamentally open, and is the object of intense research, both
analytically and using numerical simulations (started by Fermi himself, see Fermi
et al. 1954).

15.5 Closed isolated systems (prescribed energy).
Microcanonical set

In Section 15.2 we anticipated that we would study two typical situations for
closed systems (case (a) and case (b)). We now examine the first of these. Consider
a system of N particles described by the Hamiltonian (15.1) and occupying a
bounded region of volume V with perfectly reflecting walls. Assume that this
system is closed (fixed number of particles) and isolated.
In this case, we saw how the support E of the density for the corresponding

statistical set (if we want it to be ergodic) must coincide with the manifold of
constant energy

ΣE = {X ∈ Γ | H(X) = E}. (15.19)

However the latter has (Lebesgue) measure zero in the space Γ, and hence the
definition of density is non-trivial. To overcome this difficulty we introduce an
approximation of the statistical set that we want to construct. Take as the set
of states E∆ the accessible part of the space Γ lying between the two manifolds
ΣE and ΣE+∆, where ∆ is a fixed energy that later will go to zero, and we
choose in this set the constant density. In this way we do not obtain a ‘good’
statistical set because this is not ergodic (since it is a collection of invariant
sets). However what we obtain is a promising approximation to an ergodic set,
because the energy variation ∆ is very small, and the density (which is a first
integral) is constant. To obtain a correct definition of a statistical set we must
now ‘condense’ on the manifold ΣE , by a limiting procedure, the information
that can be gathered from the approximate set. To this end, we define a new
quantity.

Definition 15.6 For fixed values of E and V the density of states of the system
is the function

ω(E, V ) = lim
∆→0

Ω(E, V,∆)
∆

, (15.20)

where Ω(E, V,∆) is the Lebesgue measure of the set E∆. �
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=xH =xH

H < E

H = E

H = E + D

ds

Fig. 15.1

In other words, ω(E, V ) is the derivative with respect to E of the measure
of the region defined by the inequality H ≤ E. It is easy to express ω(E, V )
through the Hamiltonian. Indeed, at every point of H = E the thickness ds of
the microcanonical set (Fig. 15.1) can be obtained from ∆ = |∇XH|ds, to first
order in ∆. In this approximation we therefore have

Ω(E, V,∆) = ∆
∫
H=E

|∇XH|−1 dΣ

(recall Remark 8.12), from which it follows that

ω(E, V ) =
∫
H=E

|∇XH|−1 dΣ . (15.21)

The next definition follows naturally from these considerations.

Definition 15.7 The microcanonical set is the ergodic statistical set corres-
ponding to a closed isolated system, described by the manifold of constant energy
E = ΣE with measure

dρ(X) = |∇XH|−1 dΣ, (15.22)

where dΣ denotes the volume element on the manifold ΣE. �

Note that the name ‘density of states’ assigned to the function ω can be
misleading (a better name would be microcanonical partition function). In reality
the role of density on E is played by the function ρ defined by (15.22), which also
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shows how to compute the average of a function f(X) on the microcanonical set:

〈f〉 = 1
ω

∫
H=E

f

|∇H| dΣ .

Remark 15.7
When the Hamiltonian depends only on the momentum variables, H = H(P),
the volume V can be factorised in (15.21) as the result of the integration dQ:

ω(E, V ) = V N

∫
H(P )=E

|∇PH|−1 dΣP . (15.23)

�

We shall see that a correct normalisation of ρ and ω requires the further
division by N !.

Remark 15.8
The procedure leading to the formula (15.22) is rather abstract. We can how-
ever deduce the same formula by reasoning only in mechanical terms, and this
shows the natural relation between the Hamiltonian flow in the space Γ of an
isolated system and the density of the microcanonical set. This approach relies
only on the condition of ergodicity. Assume that a partition of E in subsets of
comparable measure and diameter has been defined. Following the Hamiltonian
flow, if the system is ergodic, all cells are crossed. Thus if we perform a sampling
X1,X2, . . . ,Xn, . . . of the trajectory along a time sequence, the probability of
finding points of the sample in a specified cell is proportional to the permanence
time in the cell during the Hamiltonian flow. Evidently, the average time of per-
manence in a cell centred at X is proportional to |Ẋ(X)|−1. Since Ẋ = I∇XH,
we find that the probability density associated with this cell is proportional to
|∇XH(X)|−1. �

Remark 15.9
Note that the elastic collisions with the walls and between the particles, which
can be represented as singularities of the Hamiltonian, do not contribute to
(15.21). However, we must stress that the ergodicity of the system is precisely
due to the collisions. Indeed, in the absence of any collision the projection P of
the point X onto the space of momenta would be constant. �

We have already remarked that the function ω(E, V ) carries global, and hence
macroscopic, information about the system. Its significance is due to the fact
that it can be used to define the entropy of the system:

S(E, V ) = k log
[
ω(E, V )

ω0

]
, (15.24)

where k is the Boltzmann constant and ω0 is an arbitrary constant making
quantities dimensionless. Note that the logarithm makes the entropy an extensive
quantity, as required by the thermodynamical formalism. Indeed, the partition
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function of a system obtained by the union of isoenergetic systems of identical
particles is the product of the partition functions of the component systems.
Starting from (15.24) we can also define the temperature:

T =
(
∂S

∂E

)−1
(15.25)

and the pressure:

P = T
∂S

∂V
=

∂S

∂V

(
∂S

∂E

)−1
(15.26)

in such a way that from the expression for the total differential of S:

dS =
∂S

∂E
dE +

∂S

∂V
dV (15.27)

we can deduce the first principle of thermodynamics for our system, by simply
multiplying by the temperature T :

T dS = dE + P dV. (15.28)

It is a significant success of this theory to have been able to express the entropy
S(E, V ) through the Hamiltonian H(P,Q), and hence through the microscopic
mechanical properties of the system.

Remark 15.10
We stress that from the physical point of view, the definition of thermodynamical
quantities for a system with which the microcanonical set is associated has essen-
tially theoretical interest, since by definition the system itself is not accessible
to measurement. However, the definitions (15.24)–(15.26) are self-consistent and
will be used in subsequent considerations.

15.6 Maxwell–Boltzmann distribution and fluctuations
in the microcanonical set

Consider a system in equilibrium, closed and isolated, and described by the
microcanonical set. We now want to prove two important facts, highlighting the
relation between the formalism of the microcanonical set and the kinetic theory
(Chapter 14).

Proposition 15.1 To every distribution function in the space µ it is possible
to associate a volume in the microcanonical set. After the appropriate normal-
isation, this volume can be interpreted as the probability of the corresponding
distribution. �

Theorem 15.7 The Maxwell–Boltzmann distribution in the space µ is the dis-
tribution to which there corresponds the maximum volume in the microcanonical
set, and it is therefore the most probable. �
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Proof of Proposition 15.1
Introduce a partition of the accessible region of the space µ in ‘cells’ (for example,
cubic cells) of equal volume ω. This volume must be small with respect to the
total volume, but sufficiently large that we can find in each cell representative
points of a large enough number of molecules. Since the accessible region in the
space µ is bounded, the cells are a finite number: ω1, . . . , ωK . Indicate by ni the
number of representative points in the cell ωi (occupation number). The numbers
ni are subject to the characteristic conditions of the microcanonical set:

K∑
i=1

ni = N, (15.29)

K∑
i=1

εini = E, (15.30)

where εi = p2i /2m and pi is the momentum corresponding to the cell ωi (because
of the non-zero dimensions of the cell the momentum is not defined exactly,
and therefore we have a finite variation in the energy, and hence the discretised
microcanonical set in the space Γ has non-zero thickness). A K-tuple (n1, . . . , nK)
determines a (discretised) distribution function defined by f(pi) = ni/ω. To each
prescribed distribution of the N points in the cells ω1, . . . , ωK (hence to each
microscopic state) there corresponds exactly one specific cell of volume ωN in
the space Γ. However to a K-tuple of occupation numbers there correspond more
than one microscopic state, and hence a larger volume in the space Γ. Indeed,
interchanging two particles with representative points in two distinct cells the
occupation numbers do not change, but the representative point in the space Γ
does. On the other hand, nothing changes if we permute particles inside the same
cell. Since N ! is the total number of permutations and ni! are those inside the
cell ωi, which do not change the position of the representative volume element
in the space Γ, we find that the total volume in Γ space corresponding to a
prescribed sequence of occupation numbers (n1, . . . , nK) is

Ω(n1, . . . , nK) =
N !

n1!n2! · · ·nK !
ωN . (15.31)

�

Proof of Theorem 15.7
We seek the sequence (n1, . . . , nK) maximising Ω and therefore expressing the
most probable macroscopic state (with respect to the microcanonical distribution).
Recall that ni � 1. Using Stirling’s formula, we obtain log n! ≈ n log n, from

which it follows that

log Ω(n1, . . . , nK) = −
K∑
i=1

ni log ni + constant. (15.32)

Considering now the variables ni as continuous variables, we seek the maximum
of the function (15.32) taking into account the constraints expressed by (15.29)
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and (15.30). Hence we seek to find the extrema of the function

Λ = −
K∑
i=1

ni log ni − λ1

K∑
i=1

ni − λ2

K∑
i=1

niεi,

where λ1, λ2 are the Lagrange multipliers. This procedure yields the K equations

log ni + 1 + λ1 + εiλ2 = 0, i = 1, . . . ,K, (15.33)

to which we again associate the conditions (15.29) and (15.30). Note that

∂2 Λ
∂ni∂nj

= −δij
1
ni

,

and therefore the extremum is a maximum.
Redefining the parameters λ1, λ2 we can write the solutions of (15.33) in the

form

ni = ce−βεi , i = 1, . . . ,K. (15.34)

Equation (15.34) is simply a discretised version of the Maxwell–Boltzmann dis-
tribution, setting εi = p2i /2m (or εi = p2i /2m + Φ(qi) when there are external
forces). It is easy to recognise that the continuous limit of the distribution
associated with (n1, . . . , nK) is precisely the Maxwell–Boltzmann one, and this
automatically leads to the determination of the constants c and β in (15.34). �

We have therefore proved that the Maxwell–Boltzmann distribution is the most
probable in the macroscopic equilibrium state associated with the microcanonical
set. It is important to realise that the Maxwell–Boltzmann distribution is also
the distribution ‘by far’ most probable, in the sense that the fluctuations around
it are very small. For this we must evaluate the relative differences

〈n2i 〉 − n2i
N2 , (15.35)

where 〈·〉 represents the average on the microcanonical set.

Theorem 15.8 The fluctuations (15.35) around the Maxwell–Boltzmann distri-
bution tend to zero, for N → ∞, at least as N−1.

Proof
Recall the discussion of Section 15.3 about the comparison between average and
most probable value. It is then sufficient to compute 〈n2i 〉 − 〈ni〉2. We follow a
very elegant method, that can be found in Huang (1987).
If in place of (15.31) we consider the function

Ω̃(n1, . . . , nK , η1, . . . , ηK) = N !
ηn1
1 · · · ηnKK

n1!n2! · · ·nK !
ωN , (15.36)
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where ηi are parameters varying between 0 and 1, using as before the Lagrange
multipliers technique, we find that the maximum is attained for values of the
occupation number ni = ñi(η1, . . . , ηK) given by

ñi = ηini = cηie−βni , i = 1, . . . ,K, (15.37)

and that ñi = ni and Ω̃ = Ω when η1 = . . . = ηK = 1. The parameters ηi can
therefore be considered as volume reduction factors for the cells ωi.
We note now that, for every (n1, . . . , nK) and (η1, . . . , ηK), we have

ηi
∂

∂ηi
Ω̃(n1, . . . , nK , η1, . . . , ηK) = niΩ̃(n1, . . . , nK , η1, . . . , ηK).

Hence 〈ni〉, which by definition is

〈ni〉 =

∑
n

ni Ω(n)∑
n
Ω(n)

, (15.38)

can also be expressed as

〈ni〉 =
∑

n ηi ∂/∂ηi Ω̃(n, η)∑
n Ω̃(n, η)

∣∣∣∣∣
η = (1,...,1)

, (15.39)

where n = (n1, . . . , nK), η = (η1, . . . , ηK) and
∑

n denotes the sum over all
sequences of occupation numbers. For the computation of 〈n2i 〉 we note that

ηi
∂

∂ηi

(
ηi

∂

∂ηi
Ω̃

)
= n2i Ω̃(n,η),

and therefore

〈n2i 〉 =

∑
n

n2i Ω(n)∑
n
Ω(n)

=

⎡⎣ηi ∂/∂ηi
(
ηi ∂/∂ηi

∑
n
Ω̃(n,η)

)
∑
n
Ω̃(n,η)

⎤⎦
η1=...=ηK=1

. (15.40)
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The expression in square brackets can be rewritten and elaborated as follows:

ηi
∂

∂ηi

⎛⎝ 1∑
n
Ω̃(n,η)

ηi
∂

∂ηi

∑
n
Ω̃(n,η)

⎞⎠
−
⎛⎝ηi

∂

∂ηi

1∑
n
Ω̃(n,η)

⎞⎠(
ηi

∂

∂ηi

∑
n
Ω̃(n,η)

)

= ηi
∂

∂ηi

⎛⎝
∑
n

niΩ̃(n,η)∑
n
Ω̃(n,η)

⎞⎠+

⎛⎝ 1∑
n
Ω̃(n,η)

ηi
∂

∂ηi

∑
n
Ω̃(n,η)

⎞⎠2

.

(15.41)

The last term is simply 〈ni〉2, after setting η1 = . . . = ηK = 1, while we identify
the average of ni weighted by Ω̃(n,η) with ñi, given by (15.37). Therefore the first
term in (15.41) is simply ηi(∂/∂ηi)ñi = ñi and reduces to ni for η1 = . . . = ηK = 1.
Finally from (15.40) and (15.41) we find

〈n2i 〉 − 〈ni〉2 = ni. (15.42)

Recalling that ni/N < 1, from this it follows that

[ 〈n2i 〉
N2 − 〈ni〉2

N2

]1/2
<

1√
N
, (15.43)

proving the claim. �

Taking into account that N can be of the order of 1023, equation (15.43)
implies that the fluctuations around the Maxwell–Boltzmann distribution are in
reality extremely small, and hence that the probability that the system takes a
state very different from this particular distribution is very small.

15.7 Gibbs’ paradox

We leave aside the study of the general properties of the function S(E, V ) defined
by (15.24), and we only compute in a simple way the entropy of a perfect gas,
hence assuming that the Hamiltonian of the system is of the form

H =
N∑
i=1

p2i
2m

. (15.44)

In this case, it is possible to use formula (15.23). In addition, |∇pH|2 =∑N

i=1 (pi/m)2 = (2/m)H. The integral (15.23) must be computed on the sphere
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P2 = 2mE in R3N . Denoting by χn the measure of the spherical surface of
radius 1 in Rn

(
χn = 2πn/2/Γ (n/2)

)
, we have

ω(E, V ) = V N
(m
2

)1/2
E−1/2χ3N (2mE)(3N−1)/2. (15.45)

Using the asymptotic expression

Γ(z + 1) ≈
√
2πzz+(1/2)e−z,

we can write χ3N ≈ √
2 (2π/3N)(3N−1)/2 e(3N/2)−1. Substituting into (15.45),

taking the logarithm, taking into account that N � 1 and retaining only the
terms in E, V , N , we obtain, because of (15.24), the following expression for the
entropy:

S(E, V ) = Nk log

[
λ̃V

(
E

N

)3/2]
+

3
2
kN, (15.46)

where λ̃ > 0 is the same constant appearing in expression (14.46) of the previous
chapter.
The evident difference between the two expressions is that in (15.46) there

appears V instead of V/N . While this does not affect the validity of the expres-
sions ∂S/∂E = 1/T , ∂S/∂V = P/T , it nevertheless makes (15.46) unacceptable as
a state function of the system. Indeed, if we consider two systems with the same
particle density (n = N1/V1 = N2/V2), and the same average energy per particle
(ε = E1/N1 = E2/N2), we want the entropy of their union to be the sum of the
entropies S1, S2. As written, equation (15.46) does not have this property, and
yields the paradoxical consequence that it is not possible to partition the system
into two or more parts with identical ratios Ei/Ni, Vi/Ni and then reassemble
it, again obtaining the starting entropy. This is Gibbs’ paradox. This difficulty
was immediately evident to Gibbs himself and he had no choice but to correct
(15.46) by inserting V/N in place of V :

S(E, V ) = kN log
V

NV0
+

3
2
kN log

E

NE0
+ C, (15.47)

where C is a constant and E0, V0 are constants that arise from making the
variables dimensionless. Recalling the approximation logN ! ≈ N log N for N � 1,
we realise that this correction is equivalent to dividing the function ω(E, V ) by
N !. Therefore it amounts to a renormalisation of the density of states (Boltzmann
counting), corresponding to considering the particles to be indistinguishable (the
natural point of view of quantum mechanics), so that any permutation gives rise
to the same state. The kinetic theory does not lead to the same paradox because,
as we observed, it admits the interchange of particles.
Boltzmann renormalisation (which we henceforth adopt systematically) puts

back on track classical statistical mechanics, by introducing in it the concept
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of non-individuality of the particles. The criticism aimed at classical statistical
mechanics on the basis of Gibbs’ paradox is, in our view, scarcely motivated, as
the need for considering the particles as indistinguishable does not deprive the
theory of its elegance and deep significance. However the theory presents more
important limitations when one wants to study the contribution of each degree
of freedom to the energy of the system. We shall discuss this topic in the next
section.
To this end, it is useful to conclude this section with a few additional

considerations on the definition of entropy.
Equation (15.24) is not the only possibility of defining the entropy starting

from the structure of the microcanonical set.
If we assume that the set {H ≤ E} is bounded and denote by B(E, V ) its

measure (recall that then ω(E, V ) = (∂/∂E)B(E, V )), we can show that another
equivalent definition of entropy is given by

S(E, V ) = k log
[
B(E, V )

B0

]
. (15.48)

To verify this fact we denote by Sω the entropy defined by (15.24) and by SB

the entropy defined by (15.48). Define Tω = (∂Sω/∂E)−1 and TB = (∂SB/∂E)−1,
and note that TB = (kω/B)−1. In addition,

Sω − SB = k log
(cω
B

)
= k log

(
c

kTB

)
(c constant with dimension of energy), and differentiating with respect to E we
have

1
Tω

− 1
TB

= −k
1
TB

∂TB

∂E
,

and hence

TB

Tω
= 1− k

∂TB

∂E
. (15.49)

Now it is sufficient to recall that k ∂TB/∂E = O (1/N) (and precisely 2/3N in
the case of a perfect gas) and conclude that in the thermodynamical limit (when
N → ∞) we can assume Tω = TB , and that this equality is satisfied in practice
for N finite (of the characteristic order of magnitude 1023). In particular, we
have obtained the following expression for the temperature:

T =
(
k
ω(E, V )
B(E, V )

)−1
. (15.50)

Example 15.1
It is immediate to verify the validity of equations (15.50) for the
Hamiltonian (15.44). It is enough to recall that the volume of the sphere of
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radius R in Rn is 1/nRnχn (χn is the measure of the unit spherical sur-
face). Therefore (n = 3N , R =

√
2mE) B = 1

3N(2mE)3N/2χ3N , and hence
ω/B = ∂/∂E logB = 3

2 (N/E) = 1/kT . �

Example 15.2
We now deduce the heat capacity at constant volume CV and that at con-
stant pressure CP from the expression (15.47) for the entropy of a perfect
monatomic gas, recalling that dQ = T dS = dE + P dV . For constant volume
we then have CV = ∂E/∂T = 3

2Nk. If, on the other hand, we impose
P = constant, we must use the substitution V/N = kT/P in (15.47), and hence
S = kN

(
log kT/P + 3

2 log(E/N)
)
, up to constants, from which it follows that

dS = kN
(
1/T + 3

2 (1/E)
3
2Nk

)
dT , hence T dS = (kN + CV ) dT , and finally

Cp = kN + CV = 5
2Nk. �

15.8 Equipartition of the energy (prescribed total energy)

Recall that the average of a quantity f on the microcanonical set,

〈f〉 = lim
∆→0

1
ω∆

∫
E<H<E+∆

f dX, (15.51)

is identified with

〈f〉 = 1
ω

∫
H=E

f

|∇XH| dΣ . (15.52)

Hence we compute 〈Xi ∂H/∂Xj〉, i, j = 1, . . . , 6N , assuming ∂H/∂Xj �≡ 0.
According to (15.52) we have〈

Xi
∂H

∂Xj

〉
=

1
ω

∫
H=E

Xinj dΣ, (15.53)

denoting by nj the jth component of the unit vector n = ∇XH/|∇XH| normal
to H = E. It is convenient to notice that if H(X) does not depend on one of
the coordinates Xj the contribution of the latter to (15.53) is absent. Therefore,
when some coordinates can be ignored, the set {H = E} is implicitly replaced
by its projection onto the subspace of coordinates Xi for which ∂H/∂Xi �≡ 0.
In addition we assume that the latter set is bounded. Denoting by ej the unit
vector in the jth direction in the space Γ, the integral in (15.53) is simply the
flow through H = E of the vector Xiej . Therefore, if nj is non-zero, since n is
oriented towards the exterior of the set {H < E} we have〈

Xi
∂H

∂Xj

〉
=

1
ω

∫
H<E

∇X · (Xiej) dX. (15.54)
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Finally, since ∇X · (Xiej) = δij , we arrive at〈
Xi

∂H

∂Xj

〉
= δij

B(E, V )
ω(E, V )

= kTδij (15.55)

(recall the hypothesis ∂H/∂Xj �≡ 0), where we used (15.50) in the last step. We
have proved the so-called equipartition theorem.

Theorem 15.9 (Equipartition) For a system described by the microcanonical set
with Hamiltonian H, the average value of Xi (∂H/∂Xj) is zero if i =/ j, and has
value kT if i = j, as long as ∂H/∂Xj �≡ 0. �

Remark 15.11
If the Hamiltonian H of the system contains terms of the kind p2i /2m, since
pi (∂/∂pi)(p2i /2m) = 2 (p2i /2m), each one contributes to the average value of the
energy with a factor 1

2 kT . Analogously, if the Hamiltonian H contains terms of
the kind 1

2 mω2i q
2
i we have that qi ∂/∂qi 12 mω2i q

2
i = mω2i q

2
i , and their contribution

to the average value of the energy is equal to 1
2 kT . We consider more generally

a system whose Hamiltonian is a quadratic form:

H =
1
2

6N∑
i=1

AiX
2
i ≥ 0, Ai ≥ 0, (15.56)

or can be reduced to it via a canonical transformation.2

Note that by (15.56) we have

6N∑
i=1

Xi
∂H

∂Xi
= 2H.

Then using equation (15.55), we can conclude that

〈H〉 = 1
2
lkT, (15.57)

where l is the number of non-zero coefficients in expression (15.56). The the-
orem of equipartition of energy states precisely that each (non-zero) term in the
Hamiltonian (8.6) contributes to the average energy by the quantity 1

2 kT . �

Remark 15.12
For a perfect monatomic gas, the equipartition theorem implies that the average
value ε of the energy for each molecule is equal to 3

2 kT . Recall that in the
kinetic theory, this same result was assumed as the definition of temperature.
Here we deduced it from the definition of entropy and from the concept of the
average of a set. The fact that the kinetic energy of the system is expressible as
3
2 NkT is known as the virial theorem. �

2 The restriction that Ai ≥ 0 guarantees that the sets {H < E} are bounded for every E
in the subspace of coordinates that cannot be ignored.
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The equipartition theorem is the critical issue of classical statistical mechanics.
This fact becomes clear when the internal degrees of freedom are increased, to
include systems with great complexity, such as black bodies, to which infinitely
many degrees of freedom (but not infinite energy) can be attributed. A profound
and enlightening discussion of this problem is presented by Gallavotti (1995,
pp. 65–85).

15.9 Closed systems with prescribed temperature. Canonical set

In Section 15.2 we announced that we would consider two typical situations for
closed systems: systems with fixed energy (described by the microcanonical set)
and systems with fluctuating energy, but with prescribed average. We anticipated
that this corresponds to fixing the temperature of the system. Physically this is
done by connecting the system with a thermostat. The statistical set describing
the latter thermodynamical state was called by Gibbs the canonical set. Therefore,
while for the microcanonical set the independent thermodynamical variables are
E, V , for the canonical set they are T, V .
The union of the system under consideration, S (with N particles) and of the

thermostat T, must be assumed at constant energy, but because of the large size
of the thermostat, the fluctuations of the energy in S can in principle be as large
as the energy of the entire system S+ T. Hence the set E associated with S can
span a region in the space Γ of S of significant 6N -dimensional Lebesgue measure
(where dimΓ = 6N). The problem is now to define the density ρ(X).

Definition 15.8 The canonical set is the statistical set corresponding to a closed
system in thermal equilibrium with a thermostat at temperature T . It is obtained
by setting E = Γ and assigning the density

ρ(X) =
1

N !h3N
exp

(
−H(X)

kT

)
, (15.58)

called the canonical or Boltzmann distribution, where h is a constant with the
same dimensions as the action [h] = [p][q] and H(X) is the Hamiltonian (15.1)
of the system under consideration. �

Typically, h is identified with Planck’s constant.

Remark 15.13
The introduction of h−3N is necessary for ρ dX to be dimensionless. The factor
1/N ! is consistent with the rule of ‘Boltzmann counting’, already discussed. �

There exist in the literature derivations of (15.58) based on heuristic consid-
erations (for example considering the canonical formalism that can be applied
to the thermostat, when we can expect that the fluctuations of the energy are
very small; this fact, not rigorously true, is largely justified a posteriori). We
prefer to motivate (15.58) in a way that highlights the relation with the kinetic
theory. To draw this parallel, we must limit ourselves to the case in which the
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interactions between particles are only of collisional type (short range). Since in
the canonical set the fixed thermodynamical parameter is the temperature, it is
convenient to start by recalling (Remark 14.3) that the equilibrium solution of
the Boltzmann equation has the form

f(p,q) = ce−βh(p,q), β =
1
kT

, (15.59)

where h(p,q) = p2/2m+Φ(q), and Φ is the potential energy of the external forces.
Recall also that the internal forces influence the dynamics of the system in the
space µ (through the interaction kernel), while the structure of the equilibrium
depends only on the fact that the interactions are binary and preserve the energy
(note that they can be modelled as singularities of the Hamiltonian and therefore
they do not contribute to (15.59)).
We then examine again the partition in cells ω1, . . . , ωK (of volume ω) of the

space µ, introduced in Section 15.6, and the corresponding discretisation of the
space Γ in cells of volume ωN . For a fixed cell Ω in the space Γ, by projection
on the component subspaces µ1, µ2, . . . , µN we can reconstruct the corresponding
sequence of occupation numbers (n1, . . . , nK) in the cells ω1, . . . , ωK . We know
that this correspondence is not one to one, but now we are only interested in the
map Ω → (n1, . . . , nK), and to obtain through this map information about the
probability of finding a sampling of the representative point X ∈ Γ precisely in
the cell Ω. This probability is the product of the probabilities of finding, in the
space µ, n1 points in the cell ω1, n2 points in the cell ω2, and so on. Denoting by
hi the values of the Hamiltonian h(p,q) corresponding to the cells ωi, according
to (15.59) such a product is proportional to

exp

[
−β

K∑
i=1

nihi

]
= exp(−βH(X)), (15.60)

where H =
∑K

i=1 nihi.
This result, and the procedure followed to obtain it, offers direction to remark

on some particularly significant aspects.

(1) The distribution function f(p,q) in the space µ can be normalised to a
probability distribution by simply dividing it by N . Indeed,

∫
(f/N) dpdq = 1.

Denoting by fi the value of f in the cell ωi of the partition of the space µ,
considering the product fn1

1 . . . fnK
K , to obtain the probability of finding X ∈ Γ

in the cell Ω corresponding to the sequence (n1, . . . , nK), we should have
divided it by Nn1+···+nK = NN . For N � 1 this is in practice N !. This simple
consideration shows that the factor 1/N ! appears naturally in the expression
for the density, multiplying the exponential e−βH , and it confirms that in the
formalism of Boltzmann it is implicitly the correct count of states, since taking
the factors fi corresponds to labelling the cells, but not the particles.
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(2) The reader will not have missed the rather puzzling fact that in Section 15.6,

imposing the constraints of the microcanonical set
(∑K

i=1 ni = N
∑K

i=1 nihi =
E
)
we obtained as most probable distribution in the space µ, using N � 1,

precisely the same distribution we used to deduce the density of the canonical
set! However, there is a subtle conceptual difference: in the microcanonical set-
ting we must interpret β as 3

2 (E/N)−1, while in the canonical case, β = 1/kT .
This does not have practical implications, since once we have correctly defined
the temperature in the microcanonical case, the two expressions coincide. The
essential coincidence of the equilibrium distributions in the space µ for the two
cases carries significant physical information: for N � 1 the mean quadratic
fluctuation of H in the canonical set is so small that the important region
of the space Γ for the canonical set is a ‘thin’ shell (Section 15.3) around
the manifold H = 〈H〉ρ. This fact, which we prove below, implies that for
N � 1, in spite of the significant formal differences, the two are essentially
identifiable and the choice of one or the other formalism is only a question of
computational convenience. We stress that this is only true for N � 1. Indeed,
the canonical set has a unique characteristic: it is orthodic (hence it gives
exact information about some averages) even when the number of particles
is small (even for N = 1). However the fluctuations are then large. We shall
return to this in an appropriate section.

(3) We finally remark that when there are internal forces, not of collisional type
(hence acting at a distance), we must take their total potential energy into
account in the expression for H.

Definition 15.9 The measure of the canonical set in the space Γ is given by

Z(V,N, T ) =
∫
Γ

1
N !h3N

exp (−βH(X)) dx (15.61)

and it is called the (canonical) partition function. �

The extension of the integration to the whole space Γ assumes the introduction
of potential barriers simulating reflective walls and it requires implicitly the
convergence of the integral.
It follows from the definition that the canonical partition function expresses

the density of states. Normalising the canonical distribution, and considering
(1/Z) ρ(X) we obtain a probability distribution. If f(X) is an observable quantity,
its average value in the canonical set is given by

〈f〉 = 1
ZN !h3N

∫
Γ
f(X) exp (−βH(X)) dX. (15.62)
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Proposition 15.2 The average value 〈H〉 of the energy of the system is
equal to

〈H〉 = − ∂

∂β
log Z(V,N, T ). (15.63)

Proof
Since Z = C

∫
Γ e−βH dX, where C is independent of β, we have

∂

∂β
log Z = −

∫
Γ He−βH dX∫
Γ e−βH dX

= −〈H〉. �

Example 15.3
Consider the Hamiltonian of a perfect monatomic gas

H =
N∑
i=1

p2i
2m

.

The partition function of the system takes the value

Z(V,N, T ) =
V N

N !h3N
χ3N

∫ ∞

0
p3N−1e−βp2/2m dp,

where χ3N denotes the measure of the spherical surface of radius 1 in R3N .
Recalling the expression of Euler’s gamma function (Appendix 8) we have

∫ ∞

0
p3N−1e−βp2/2m dp =

1
2
(2mkT )3N/2

∫ ∞

0
t3N−2/2e−t dt =

1
2
(2mkT )3N/2 Γ (3N/2) ,

and hence

Z(V,N, T ) =
V N

N !h3N
χ3N

1
2
(2mkT )3N/2 Γ

(
3N
2

)
=

V N

N !h3N
(2πmkT )3N/2,

(15.64)

where we have used the fact that χ3N = 2π3N/2/Γ (3N/2). Therefore the average
value of the energy is

〈H〉 = 3
2
NkT,

in agreement with our previous results.
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Note also that this is a typical case where 〈H〉 can be interpreted as ‘by
far most probable value’ of the energy, following the discussion of Section 15.3.
Indeed, if for N � 1 we compute

ξ(〈H〉) = 1
Z

∫
H=〈H〉

ρ

|∇XH| dΣ ≈ β

e
(3πN)−1/2,

we realise that equation (15.5) is satisfied with δ = kT e(3πN)1/2, and hence with
δ/〈H〉 = O(N−1/2). If we then compute (15.16), i.e. F (E) = EZξ(E), we see
that the function to be maximised in order to find the most probable value E
is simply E3N/2e−βE , from which it follows that E = 3

2 NkT = 〈H〉. �

15.10 Equipartition of the energy (prescribed temperature)

The equipartition theorem, proved for the microcanonical set, can be extended
to the canonical set. We assume H(X) → +∞ for |X| → +∞.

Theorem 15.10 (Equipartition) The average of the product Xi ∂H/∂Xj in the
canonical set is δijkT , as long as ∂H/∂Xj �≡ 0.

Proof
It is enough to notice that

∫
Γ
Xi

∂H

∂Xj
e−βH dX = − 1

β

∫
Γ
Xi

∂

∂Xj
e−βH dX.

By integration by parts, since there are no boundary terms, we find

〈Xi
∂H

∂Xj
〉 =

(∫
Γ
e−βH dX

)−1 ∫
Γ
Xi

∂H

∂Xj
e−βH dX = δijkT. �

As a corollary we then obtain that in the canonical case as well, the quadratic
Hamiltonians such as (15.56) have average 1

2kT times the number of non-zero
coefficients of the form.
We have hinted already at the difficulties of the equipartition principle in

the microcanonical set for more complex systems than those considered so far.
Such difficulties also arise for the canonical set. However it is surprising that
for the latter the equipartition principle is still valid (with some restrictions) for
systems with few particles (even just one). These are systems with a ‘simple’
Hamiltonian, but that do not follow the associated Hamiltonian flow, but rather
a motion subject to fluctuations in the energy at a prescribed temperature, which
also determines the average energy.
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A coupling with a thermostat is therefore implicit, and with it the system,
although it has few degrees of freedom, is in thermodynamical equilibrium. Speak-
ing of a system with few particles ‘at temperature T ’ we refer to the temperature
of the thermostat. This concept is illustrated in the following example.

Example 15.4
Consider a system of N � 1 particles at temperature T and the subset constituted
by only one of the particles, in statistical equilibrium with the rest of the system.
Consider the simplest possible case, when the Hamiltonian of the single particle
is H = p2/2m and let us try to apply the canonical formalism to this single
particle. Define the density

ρ =
1
h3

e−βp2/2m

(note that we have used N = 1) and, assuming that the system is contained in
a cube of side L, compute the partition function

Z =
L3

h3

∫
R3

e−βp2/2m dp =
L3

h3

∫ ∞

0
4πp2e−βp2/2m dp =

L3

h3

(
2πm
β

)3/2
.

Formula (15.63) yields

〈H〉 = − ∂

∂β
logZ =

∂

∂β

(
3
2
logβ

)
=

3
2
kT,

which is precisely the expected result.
What is essentially different from the case of systems with many particles is

the fact that the mean quadratic fluctuation is not small: we find
〈
p4/4m2

〉
=

15
4 (kT )

2, so that (〈H2〉 − 〈H〉2)/〈H〉2 = 2
3 .

Check that for a point in the plane inside a square of side L the function Z
becomes Z = L2/h2(2πm/β) (hence 〈H〉 = kT , (〈H2〉 − 〈H〉2)/〈H〉2 = 1), while
for a point on an interval of length L, Z = L/h (2πm/β)1/2 (with 〈H〉 = 1

2kT
and (〈H2〉 − 〈H〉2)/〈H〉2 = 2). �

Example 15.5
Consider the Hamiltonian of a harmonic oscillator with one degree of freedom:

H(q, p) =
p2

2m
+

1
2
mω2q2,

and compute the canonical partition function Z and the average energy 〈E〉.
Recalling the definition (15.61) of Z and Appendix 8, we have

Z =
1
h

∫ +∞

−∞
dq

∫ +∞

−∞
dp e−βH(q,p) =

2π
hωβ

.
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We arrive at the same result by considering the Hamiltonian expressed in terms
of the angle-action variables:

H(χ, J) = ωJ.

In this case, recalling that (χ, J) ∈ T1 ×R+, we have

Z =
1
h

∫ 2π

0
dχ

∫ +∞

0
e−βωJ dJ =

2π
hωβ

·

The average value of the energy is equal to

〈H〉 = − d
dβ

log Z =
d
dβ

log β =
1
β
,

in agreement with what was predicted by the theorem of equipartition of the
energy. It is also immediate to verify that

〈q2〉 =
∫
q2e−βH(q,p) dpdq∫
e−βH(q,p) dpdq

=
1

mω2β
, 〈p2〉 =

∫
p2e−βH(q,p) dpdq∫
e−βH(q,p) dpdq

=
m

β
,

from which we arrive at the equipartition
〈 1
2mω2q2

〉
= 1

2kT ,
〈
p2/2m

〉
= 1

2kT .
It is interesting to compare these averages with the averages over one period

of the deterministic motion. It is convenient to start from the transformation

p =
√
2ωmJ cosχ, q =

√
2J
ωm

sinχ,

imposing for the energy the value ωJ = kT , and hence J = kT/ω. Taking the
average over a period of χ for these quantities, we find exactly the same results.
We now compute 〈H2〉 = (hωβ/2π) (1/h)

∫ 2q
0 dχ

∫ +∞
0 ω2J2e−βωJ dJ = 2(kT )2.

Note that (〈H2〉 − 〈H〉2)/〈H〉2 = 1.
It is elementary to observe that the latter result is necessarily different from

the deterministic motion, for which the energy is constant. Hence the average
over a period of any power of the energy coincides with the same power of the
average (in other words (H2) = (H)2 = ω2J2 and there is no fluctuation).
As an exercise, compare the average 〈p4/4m2〉 in the statistical motion with the

average (p4/4m2) over a period of the deterministic motion (34k
2T 2 and 3

8k
2T 2,

respectively). �
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Example 15.6
Consider the Hamiltonian of a harmonic oscillator with two degrees of freedom:

H(q1, q2, p1, p2) =
p21 + p22
2m

+
1
2
mω2

(
q21 + q22

)
,

and compute the canonical partition function Z and the average energy 〈E〉.
Introducing planar polar coordinates, the Hamiltonian becomes

H(ϕ, r, pϕ, pr) =
1
2m

(
p2r +

p2ϕ
r2

)
+

1
2
mω2r2,

from which it follows that

Z =
1
h2

∫ 2π

0
dϕ

∫ +∞

0
dr

∫ +∞

−∞
dpϕ

∫ +∞

−∞
e−βH(ϕ,r,pϕ,pr) dpr

=
2π
h

∫ +∞

0

2πm
β

re−mω2βr2/2 dr

=
4π2

h2ω2β2

∫ +∞

0
e−mω2βr2/2d

(
mω2βr2

2

)
=

4π2

h2ω2β2
,

and therefore

〈H〉 = − d
dβ

log Z =
d
dβ

2 log β =
2
β
.

We would arrive at the same result considering the Hamiltonian expressed in
terms of the action-angle variables:

H(χ1, χ2, J1, J2) = ω(J1 + J2),

by simply recalling that (χ1, χ2, J1, J2) ∈ T2 ×R2
+. �

Example 15.7
Consider the Hamiltonian of a point particle of mass m constrained to move
on the surface of a sphere of radius R under the action of weight: in spherical
coordinates we have

H(ϑ, ϕ, pϑ, pϕ) =
1

2mR2

(
p2ϑ +

p2ϕ

sin2 ϑ

)
+mgR cos ϑ,

where 0 ≤ ϑ ≤ π and 0 ≤ ϕ ≤ 2π. The canonical partition function is given by

Z =
1
h2

∫ 2π

0
dϕ

∫ π

0
dϑ

∫ +∞

−∞
dpϕ

∫ +∞

−∞
e−βH(ϑ,ϕ,pϑ,pϕ) dpϑ

=
4π2mR2

h2β

∫ π

0
e−mgRβ cos ϑ sin ϑ dϑ =

8π2R
gh2

1
β2

sinh(βmgR).
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The average energy is therefore given by

〈E〉 = − d
dβ

log Z =
2
β

−mgR cotan h(βmgR),

from which it follows that

〈E〉 ≈
⎧⎨⎩−mgR, for β → +∞,
1
β
, for β → 0.

Hence for low temperatures, the energy stabilises in correspondence with
stable equilibrium, while at high temperatures the system tends to forget
the gravitational potential energy and sees only the quadratic part of the
Hamiltonian. �

Example 15.8
Consider a system of N rigid segments of length a and mass m, constrained to
move on the semi-axis x > 0. Denoting by (xi, xi + a) the interval occupied by
the ith segment, the point x1 is attracted with an elastic force of constant λ by
the point x = 0, while the adjacent endpoints (xi−1 + a, xi) of two consecutive
segments are also subject to the same force. Defining ξ1 = x1 and ξi = xi−xi−1−a,
i = 2, . . . , N and ξi ≥ 0, we have the following expression for the Hamiltonian:

H(ξ1, . . . , ξN , p1, . . . , pN ) =
N∑
i=1

[
p2i
2m

+
λ

2
ξ2i

]
.

If the system is kept at temperature T , its partition function has the value

Z =
1

N !hN

( ∫ +∞

−∞
e−βp2/2m dp

∫ +∞

0
e−βλξ2/2 dξ

)N

=
1

N !hN

(
2mπ

β

)N/2(
π

2βλ

)N/2

=
πN

N !hN
(m
λ

)N/2
β−N ,

from which we deduce the average energy 〈H〉 = NkT , in agreement with the
equipartition theorem. We now want to compute the average length of the system,
given by

〈L〉 = 〈xN + a− ξ1〉 =
〈
Na+

N∑
i=2

ξi

〉
.

The averages ξi are all equal to

〈ξ〉 =
∫ ∞

0
ξe−βλξ2/2 dξ

/ (∫ ∞

0
e−βλξ2/2 dξ

)
=
√

2
πβλ

.
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Hence 〈L〉 = Na+(N−1)
√
2/πβλ. The average x-coordinate of the last endpoint

is 〈xN + a〉 = Na +N
√
2/πβλ. The result is consistent with physical intuition:

when the intensity of the elastic interactions grows, 〈L〉 decreases; when the
temperature rises, 〈L〉 increases. In addition, we can compute the coefficient of
thermal dilation δ of the system, which we can define as the derivative with
respect to T of the average elongation 〈: xN + a − Na〉, with respect to the
extension 〈xN + a〉:

δ =
1

〈xN + a〉
∂

∂T
〈xN + a−Na〉 = kβ

a
√
2πβλ+ 2

. �

15.11 Helmholtz free energy and orthodicity of the canonical set

In the microcanonical set, given the parameters E, V it is natural to choose
the entropy S(E, V ) as the fundamental thermodynamical quantity. In the
canonical set, the independent variables are rather T, V and the connection
with thermodynamics is established through the Helmholtz free energy Ψ(V, T ),
defined by

T
∂ Ψ
∂T

− Ψ = −U, (15.65)

where U is the internal energy (hence 〈H〉). This expression highlights the fact
that −U is the Legendre transform of Ψ (hence that Ψ is the Legendre transform
of −U). A more familiar expression is

U = Ψ+TS, (15.66)

from which, differentiating with respect to T , we find S = −∂ Ψ /∂T ; indeed we
can write

∂S

∂T
=

∂S

∂E

∂E

∂T
=

1
T

∂U

∂T
.

If 〈H〉 is independent of V , as for the equipartition case, by differentiating
with respect to V we deduce P = −∂ Ψ /∂V (it is enough to observe that
T∂S/∂V = P ).
We show now that a correct definition of the function Ψ(V, T ) starting from

the canonical partition function is the following:

Z(V, T ) = exp [−β Ψ(V, T )] . (15.67)

Note that by altering the numerical factors in the definition of Z the free energy
is modified by the addition of a term linear in the temperature (which does not
contribute to the expression Ψ−T (∂ Ψ /∂T ) for the internal energy).

Proposition 15.3 The free energy Ψ(V,N, T ) = −kT log Z(V,N, T ) satisfies
equation (15.65), and hence it coincides with the Helmholtz free energy.
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Proof
Using the expression (15.67) in the computation of 〈H〉 through equation (15.63),
we obtain

〈H〉 = Ψ−T
∂ Ψ
∂T

. (15.68)

Equation (15.68) reproduces the relation between the free energy and the internal
energy (identified with the average value of the Hamiltonian). �

Example 15.9
Recalling the expression (15.64) for the partition function Z(V, T ) for a monatomic
perfect gas, we easily find

Ψ(V, T ) = −NkT log
{
V

N
(2πmkT )3/2h−3

}
. (15.69)

From this it is immediate to check that ∂ Ψ /∂T = −S, ∂ Ψ /∂V = −P . Note also
that equation (15.68) gives 〈H〉 = 3

2NkT . �

It is important to remark that the derivation of these results does not require
the hypothesis N � 1 (explicitly used in the microcanonical set), i.e. there is no
need to invoke the thermodynamical limit for their justification, and the canonical
set is naturally orthodic.

15.12 Canonical set and energy fluctuations

In the discussion introducing the structure of the canonical set, we anticipated
that for N � 1 this clusters around the microcanonical set, and hence the
manifold H = 〈H〉. We can now verify this fact, studying the energy fluctuations.

Theorem 15.11 In the limit N → ∞, the mean quadratic energy fluctuation in
the canonical set

〈H2〉 − 〈H〉2
〈H2〉 (15.70)

tends to zero. More precisely:

〈H2〉 − 〈H〉2
〈H2〉 ≈ 1

N
, for N → ∞. (15.71)

Proof
We start from the known relation 〈H〉 = −(∂/∂β) logZ. Differentiating with
respect to β, we obtain

∂〈H〉
∂β

=
1
Z2

(
∂Z

∂β

)2
− 1

Z

∂2Z

∂β2
.
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Since the first term on the right-hand side is just 〈H〉2, while ∂2Z/∂β2 = Z〈H2〉,
we conclude that

〈H2〉 − 〈H〉2 = −∂〈H〉
∂β

.

Note now that −(∂〈H〉/∂β) = kT 2 (∂〈H〉/∂T ) = kT 2CV is, like 〈H〉, proportional
to N . Hence (15.71) is proved. �

Example 15.10
The explicit computation for a perfect monatomic gas gives the result

〈H2〉 − 〈H〉2
〈H2〉 =

2
3N

,

independent of the temperature. �

We can therefore confirm that the states of the canonical set are concentrated
in a ‘thin’ region around the surface H = 〈H〉, and therefore the canonical
set is not different from the microcanonical set in the limit N → ∞, and the
two formalisms give rise to thermodynamical descriptions which are essentially
equivalent for sufficiently large values of N . Thanks to the results of the previous
section we again find that the microcanonical set is orthodic in the limit N → ∞.

15.13 Open systems with fixed temperature. Grand canonical set

Our discussion of statistical mechanics, and of Gibbs’ statistical sets, has so far
led us to consider two distributions, the microcanonical and the canonical. In
the former, we consider closed and isolated systems, with a fixed number of
particles N in a region of fixed volume V and with total energy E fixed as well.
In the latter, we studied closed but not isolated systems, and in contact with a
thermostat at constant temperature T ; hence with a fixed number of particles
N and volume V but with variable energy E.
In many cases—for example when a chemical reaction is taking place—one

needs to consider open systems in which the temperature T and the volume V
are fixed, but the energy E and the number of particles N are variable. To model
such a situation we can simply imagine eliminating the separation between the
system and the thermostat, letting the two systems exchange their particles. We
then have a fluctuation of the number of particles in the two compartments. The
statistical set corresponding to this situation is the grand canonical set. In what
follows we discuss briefly some properties of its density and its orthodicity in the
thermodynamical limit.
Assume that N1, N2 are the number of particles in the system under consid-

eration and in the thermostat, respectively, and that the sum N1 + N2 = N is
constant. Denote by V1, V2 (V1+V2 = V and V1 � V2) the respective volumes, and
by T the temperature. Naturally the two systems must have identical particles
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and we must assume that the respective Hamiltonians are subject to fluctu-
ations also because of the exchange of particles. The space Γ1 has the variable
dimension 6N1, but for fixed N1 we can consider the canonical partition function
Z1(V1, N1, T ) of the first system and simultaneously the one Z2(V2, N2, T ) of the
thermostat. In addition we can consider that the union of the two systems is
in turn kept at temperature T and therefore also consider the total partition
function Z(V,N, T ). If Z1, Z2, Z count the number of states in the respective
systems, then the following relation must necessarily hold:

Z(V,N, T ) =
N∑

N1=0
Z1(V1, N1, T )Z2(V2, N2, T ). (15.72)

This suggests that we assume as density of the grand canonical set associated
with system, the usual one of a canonical set with N1 particles, corrected by the
factor Z2/Z, i.e.

ρG(X1, N1, T ) =
Z2
Z

1
N1!h3N1

exp[−βH(X1, N1)], (15.73)

and hence with integral ∫
Γ1

ρG(X1, N1, T ) dX1 =
Z1Z2
Z

, (15.74)

in such a way that ρG is normalised to 1 when summing over all possible states
of system 1:

N∑
N1=0

∫
Γ1

ρG(X1, N1, T ) dX1 = 1.

We now seek an expression for the correction factor Z2/Z that is valid in the
situation in which not only V1 � V2, but also N1 � N2, as it is natural to
expect. In this case we can consider Z2 as a perturbation of Z. It is convenient
to refer to the Helmholtz free energy and write

Z2(V2, N2, T )
Z(V,N, T )

= exp[−β Ψ(V − V1, N −N1, T ) + β Ψ(V,N, T )]. (15.75)

Using the expansion to first order we obtain

Ψ(V − V1, N −N1, T )− Ψ(V,N, T ) = −∂ Ψ
∂V

V1 − ∂ Ψ
∂N

N1. (15.76)

We already know that −∂ Ψ /∂V = P . We now introduce two new quantities: the
chemical potential :

µ =
∂ Ψ
∂N

, (15.77)
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and the fugacity :

z = eβµ, (15.78)

through which we finally arrive at the expression

Z2(V2, N2, T )
Z(V,N, T )

= e−βPV1zN1 . (15.79)

The condition N1 � N2 can be verified on average a posteriori. Note that the
pressure P is an intensive quantity, defined in the global set, but also in each
of its parts, and it is therefore admissible to interpret it as the pressure of the
system with N1 particles. The same can be argued of the chemical potential.
Hence (15.79) is expressed only through variables referring to the latter system.
These considerations lead to defining the grand canonical set in the following

way, dropping the index 1.

Definition 15.10 We call the density of the grand canonical set the function

ρG(X, N) =
zN

h3NN !
exp[−βPV − βH(X, N)], (15.80)

defined for every N on the space Γ(N) with 6N dimensions. �

By integrating over the space Γ(N) we obtain∫
Γ(N)

ρG(X, N) dX = zNe−βPV Z(V,N, T ), (15.81)

which is a reformulation of (15.74) taking into account (15.79), expressing the
count of the states with N particles. The probability of finding the system in
any microscopic state with N particles is found by dividing the right-hand side
of (15.81) by the sum over N of the same expression. We allow for N to tend to
infinity. We therefore conclude that the probability that the number of particles
of the system is N is given by

p(N) =
zNZ(V,N, T )
ZG(V, T, z)

, (15.82)

where

ZG(V, T, z) =
∞∑

N=0
zNZ(V,N, T ) (15.83)

is the grand canonical partition function.
We already know that, due to the normalisation of the function ρG, summing

over N expression (15.81) yields 1. Using the definition (15.83) we can deduce
the equation

βPV = log ZG(V, T, z). (15.84)
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The average number of particles is given by

〈N〉 =
∞∑

N=0
Np(N) = z

∂

∂z
log ZG(V, T, z). (15.85)

Eliminating the variable z between (15.84) and (15.85) we obtain the state
equation.

Example 15.11
We compute the grand canonical partition function for a perfect monatomic gas.
From (15.83), using the results of Example 15.3, we find immediately that

ZG(V, T, z) = exp[zV (2πmkT )3/2h−3], (15.86)

from which it follows that for a perfect gas we have

z
∂

∂z
log ZG(V, T, z) = 〈N〉 = logZG(V, T, z), (15.87)

log ZG(V, T, z) = zV (2πmkT )3/2h−3 = βPV, (15.88)

yielding the state equation

PV = 〈N〉kT. (15.89)

In the expressions (15.86) and (15.88) there appears an arbitrary constant h,
introduced by the function Z. It is clear that quantities such as p(N), βPV, 〈N〉
given by (15.82), (15.84), (15.85) cannot depend on h. It is convenient to clarify
this point using the explicit example of the perfect gas. First of all, note that
the computation of µ and z (see (15.77), (15.78)) is performed using the free
energy Ψ of the thermostat. The way we used the thermostat (see (15.83)) was by
letting N and V tend to infinity, and implicitly choosing the limit value V/N = v
(hence the density of particles of the thermostat). Hence for the thermostat we
must rewrite the expression (15.69) for the free energy in the form

Ψ(V,N, T, ) = −NkT log
{
v(2πmkT )3/2h−3

}
. (15.90)

As a consequence, we find

βµ = − log
{
v(2πmkT )3/2h−3

}
,

z =
{
v(2πmkT )3/2h−3

}−1
.

(15.91)

Note that z is proportional to h3, and hence the expression (15.86) is reduced to

ZG = exp
(
V

v

)
(15.92)
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and in addition

zNZ(V,N, T, ) =
1
N !

(
V

v

)N

, (15.93)

reproducing (15.92) when we sum over N . For the average value 〈N〉 we find
precisely the value intuition would suggest, i.e.

〈N〉 = V

v
. (15.94)

Introducing this value into the expression (15.89) we find Pv = kT , in agreement
with the interpretation of v. Finally, note that if we substitute the values found
for z and ZG into (15.82), we find

p(N) =
1
N !

〈N〉N
e〈N〉 . (15.95)

It is easy to verify that the average of a quantity f(X, N) in the grand
canonical set can be obtained from the formula

〈f〉G =

∞∑
N=0

zN 〈f〉NZ(V,N, T )

ZG(V, T, z)
, (15.96)

where 〈f〉N denotes the average of f in the canonical set with N particles.
Applying this formula to the Hamiltonian of a perfect monatomic gas, we note

that the numerator of (15.96) is (recall that 〈H〉N = 3
2NkT )

3
2
kT

∞∑
N=1

1
(N − 1)!

[
zV

h3
(2πmkT )3/2

]N
,

and therefore

〈H〉G =
3
2
kT

zV

h3
(
2πmkT

)3/2 = 3
2
〈N〉GkT, (15.97)

in agreement with physical intuition. �

15.14 Thermodynamical limit. Fluctuations in the
grand canonical set

In the previous section, we used repeatedly the fact that the number N of particles
in the system in equilibrium with a thermostat is close to its average. This
corresponds to interchanging 〈N〉 with its most probable value N , characterised
by the dominant term in the series expansion (15.83), in agreement with the
definition (15.82) of p(N).
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Definition 15.11 A system admits the thermodynamical limit if, for fixed
density n = N/V the limit

lim
V →∞

1
nV

log Z(V, n V, T )
def= −βψ(n, T ) (15.98)

exists. �

Remark 15.14
The problem of finding sufficient conditions for the microscopic interactions (hence
for the Hamiltonian) guaranteeing that the thermodynamical limit exists is one
of the fundamental problems of statistical mechanics. For a discussion, we refer
to Ruelle (1969) and Thompson (1972, 1988). Every time that the system admits
the thermodynamical limit, we say that the system has the property of being
extensive, since the thermodynamical quantities such as the entropy, the specific
heat, etc. are asymptotically proportional to the size of the system. �

If we approximate ZG(V, T, z) by zNZ(V,N, T ), assuming that this is the
dominant term in the series expansion (15.83), from (15.98) it follows that

lim
V →∞

1
V

log ZG(V, T, z) = n(log z − βψ(n, T )). (15.99)

The right-hand side defines the so-called grand canonical potential χ(T, z). Hence

βψ(n, T ) = log z − 1
n
χ (T, z) . (15.100)

This conclusion should not come as a surprise, as by choosing only one term in
the expansion of ZG we have identified the latter (up to a factor zN ) with a
canonical distribution (note that, with respect to (15.67), ψ replaces 1/N Ψ and
1/nχ replaces 1/N log Z; the presence of log z in (15.100) is due to the different
normalisation of ZG).
Differentiating (15.100) with respect to z, we find the formula corresponding

to the thermodynamical limit in (15.85):

n = z
∂χ

∂z
. (15.101)

We must finally prove that indeed the fluctuation of N around 〈N〉 is small.
We apply twice the operator z ∂/∂z to the function log ZG. We then easily see
that

z
∂

∂z
z

∂

∂z
log ZG(V, T, z) = 〈N2〉 − 〈N〉2, (15.102)

by using the expression (15.82) for the probability p(N). We note that

z
∂

∂z
=

1
β

∂

∂µ
(15.103)



15.15 Statistical mechanics: Gibbs sets 653

and we can use (15.82) to rewrite (15.102) in the form

〈N2〉 − 〈N〉2 = kTV
∂2P

∂µ2
. (15.104)

Recalling the identities µ = ∂ Ψ /∂N , P = −∂ Ψ /∂V , setting v = V/N = 1/n
and, as is admissible under our assumptions, Ψ = Nψ(v, T ), we obtain (∂/∂N =
∂/∂N, N∂/∂N = −v∂/∂v)

µ = ψ + vP, P = −∂ψ

∂v
. (15.105)

From this, differentiating with respect to v and µ, it is easy to derive

∂µ

∂v
= −v

∂2ψ

∂v2
= v

∂P

∂v
,

∂P

∂µ
=

1
v
, (15.106)

and

∂2P

∂µ2
=

∂

∂v

(
1
v

)
∂v

∂µ
= − 1

v3

(
∂P

∂v

)−1
.

Define the factor of isothermal compressibility by

KT = −1
v

(
∂P

∂v

)−1
. (15.107)

Then substituting this into (15.104), we find

〈N2〉 − 〈N〉2 = NkTKT

v
, (15.108)

proving that

〈N2〉 − 〈N〉2
N2 = O

(
1
N

)
. (15.109)

This conclusion is correct except when KT → ∞, corresponding to the hori-
zontal segments of the isothermal lines in the plane (P, v) and to the triple point,
i.e. to the phase transitions, discussed in the next section.
The smallness of the fluctuation of N therefore confirms the equivalence in the

thermodynamical limit of the descriptions given by the grand canonical and the
canonical sets, and hence, following from what we have seen, the fact that the
grand canonical set is also orthodic. In many practical applications, the latter
behaves essentially like the canonical set corresponding to a system with 〈N〉 ≈ N
particles.
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15.15 Phase transitions

One of the most interesting problems of statistical mechanics concerns phase
transitions. The latter are ubiquitous in the physical world: the boiling of a
liquid, the melting of a solid, the spontaneous magnetisation of a magnetic
material, up to the more exotic examples in superfluidity, superconducitivity, and
quantum chromodynamics. In its broadest sense, a phase transition happens any
time a physical quantity, such as density or magnetisation, depends in a non-
analytic (or non-differentiable, or discontinuous) way on some control parameter,
such as temperature or magnetic field. An additional characteristic common to
all phenomena of phase transitions is the generation (or destruction) in the
macroscopic scale of ordered structures, starting from microscopic short-range
interactions. Moreover, in the regions of the space of the parameters corresponding
to critical phenomena (hence in a neighbourhood of a critical point), different
systems have a similar behaviour even quantitatively. This fact generated the
theory of the universality of critical behaviour.
Naturally a careful study of the theory of phase transitions and of critical

phenomena goes beyond the scope of this book. Indeed, thanks to the impressive
developments of the techniques for its solution, it constitutes one of the most
significant achievements of modern theoretical physics. However, because of the
physical (and mathematical) interest of the theory, and the extent of its applic-
ations, going beyond physics to biology and the theory of chaotic dynamical
systems, we believe it appropriate to state the fundamental principles of classical
statistical mechanics of equilibrium with a short reference to the theory of Lee
and Yang (1952a,b) on phase transition, and their relation with the zeros of the
grand canonical partition function in the thermodynamical limit.
As we mentioned, from a mathematical point of view, a phase transition is a

singular point of the canonical partition function (see Section 15.9). It is however
immediate to verify that for finite values of the volume V and of the number
N of particles, the partition function depends analytically on the temperature
T . At least for what concerns its mathematical description, the only way to
determine if a phase transition is possible is to consider the thermodynamical
limit.

Definition 15.12 A point in the phase diagram of a system (corresponding to
real positive values of T , v or z) is a phase transition point if at that point the
free energy

ψ(v, T ) = − lim
N,V →∞

kT

N
log Z(N,V, T ), v =

V

N
given, (15.110)

or the grand canonical potential

χ(z, T ) = lim
V →∞

log ZG(V, z, T ) (15.111)

are not analytic functions of their arguments. �
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Remark 15.15
Recall that the non-analyticity expresses the impossibility of representing a func-
tion as a Taylor series expansion converging to the function itself. It follows that
it is not necessary for any of the derivatives of the function to diverge for a
phase transition to be possible, though this is what frequently happens. �

The fundamental observation at the foundation of the theory of phase trans-
itions of Lee and Yang is simple. Assume that the interacting particles have a
‘hard core’, and hence that they are impenetrable and of radius r0 > 0. A volume
V can therefore fit at most ν(V ) ≈ V r−3

0 particles; hence the canonical partition
function is

Z(V,N, T ) = 0, if N > ν(V ). (15.112)

The grand canonical partition function (15.83) is then a polynomial in the fugacity
of degree at most ν(V ):

ZG(V, z, T ) =
ν(V )∑
N=0

zNZ(V,N, T )

= 1 + zZ(V, 1, T ) + z2Z(V, 2, T ) + . . .+ zνZ(V, ν, T ).

(15.113)

Setting as a convention Z(V, 0, T ) = 1 and denoting by z1, . . . , zν(V ) the (complex)
zeros of ZG(V, z, T ), we have

ZG(V, z, T ) =
ν(V )∏
j=1

(
1− z

zj

)
. (15.114)

Note that, since all coefficients of the polynomial (15.113) are positive, it is not
possible to have real positive zeros, and hence there can be no phase transitions
for finite values of the volume V (and of the number of particles N). Indeed,
the parametric expression of the state equation of the system is (see (15.83) and
(15.85))

P

kT
=

1
V

log Z(V, z, T ),

1
v
=

1
V

z
∂

∂z
log Z(V, z, T ).

(15.115)

For every finite value of V , from expressions (15.114) and (15.115) it follows
that P and v are analytic functions of the fugacity z in a region of the complex
plane including the positive real axis. Therefore P is an analytic function of
v for all physical values of v, and the thermodynamical functions are without
singularities, and there cannot be phase transitions. For a phase transition to
occur it is necessary to consider the thermodynamical limit.
Lee and Yang proved that phase transitions are controlled by the distribution

of zeros of the grand canonical partition function in the plane z ∈ C: a phase
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transition happens when a zero approaches the positive real axis in the
thermodynamical limit. We refer to Thompson (1972, 1988) and Huang (1987)
for an exposition of the theory of Lee and Yang, and to Sinai (1982) for the
mathematical theory of phase transitions.

15.16 Problems

1. A cylindrical container of radius R and height l contains a conducting
cylinder of radius r, height l, electric charge Q and axis coinciding with the
axis of the container. The container is filled with a gas of N point particles of
mass m and electric charge q. Assume that l � R (so it is possible to neglect
the axial component of the electric field) and do not take into account the
electrostatic interaction between the particles. Assume also that the system is in
thermal equilibrium with a thermostat at temperature T . Compute the canonical
partition function and the average energy of the system.

2. A vertical cylindrical container has a base of area S and height l. It
contains an ideal gas made of N molecules of mass m and weight mg. Assume
that the potential energy of a molecule on the lower base of the container is
zero. The system is in thermal equilibrium with a thermostat at temperature
T . Compute the canonical partition function, the average energy, the Helmholtz
free energy, the entropy and the heat capacity of the system.

3. A spherical container of radius R is filled with a perfect gas composed of
N point molecules of mass m subject to the constant gravitational field g. Find
the specific heat of the system as a function of the temperature.

4. A two-atom molecule is made of two ions both of mass m, with electric
charges q and −q, respectively, constrained to keep a fixed distance d between
them. The molecule is held in a container of volume V and it is subject to a
non-uniform electric field E(q). Write down the Hamiltonian of the molecule in
the approximation in which the electric field is constant on the segment of length
d joining the two ions. Write down the canonical partition function for a gas of
N non-interacting molecules.

5. Compute B(E, V ) (see Section 15.7) when H =
∑N

i=1 p
2
i /2m. Compare

SB with Sω.
6. (Huang 1987). Consider a system of N biatomic non-interacting molecules

held in a container of volume V , in thermal equilibrium with a thermostat at
temperature T . Each molecule has a Hamiltonian

H =
1
2m

(|p1|2 + |p2|2
)
+

a

2
|q1 − q2|2,

where (p1,p2, q1, q2) are the momenta and coordinates of the two atoms of the
molecule. Compute the canonical partition function, the Helmholtz free energy,
the specific heat at constant volume, and the mean square diameter 〈|q1 − q2|2〉.
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7. A biatomic polar gas is made of N molecules composed of two ions of
mass m and electric charges q and −q, respectively, constrained to keep a fixed
distance d between them. The gas is held in two communicating containers V1 and
V2 immersed in two electric fields of constant intensity E1 and E2, respectively.
The system is in thermal equilibrium with a thermostat at temperature T .
Neglecting the interactions between the molecules, determine the average number
N1 of molecules held in the first container, the free energy of the system, and
the pressure on the walls of the containers.

8. A point particle of mass m is constrained to move on a smooth circular
paraboloid of equation z = x2 + y2 under the action of a conservative force with
potential energy V = V0

√
1 + 4z, where V0 is a positive fixed constant. Introduce

the Lagrangian coordinates x = r cos ϕ, y = r sin ϕ, z = r2, where r ∈ [0,+∞),
ϕ ∈ [0, 2π].
(a) Write down the Hamiltonian of the problem.
(b) Assume that the system is in contact with a thermostat at temperature T ,

and compute the canonical partition function. Compute 〈ϕ〉 and 〈H〉.
9. Two point particles of mass m move along the x-axis, subject to a potential

V (x1, x2) =
1
2
[
ax21 + ax22 + b(x1 − x2)2

]
.

The system is in thermal equilibrium with a thermostat at temperature T .
Compute the canonical partition function and the average value of the energy.
10. A one-dimensional system is composed of N points of mass m constrained

to move along the x-axis and subject to the potential

V (x1, . . . , xN ) = v(x1) + v(x2 − x1) + . . .+ v(xN − xN−1) + fxN ,

where f is a prescribed positive constant and

v(x) =

{
+∞, if x < a,

b(x− a), if x > a,

where a and b are two prescribed positive constants. Assume that the system is in
thermal equilibrium with a thermostat at temperature T . Compute the canonical
partition function, the heat capacity, the average length 〈xN 〉, the coefficient of
thermal dilation and the elasticity module (1/〈xN 〉)(∂〈xN 〉/∂f).
11. A point particle of mass m is constrained to move along the x-axis under

the action of a conservative force field with potential energy

V (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
mω2(x+ a)2, if x ≤ −a,

0, if − a ≤ x ≤ a,
1
2
mω2(x− a)2, if x ≥ a,
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where a > 0. Assuming that the system is in contact with a thermostat at
temperature T , compute the canonical partition function. Compute 〈H〉 and
show its graph as a function of a > 0.
12. Consider a system of N point particles of mass m moving along the x-axis

under the action of a conservative force field of potential energy

V (x1, . . . , xN ) = v(x1) + v(x2 − x1) + . . .+ v(xN − xN−1),

where

v(x) =

⎧⎨⎩+∞, if x < a,
1
2
mω2(x− a)2, if x ≥, a

with a > 0. Assuming that the system is in contact with a thermostat at
temperature T , compute the canonical partition function, 〈H〉, 〈xN 〉 (average
length of the system) and (1/〈xN 〉)(∂/∂T ) 〈xN 〉 (coefficient of thermal dilation),
and show their graphs as functions of the temperature T .
13. Prove that the grand canonical partition function for a system confined in a

region of volume V and with Hamiltonian H =
∑N

i=1 (p
2
i /2m+φ(qi)) is given by

ZG(V, T, z) = exp(z Φ(V, T )), where Φ(V, T ) = (2πmkT )3/2
∫
V
exp(−βφ(Q)) dQ.

Prove that for any external potential φ the state equation of this system is always
the equation of a perfect gas.
14. (Thompson 1972) Prove that if the potential Φ(r) satisfies Φ(|ql − qm|) ≤

C/|ql − qm|d+ε if |ql − qm| ≥ R, where d is the dimension of the space of
configurations of each particle, C, ε are arbitrary positive constants, for every
pair of subdomains D1 and D2, of volume V1 and V2 and containing N1 and N2
particles, respectively, of a domain D of volume V with a distance at least equal
to R between them, we have

Z(V,N1 +N2, T ) ≥ Z(V1, N1, T )Z(V2, N2, T ) exp(−N1N2βC/R
d+ε).

15. (Uhlenbeck and Ford 1963) Consider a system with partition function

Z(N,V ) =
∑V

j=0 ( V
N−k). Prove that the grand canonical partition function is

ZG(V, z) =
∑∞

N=0 zNZ(N,V ) =
(
(zV+1 − 1)/z − 1

)
(1 + z)V , and the grand

canonical potential χ(z) in the thermodynamical limit is given by

χ(z) =

{
log(1 + z), if |z| ≤ 1,
log z(1 + z), if |z| > 1.

Deduce p as a function of v from the relations βp = χ(z) and v−1 = z∂χ/∂z,
eliminating the fugacity z. Prove that βp = log 2 if 2

3 ≤ v ≤ 2.
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16. (Huang 1987, Problem 9.5) Consider a system with grand canonical
partition function

Z(z, V ) = (1 + z)V (1 + zαV ),

where α > 0 is fixed. Write the state equation (naturally, in the thermodynamical
limit), eliminating the fugacity z from the parametric form (15.115) and prove
that there exists a phase transition. Find the specific volumes of the two phases.
Find the zeros of the partition function Z(z, V ) in the z ∈ C plane (for fixed
volume V ) and prove that if V → ∞, then the zeros approach the real axis
at z = 1.
17. (One-dimensional Ising model) Consider a system made of a one-

dimensional lattice such that to each site there corresponds a variable (spin)
si that can assume the values ±1. Each spin interacts with the two adjacent
spins si±1 and with an external magnetic field in such a way that the total
energy of a configuration {si} is given by

E({si}) = −J
∑

|i−j|=1
sisj −H

∑
i
si.

The case J > 0 corresponds to a ferromagnetic model, while J < 0 is associated
with the antiferromagnetic case. Assume that H = 0 and that the total number
of spins is N . In the case that the points s1 and sN of the lattice are free, or
the case when the lattice closes to form a ring, and hence that s1 = sN+1, prove
that the canonical partition functions are given by

Zf (x) = 2x−(N−1)/2(x+ 1)N−1 in the free case,
Zr(x) = x−N/2[(x+ 1)N + (x− 1)N ] in the ring case,

where x = eJ/kT . Find the zeros xr and xf of the two partition functions (answer:
xr = −1 with multiplicity N − 1; xf = i((2n+ 1)π)/2N , where i =

√−1 and
n = 0, 1, . . . , N − 1) and check that, setting xf = is, the density of the zeros
µ(s) = (1/N) dn/ds in the thermodynamical limit N → ∞ is given by

µ(s) =
1
π

1
1 + s2

.

Recalling that the physically significant region corresponds to x real and positive
(why?), do these models present phase transitions?

15.17 Additional remarks and bibliographical notes

In the classical literature, the fact that the ergodic hypothesis has been formulated
by Boltzmann assuming the existence of a trajectory passing through all points
in the phase space accessible to the system (hence corresponding to a fixed value
of the energy) is often discussed. Clearly this condition would be sufficient to
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ensure that temporal averages and set averages are interchangeable, but at the
same time its impossibility is evident. Indeed, the phase trajectory StX of a
Hamiltonian flow is a regular curve of zero measure, and hence it can be dense
at most on the constant energy surface.
The reasoning of Boltzmann is, however, much richer and more complex (and

maybe this is the reason why it was not appreciated by his contemporaries) and
it deserves a brief discussion. In addition, through a modern exposition of his
ideas, we can criticise the tendency, which emerges in some texts (including the
treatise of Huang 1987) to consider ergodic theory as a mathematical discipline
without (almost) any physical relevance.
For the reader interested in going into more detail into the topics we are going

to discuss below, we refer to the excellent article of Gallavotti Classical statistical
mechanics, in the Enciclopedia delle scienze fisiche, published by the Istituto
della Enciclopedia Italiana, from which we took most of the considerations that
follow.
Consider a system of N interacting particles described by the Hamiltonian

(15.1) and contained in a finite volume V with perfect walls (isolating and against
which the particles collide elastically). Instead of assuming, as usual, that the
system can take a continuum of states in the space Γ, we subdivide the latter
into small cells ∆, each determining the position and velocity of each particle
with the uncertainty unavoidable in every measurement process. This approach
is due to Boltzmann himself, and it is deeply innovative, anticipating in a sense
(though not intentionally) the criticism to the determinism of classical mechanics
which came much later with the uncertainty principle and the development of
quantum mechanics.
If h denotes the uncertainty in the measurements of position and velocity, and

hence if

δqδp ≈ h,

h3N is the volume of a cell. The microscopic state space is then the set of the
cells ∆ subdividing the space Γ.
The Hamiltonian flow St associated with (15.1) induces, in this context,

a transformation S = Sτ which transforms the cells ∆ into one another:

S∆ = ∆′ .

Here τ is a ‘microscopic time’, very short with respect to the duration T of any
macroscopic measurement of the system and on a scale in which the movement
of the particles can be measured (accounting for the finite precision). Typical
values for τ and T are of the order of 10−12 seconds and one second, respectively.
(A deeper discussion of this point is given by Gallavotti in the quoted article;
the reader will notice how his arguments have many analogies with the typical
arguments of kinetic theory.)
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By the theorem of Liouville, the map S is injective and surjective. Essentially
S is the canonical linear map obtained by solving over a time interval τ Hamilton’s
equations (15.1) linearised at the centre of the cell ∆ considered. The effect of
S is therefore to permute the cells ∆ among them.
Since the system under consideration is closed and isolated, its energy E is

macroscopically fixed (and lies between E and E + ∆E). Since the volume V
accessible to the particles is finite, the number V(∆) of cells representing the
energetically possible states is very large, but finite. For example, if we assume
for N , V and E the value of a mole of a perfect gas made by hydrogen molecules,
with mass m = 2× 10−24 g, in standard conditions of pressure and temperature,
and hence N = 6 × 1023, V = 22 l and E = 4 × 1010 erg, where h is the Planck
constant, h = 6 × 10−27 erg s and for ∆E the value h/τ = 6 × 10−15 erg, we
find that V(∆) is of the order of 1010

25
. The cells can therefore be numbered:

∆1, . . . ,∆V.
The temporal average of a function f becomes

f̂ = lim
j→∞

1
j

j−1∑
i=0

f(Si∆), (15.116)

where f(∆) is the value f takes on the cell ∆.
The set average is given by

〈f〉 = 1
V(∆)

V(∆)∑
i=1

f(∆i). (15.117)

The ergodic hypothesis becomes

f̂ = 〈f〉, (15.118)

and it is clearly equivalent to assume that S acts as a one-cycle permutation: a
given cell ∆ evolves successively into different cells until it returns to the initial
state in a number of steps equal to the number V(∆) of cells. It follows that, by
numbering the cells appropriately, we have

S∆i = ∆i+1, i = 1, . . . ,V − 1 (15.119)

and S∆V = ∆1.
The ergodic hypothesis is not necessary in the most general formulation. For

statistical mechanics to be solidly based, it would be sufficient for (15.118) to be
valid only for the few thermodynamical quantities of interest. It would be sufficient
that, instead of satisfying (15.119), every cell in its evolution visited mainly those
cells in which the observable quantities of interest take an approximately constant
value, which as we saw (Section 15.6), in the Boltzmann interpretation are the
majority of cells with fixed energy.
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15.18 Additional solved problems

Problem 1
Consider a system of N equal homogeneous plane plates, with a centre of sym-
metry and an axis x through their centres and orthogonal to the plates. The
centres of mass G1, . . . , GN are fixed (for example, they are equidistant) and the
plates can rotate without friction around the x-axis. At rest, the plates occupy
configurations that can be obtained by translating one into another along the x-

axis. When not in equilibrium, there is a torsion energy V =
∑N−1

i=1
1
2γ(ϕi−ϕi−1)2

where ϕi is the rotation angle of the ith plate with respect to equilibrium (ϕ0 = 0)
and γ is a positive constant.
If the system is subject to energy fluctuations corresponding to the temperat-

ure T , find:

(i) the canonical partition function;
(ii) the average values of energy, kinetic energy, torsion energy, and the average

value of the relative rotation angle between two contiguous plates and of its
square.

Solution
If I denotes the moment of inertia of the plates with respect to the x-axis, the
Hamiltonian of the system is

H =
N∑
i=1

p2i
2I

+
N−1∑
i=1

1
2
γ (ϕi+1 − ϕi−1)

2
.

The rotation angles vary between −∞ and +∞. To compute the partition func-
tion, we must compute the integral

∫
RN e− 1

2βγΣ
N−1
i=1 (ϕi+1−ϕi)2 dϕ1 . . .dϕN . It is

convenient to use the transformation ϕi−ϕi−1 = ηi, i = 1, . . . , N , whose Jacobian

is equal to 1. The integral is thus reduced to
( ∫ +∞

−∞ e− 1
2βγη

2
dη
)N

= (2π/βγ)N/2.
It is immediately obvious that the integral in the space of momenta is factorised

as in
( ∫ +∞

−∞ e(−β/2I)p2
dp
)N

= (2πI/βγ)N/2. Therefore the partition function is

Z =
1

N !hN

(
2π
β

)N (
I

γ

)N/2

,

from which we find 〈H〉 = −∂/∂β logZ = NkT .
The average

〈
p2i /2I

〉
is given by

( ∫ +∞

−∞

p2i
2I

e−βp2
i /2I dpi

) (∫ +∞

−∞
e−βp2

i /2I dpi

)−1
,
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because all other factors cancel out, and hence we can write〈
p2i
2I

〉
= − ∂

∂β
log

( ∫ +∞

−∞
e−βp2

i /2I dpi

)
= − ∂

∂β
log

(
2πI
β

)1/2
=

1
2
kT.

It follows that the average kinetic energy is 1
2NkT , from which we see that 〈H〉

is equipartitioned between the averages of the kinetic and torsion energy.
As for the angle of relative rotation, ηi, we clearly have 〈ηi〉 = 0 and 〈η2i 〉 =

kT/γ, since N/2γ〈η2i 〉 = 1
2NkT .

Problem 2
Consider the system of N uncoupled harmonic oscillators with Hamiltonian 1

2 (p
2
i+

ω2q2i ) contained in the cube of side 2A. Describe the corresponding canonical set
at temperature T .

Solution
The partition function can be written as

Z =
1

N !h3N

( ∫ +∞

−∞
e−βp2/2 dp

)3N ( ∫ A

−A

e−βω2q2/2 dq

)3N

.

Setting f(α) = 1√
π

∫ α

−α
e−y2

dy, we have

Z =
1

N !h3N

(
2π
βω

)3N
f3N

(√
β

2
ωA

)
.

Therefore we immediately find the average energy

〈H〉 = 3NkT − 3N
ωA√
2πβ

e−(βω2/2)A2
f−1

(√
β

2
ωA

)

(in agreement with the equipartition theorem for A → +∞). We can then compute
the Helmholtz free energy

Ψ = − 1
β
logZ

and the pressure P = −∂ Ψ /∂V . Since V = 8A3, we can write

P = 3NkT
1

24A2

2e−βω2A2/2∫ A

−A
e−βω2q2/2 dq

=
N

V
kT

2Ae−βω2A2/2∫ A

−A
e−βω2q2/2 dq

.

Note that for ω → 0 we obtain the perfect gas pressure P = (N/V )kT . The same
happens, keeping the ratio N/V fixed, for small A. However for ω large or A
large we see that P tends to zero (the increase in the attractive force or moving
away the walls have asymptotically the effect of suppressing the pressure).
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Problem 3
Model a system of N biatomic particles by attributing to each pair the
Hamiltonian

hi =
1
2m

(p(i)21 + p(i)22 ) +
1
2
a(q(i)1 − q

(i)
2 )2, i = 1, . . . , N.

The system is contained in the cube defined by |q(i)j,k| ≤ A, with k = 1, 2,

j = 1, 2, 3, i = 1, . . . , N . Using the Hamiltonian H =
∑N

i=1 hi and for prescribed
temperature T , compute the canonical partition function, the average energy and
the average square diameter 〈|q1 − q2|2〉.
Solution
We have a system of 2N particles in R3. Hence we write

Z =
1

(2N !)
1

h6N

( ∫ +∞

−∞
e−(β/2m)p2

dp
)6N ( ∫ A

−A

∫ A

−A

e−(βa/2)(q1−q2)2 dq1 dq2

)3N

,

where we denote by q1, q2 two corresponding components of the vectors q(i)1 ,q(i)2 ,
for generic i.
The first integral is simply (2πm/β)3N . To evaluate the second integral it

is convenient to use the transformation q1 + q2 =
√
2ξ, −(q1 − q2) =

√
2η,

with unit Jacobian. The double integral then becomes 2
√
2A

∫√
2A

−√
2A e−βaη2

dη =

8A2 1√
2A

∫√
2A

0 e−βaη2
dη. In summary,

Z =
V 2N

(2N)!
1

h6N

(
2πm
β

)3N
23N

(
1√
2A

∫ √
2A

0
e−βaη2

dη

)3N

.

Taking the logarithm, the principal terms, up to factors that render the variables
dimensionless, are (N � 1)

logZ = 2N log
V

2N
− 3N logβ + 3N log

(
1√
2A

∫ √
2A

0
e−βaη2

dη

)
.
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We can now compute

〈H〉 = − ∂

∂β
logZ = 3N

(
kT + kT

∫ A
√
2βa

0 y2e−y2
dy∫ A

√
2βa

0 e−y2 dy

)
def= 3NkT (1 + ϕ(A

√
2βa)).

In the case A
√
2βa � 1 we have 〈H〉 ≈ 9

2NkT , since ϕ(A
√
2βa) ≈ 1

2 .
Regarding the average 〈2η2〉, we only need to compute

〈2η2〉 = 2
∫√

2A
0 η2e−βaη2

dη∫√
2A

0 e−βaη2 dη
=

2a
β
ϕ(A

√
2βa),

and consequently we have

〈|q1 − q2|2〉 = 6
a

β
ϕ(A

√
2βa) ≈ 3

a

β
, for A

√
2βa � 1.

Problem 4
A cubic box of side l resting on the horizontal plane z = 0 contains a system of
N particles subject to weight. Describe the canonical and microcanonical sets.

Solution
The Hamiltonian is

H =
P 2

2m
+mg

N∑
i=1

zi,

where as usual P is the momentum vector in R3N .
We write the canonical partition function in the form (V = l3)

Z =
1

N !h3N

∫
R3N

e−(β/2m)P 2
dPV N

[
1
l

∫ l

0
e−βmgz dz

]N
.

Then

∫
R3N

e−(β/2mP 2) dP =
(
2πm
β

)3N/2

,

from which it follows that

Z =
V N

N !h3N

(
2πm
β

)3N/2(1− e−βmgl

βmgl

)N

.
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Taking N � 1, and neglecting β-independent terms we get

logZ = −3
2
N logβ −N log(βmgl) +N log(1− e−βmgl),

from which

〈H〉 = − ∂

∂β
logZ =

3
2
N

β
+

N

β
− N

β

βmgle−βmgl

1− e−βmgl
= NkT

(
5
2

− xe−x

1− e−x

)
,

with x = βmgl. For low values of β (high temperatures) we have 〈H〉 ≈ 3
2NkT

(the influence of gravity is not felt). At low temperatures, however, it remains
〈H〉 ≈ 5

2NkT . We now evaluate the average height:

〈z〉 =
∫ l

0 ze
−βmgz dz∫ l

0 e
−βmgz dz

=
l

x

(
1− xe−x

1− e−x

)
, x = βmgl.

At low temperatures (x → ∞) we have 〈z〉 ≈ 0, while at high temperatures
(x → 0) we can easily verify that 〈z〉 ≈ 1

2 . Both results are consistent with
physical intuition.
We can also compute the free energy:

−Ψ =
1
β
logZ =

1
β
N log

V

N
− 3

2
N

β
logβ − N

β
log(βmgl) +

N

β
log(1− e−βmgl)

and the pressure:

P = −∂ Ψ
∂V

=
N

βV
+

N

β

xe−x

1− e−x

1
l

dl
dV

− N

β

1
3V

=
N

V
kT

(
1 +

1
3

xe−x

1− e−x
− 1

3

)
.

At high temperatures (x → 0) we again find P ≈ N/V kT , while at low
temperatures (x → ∞) the asymptotic value is P ≈ 2

3 N/V kT .
We now try to describe the microcanonical set for the same system, consid-

ering energies E > E0 = Nmgl (which do not admit states with zero global
momentum P). We study the set {H ≤ E} in the space Γ. For prescribed values

of the heights zi, we have for the norm of P the bound P 2/2m ≤ E−mg
∑N

i=1 zi.

Setting
∑N

i=1 zi = NzG the momentum P varies in the ball of R3N with radius√
2m(E−mgNzG)1/2 whose volume is χ3N1/3N [2m(E−mgNzG)]3N/2 = v(E, zG).

Hence the measure B(E, V ) of the set {H ≤ E} is

B(E, V ) = l2N
∫ l

0
a(zG)v(E, zG) dzG,
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where a(zG) is the measure of the (N − 1)-dimensional section of the cube in

RN of side l with the hyperplane
∑N

i=1 zi = NzG. Passing to the dimensionless
variables ξi = zi/l ∈ (0, 1) we can factorise in B the coefficient l3N = V N , and
hence in the entropy we can single out the term N log(V/N) (for N � 1). Since∫ l

0 a(zG) dzG = lN , when E0 is negligible with respect to E we find the same
result obtained for a perfect gas.

Problem 5
In a monatomic gas of N particles confined in a square of side l at temper-
ature T compute the probability that at least one particle has kinetic energy
greater than:

(i) α〈H〉/N = αε, with α ∈ (0,∞);
(ii) the sum of the energy of all other particles.

Solution
These probabilities can be computed as ratios between the ρ-measure in the
space Γ in which the prescribed condition is verified and the ρ-measure of the
whole space, i.e. the function Z.
In case (i) we must force a momentum pi to be greater than the absolute

value of
√
2mαε; hence we must compute the ratio

∫∞√
2mαε

2πpe−βp2/2m dp∫∞
0 2πpe−βp22m dp

=
∫ ∞

√
αβε

ye−y2
dy = e−αβε.

Since ε = 1/β (the system is plane), the sought probability is ν = e−α for a
specific particle. Naturally 1 − ν is the probability that a specific particle has
energy less than αε. The probability that no particle has energy greater than αε
is (1 − ν)N , and therefore the probability that at least one particle has energy
greater than αε is 1− (1− ν)N .
The probability that precisely j particles have energy greater than αε is(
N

N−j

)
νj (1 − ν)N−j (note that the sum over j from 0 to N yields 1). Con-

sidering j as a continuous variable, the value maximising this probability is
j = νN = Ne−α.
To answer the second question, we must compute the ratio

∫
R2(N−1)

e−βP∗2/2m
(∫

P>P∗
e−βP 2/2m dP

)
dP∗

[ ∫
R2N

e−βP 2/2m dP
]−1

,
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which gives the probability ν that the event is verified for a specific particle. In
the first integral P∗ is a momentum in R2(N−1). Hence we write

ν =
χ2(N−1)

∫∞
0 P ∗2N−3e−βP∗2/2m

(∫∞
P∗ 2πP e−βP 2/2m dP

)
dP ∗

χ2N
∫∞
0 P 2N−1e−βP 2/2m dP

= π
χ2(N−1)
χ2N

∫∞
0 X2N−3e−2X2

dX∫∞
0 X2N−1e−X2 dX

=
(
1
2

)N−1
π
χ2(N−1)
χ2N

Γ(N − 1)
Γ(N)

=
(
1
2

)N−1

(for example for N = 2 we find trivially that one of the two particles has
probability 1

2 of having greater energy than the other). The probability that any

particle has energy greater than the rest of the system is N
( 1
2

)N−1 (the events
referring to a single particle are mutually exclusive).
Note that we could do all computations explicitly because we chose a two-

dimensional system, but the same procedure applies in three dimensions. We
suggest continuing the problem by finding the probability that sets of 2, 3, . . . , N̂ <
N particles have globally energy greater than the energy of the complementary
system.

Problem 6
A cylinder of volume V and cross-section Σ contains N particles and the system
is at a temperature T .

(i) Find the average number of particles that pass through the generic section
in unit time.

(ii) Find the pressure as an average of the momentum transfer rate per collision
with the walls, proving that this average is equal to 2

3 (〈H〉/V ).

Solution
The average displacement of a molecule in unit time, in the direction orthogonal
to Σ (x-axis) with positive orientation, is

s =
∫ ∞

0

p1,1
m

e−βp2
1,1/2m dp1,1

(∫ ∞

0
e−βp2

1,1/2m dp1,1

)−1
=

√
2
π

√
1
mβ

.

The global number of molecules which pass through Σ in the unit of time
(in both directions) is then

ν = 2

√
2
π

√
kT

m

Σ
V
N

(for m � 10−23 g, T = 300K, Σ = 1 cm2, N/V = 1018 cm−3, we find ν � 1023 s−1).
The momentum transfer per unit time on the unit surface normal to the x-axis

is given by

Π+1 =
N∑
i=1

2
m

1
V
(pi,1)2+,
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where the symbol (·)+ indicates that we only consider the positive
components.
Without any computation we find 〈Π+1 〉. It is enough to note that∑3

j=1(Π
+
j +Π−

j ) = (4/V )H and passing to the averages (because of isotropy)
we have

6〈Π〉 = 4
V

〈H〉;

hence we can really identify 〈Π〉 with the pressure.
It should be noted that the results of the last problem can be obtained using

the formalism of kinetic theory, and the Maxwell–Boltzmann distribution. The
procedure is identical, even formally.
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16 LAGRANGIAN FORMALISM IN CONTINUUM
MECHANICS

16.1 Brief summary of the fundamental laws of
continuum mechanics

The model of a continuum relies on the hypothesis that we can describe the
distribution of mass through a density function ρ(P, t), in such a way that the
mass of each measurable part D of the system under consideration is representable
in the form

M(D) =
∫
D

ρ(x, t) dx. (16.1)

A continuum can be three-dimensional, two-dimensional (plates or membranes)
or one-dimensional (strings and beams).
The following is a way to represent the configurations of a continuum with

respect to a frame S = (0, x1, x2, x3). We choose a reference configuration C∗ and
we denote by x∗

1, x
∗
2, x

∗
3 the coordinates of its points. Any other configuration C

is then described by a diffeomorphism:

x = x(x∗), x∗ ∈ C∗. (16.2)

The coordinates x∗
1, x

∗
2, x

∗
3 play the role of Lagrangian coordinates.

If the system is in motion, instead of (16.2) we have

x = x(x∗, t), x∗ ∈ C∗ (16.3)

describing the motion of every single point (typically x∗ = x(x∗, 0)).
Expression (16.3) is the so-called Lagrangian description of the motion. Its

inverse

x∗ = x∗(x, t) (16.4)

provides, for every fixed x in the space, the Lagrangian coordinates of the points
occupying the position x as time varies (Eulerian description).
The fundamental law of the kinematics of continua is mass conservation,

expressed by the continuity equation

∂ρ

∂t
+ div(ρv) = 0, (16.5)

which is just a particular case of the balance equation

∂G

∂t
+ div j = γ
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for a scalar quantity G, carried by a current density j (i.e. j · n = amount of G

carried through the unit surface with normal n in unit time), where γ represents
the source or sink (rate of production or absorption of G per unit of volume).
The proof is very simple. Equation (16.5) is written in Eulerian form. Since the
derivative along the motion (Lagrangian derivative) is

dG

dt
=

∂G

∂t
+ v · ∇G,

the Lagrangian form of the continuity equation is

dρ
dt

+ ρ div v = 0. (16.6)

The dynamics of continua require appropriate modelling of forces. We split the
forces acting on a part D of the continuum into two categories:

(a) surface forces: forces that are manifested through contact with the boundary
of D;

(b) body forces: all other forces (a typical example is weight).

The model for body forces can be constructed using the simple hypothesis that
they are proportional to the mass element ρ(x, t) dx on which they act, through
a coefficient f(x, t), called the specific mass force (dimensionally, an acceleration:
g in the case of weight).
To define surface forces, we consider an element dσ of the boundary of D

with normal direction n external to D and we say that the force that the
complementary set exerts on D through dσ is expressed by Φ(x, t;n) dσ, where
Φ has the dimension of a pressure and it is called the specific stress (Φ · n is
the compression stress if negative, and the tension stress if positive, while the
component normal to n is called shear stress).
The basic theorem of the dynamics of continua is due to Cauchy.

Theorem 16.1 (Cauchy) For every unit vector n =
∑3

i=1 αiei the specific stress
has the following expression:

Φ(x, t;n) =
3∑

i=1

αiΦ(x, t; ei). �

We omit the proof. Cauchy’s theorem yields as a result that the products

Tij(x, t) = Φ(x, t; ei) · ej , (16.7)

with e1, e2, e3 an orthonormal triple in x, are the elements of a tensor T (the
stress tensor) which defines the stress state in (x, t).
Knowledge of Tij yields the reconstruction of the stress relative to every unit

vector n:

Φj(x, t;n) =
3∑

i=1

αiTij(x, t), j = 1, 2, 3, (16.8)

with α1, α2, α3 direction cosines of n.
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Using the theorem of Cauchy it is possible to deduce that the first and
second cardinal equations applied to every subset of a continuous system yield,
respectively, the following equations:

ρ(f − a) + div T = 0, (16.9)

Tij = Tji, i =/ j. (16.10)

In the former, by definition div T is the vector

divT =
3∑

i,j=1

∂Tij

∂xi
ej . (16.11)

Equation (16.9) holds generically for all continua. The mechanical nature of
the system must be specified through additional equations. Expression (16.10)
represents the so-called stress symmetry.
A special case of great interest is the case of fluids.

Definition 16.1 A fluid is a continuum for which the shear stresses at equilib-
rium are zero. If this also happens in a dynamic situation, then the fluid is called
perfect or ideal. �

For fluids we have an additional simplification of the stress tensor, as the
diagonal elements are equal (the proof is left as an exercise). Moreover, since
the fluid resists only compression, the common value of the diagonal elements of
the stress tensor must be negative: Tij = −pδij , where p > 0 is the pressure. The
equilibrium equation of a fluid can now be written as

ρf = ∇p (16.12)

(since divT = −∇p), and the equation of motion (for a perfect fluid) is

ρ(f − a) = ∇p. (16.13)

In both it is necessary to specify the relation between ρ and p:

ρ = ρ(p), ρ′(p) ≥ 0 (16.14)

(state equation). A fluid for which the relation (16.14) is known is called
barotropic. For simplicity we only consider isothermal phenomena.
For a barotropic fluid we can introduce the function

P(p) =
∫

dp
ρ(p)

(16.15)

(potential energy of the pressure), and hence (1/ρ)∇p = ∇P(p). If in addition
f = ∇u(x), equation (16.12) can be immediately integrated to give

P(p(x)) = u(x) + constant
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(the constant can be determined using the boundary condition p(x0) = p0 at
some given point x0), while after some manipulations (16.13) can be written as

∂v
∂t

+ curl v × v = −∇B (16.16)

(Euler equation), where

B =
1
2
v2 − u+ P (16.17)

is the Bernoulli trinomial. The Euler equation is invariant with respect to time
reversal (t → −t, v → −v) and indeed it describes a non-dissipative phenomenon.
While useful in many circumstances, it is not adequate to describe many phe-
nomena of practical importance (for example the motion of objects in fluids). It
is then necessary to construct a more sophisticated model of the fluid (the model
of viscous fluids), which we do not discuss here. See for example Landau (1990).

Example 16.1: linear acoustics
Consider a perfect fluid in equilibrium (neglecting gravity) at uniform pressure
p0. Linearise the equation of state in a neighbourhood of p0:

ρ = ρ0 +
p− p0
c2

,

with c = [ρ′(p0)]−1/2 having the dimension of a velocity (ρ′(p0) is assumed to
be positive and the fluid is said to be compressible). In the small perturbations
approximation (the linear approximation) we consider p− p0, ρ− ρ0,v, etc. to be
first-order perturbations, and we neglect higher-order terms such as curl v × v,
v · ∇ρ, etc. Considering the linearised version of the Euler equation:

∂v
∂t

+
1
ρ0

∇p = 0

and of the continuity equation:

dρ
dt

+ ρ0 div v = 0,

eliminating div v (after taking the divergence of the first equation) and writing
∂ρ/∂t = (1/c2)(∂p/∂t), we find that the pressure satisfies the wave equation (or
the d’Alembert equation)

∇2p− 1
c2

∂2p

∂t2
= 0. (16.18)

Particularly interesting solutions are the plane waves (depending on only one
space coordinate, corresponding to the direction of propagation), which in the
most common case can be represented as a superposition of progressive waves:

p(x, t) = f(x− ct) (16.19)
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and regressive waves:

p(x, t) = g(x+ ct), (16.20)

which highlight the role of c as the velocity of propagation of the wave. If ψ(x, t)
is a plane wave then a spherical wave can be constructed via the transformation

ϕ(r, t) =
1
r
ψ(r, t), (16.21)

where r is the distance from the centre of the wave.
Plane waves can also appear as stationary waves:

ψ(x, t) = A sin kx cos νt, (16.22)

where the wave number k and the frequency ν must be related by kc = ν. �

Example 16.2: vibrating string
Consider a perfectly flexible string kept straight with tension T at the two
endpoints. The equilibrium configuration is straight. If we perturb either the
configuration (plucked string) or the velocity (hammered string), or both, in such
a way that the string oscillates with velocity approximately orthogonal to the
string at rest, we can easily prove the following facts regarding the linearised
motions:

(i) the tension is constant along the string;
(ii) the equation of small shear vibrations is

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0, (16.23)

where u(x, t) is the displacement from equilibrium and c =
√
T/ρ, where ρ

is the constant (linear) density of the string.

The Cauchy problem for equation (16.23) with initial values

u(x, 0) = ϕ(x), −∞ < x < +∞, (16.24)

∂u

∂t

∣∣∣∣
t=0

= ψ(x), −∞ < x < +∞ (16.25)

has the d’Alembert solution

u(x, t) =
1
2
{ϕ(x− ct) + ϕ(x+ ct)}+ 1

2c

x+ct∫
x−ct

ψ(ξ),dξ, (16.26)

where we recognise the progressive and regressive waves generated by the
perturbation ϕ and by the perturbation ψ. �



676 Lagrangian formalism in continuum mechanics 16.2

Example 16.3: longitudinal vibrations of a rod
Hooke’s law for elastic materials applied to a homogeneous cylindrical rod subject
to tension or compression T0(t) (for unit cross-section) implies that

T = E
∆ �

�
, (16.27)

where ∆ �/� is the relative elongation and E is Young’s modulus.
Neglecting shear deformations, denoting by u(x, t) the displacement from

equilibrium and extrapolating Hooke’s law to

T = E
∂u

∂x
, (16.28)

the equation of motion can be written as

∂2u

∂x2
− 1

c2
∂2u

∂t2
= 0, (16.29)

where c =
√
E/ρ (ρ is the rod’s density). �

Concerning the historical aspects of the theory of wave propagation, we suggest
Truesdell (1968) or Manacorda (1991).
We refer the reader interested in the physics of musical instruments to Fletcher

and Rossing (1991).

16.2 The passage from the discrete to the continuous model. The
Lagrangian function

We consider again the problem of longitudinal vibrations of an elastic homo-
geneous rod (Example 16.3) and we aim to construct an approximation of this
system using a discrete set of point particles. We denote by ρ the density and
by S the area of the cross-section of the rod.
We subdivide the rod into N equal parts and we replace them with a chain of

point particles of mass m/N , where m is the mass of the entire rod (Fig. 16.1).
To model the internal forces we assume that two consecutive points are connected
by springs of negligible mass, with an elastic constant k which we specify later
and with length at rest equal to ε = �/N (� is the length of the rod). We
denote by x

(0)
1 , x

(0)
2 , . . . , x

(0)
n the x-coordinates of the point particles at equilibrium

(x(0)s = sε). Consider now the generic triple (Pi − 1, Pi, Pi+1) and denote by ui
the displacement of Pi from equilibrium (Fig. 16.2). The stretching of the spring
between Pi+1 and Pi is ui+1 − ui, and hence the global potential energy is

V =
1
2
k

N − 1∑
i=1

(ui+1 − ui)2, (16.30)
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P1 P2 Pn−1 Pn

x

Fig. 16.1

P(0)
i–1 P(0)

i+1

Pi+1Pi–1
x

P(0)
i

ui Pi

Fig. 16.2

while the kinetic energy is

T =
1
2
m

N

N∑
i=1

u̇2i . (16.31)

We can then write the Lagrangian of the system

L(u, u̇) =
1
2

[
m

N

N∑
i=1

u̇2i − k

N − 1∑
i=1

(ui+1 − ui)2
]

(16.32)

and finally obtain the equations of motion

m

N
üi − k[ui+1 − 2ui + ui − 1] = 0, i = 1, 2, . . . , N

(with u0 = 0), which we rewrite in the form

m

�
üi − kε

ui+1 − 2ui + ui − 1

ε2
= 0, i = 1, . . . , N, (16.33)

where there appears the discretisation of the second derivative with respect to
x and at the same time the product kε. It is obvious that m/l = ρS is the
linear density of the rod. We must make precise the choice of k. Since the elastic
tension force between two contiguous points can be written in the form

kε
ui+1 − ui

ε
, (16.34)

following Hooke’s law (16.27), we write kε = E (Young’s modulus).
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We now recall that the system (16.33) is just the space discretisation of
equation (16.29). It is known that if we construct a regular function uN (x, t)
which takes the values ui at the points xi, then uN converges for N → ∞ to the
solution u of (16.29) (for the prescribed boundary conditions).
It is most interesting to rewrite the Lagrangian (16.32) in the form

L =
1
2

[
ρS

N∑
i=1

u̇2i − ES

N − 1∑
i=1

(
ui+1 − ui

ε

)2]
· ε

and to pass to the limit for N → ∞, obtaining the following integral expression:

L =

�∫
0

[
1
2
ρS

(
∂u

∂t

)2
− ES

(
∂u

∂x

)2]
dx. (16.35)

Therefore we discover that we can associate with the continuous model a
Lagrangian and also define a Lagrangian density :

L

(
∂u

∂x
,
∂u

∂t

)
=

1
2
ρ

(
∂u

∂t

)2
− 1

2
E

(
∂u

∂x

)2
(16.36)

(the factor S can be replaced in (16.35) by a double integral over cross-sections)
such that

L =
∫
C

L dx, (16.37)

where C is the configuration of the system under consideration.

16.3 Lagrangian formulation of continuum mechanics

It is now natural to consider whether the equation of motion (16.29) can be
obtained by imposing the condition that an action-type functional related to the
Lagrangian (16.37) is stationary with respect to certain classes of perturbations.
We consider the problem from a general point of view, assuming that with every

continuum described by a field function u(x, t) (for example the displacement
from the equilibrium configuration) we can associate a Lagrangian density with
the necessary regularity with respect to its arguments:

L

(
u,

∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3
,
∂u

∂t
, x1, x2, x3, t

)
(16.38)
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and extend the validity of Hamilton’s principle.

Postulate 16.1 The natural motion of the system corresponds to a stationary
point of the functional

A =

t1∫
t0

∫
C(t)

Ldx dt (16.39)

(where C(t) is the configuration of the system at time t) with respect to the
(regular) perturbations δu(x, t) which vanish ∀x ∈ C(t), when t = t0, t = t1, and
on the boundary ∂C, for every t ∈ (t0, t1). �

Hence we seek the conditions for a point to be stationary for the functional
(16.39) in the specified class. Denoting by u∗(x, t) the value of the field for the
natural motion, we introduce the field

u = u∗ + δu

and evaluate the first variation of A:

δA =

t1∫
t0

∫
C(t)

[
∂L

∂u
δu+

3∑
i=1

∂L

∂ξi

∂δu

∂xi
+

∂L

∂ζ

∂δu

∂t

]
dx dt,

where ξ = ∇u, ζ = ∂u/∂t. Given the assumptions on δu, the divergence theorem
yields

t1∫
t0

∫
C

3∑
i=1

∂L

∂ξi

∂δu

∂xi
dx dt = −

t1∫
t0

∫
C

3∑
i=1

∂

∂xi

∂L

∂ξi
δu dx dt.

In addition, using

d
dt

∫
C(t)

∂L

∂ζ
δu dx =

∫
C(t)

∂

∂t

(
∂L

∂ζ
δu

)
dx+

∫
∂C(t)

∂L

∂ζ
δu vn dσ,

with vn being the normal velocity of the points of ∂C(t), and remarking that the
integral over ∂C(t) is zero, since δu is zero on the boundary, we can rewrite the
last term in δA as

t1∫
t0

∫
C(t)

∂L

∂ζ

∂δu

∂t
dx dt = −

t1∫
t0

∫
C(t)

∂

∂t

∂L

∂ζ
δu dx dt,

taking into account that δu = 0 on C(t0) and C(t1).
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An argument similar to the one used to prove the analogous theorem in the
discrete case yields the following conclusion.

Theorem 16.2 The characteristic condition for a point to be stationary for the
functional (16.39) in the class of perturbations considered, is that

∂

∂t

∂L

∂ζ
+

3∑
i=1

∂

∂xi

∂L

∂ξi
− ∂L

∂u
= 0 (16.40)

(recall that ξi = ∂u/∂xi, ζ = ∂u/∂t). �

Due to Postulate 16.1, equation (16.40) represents the equation of motion,
naturally a partial differential equation.

Remark 16.1
From equation (16.40) we deduce that the terms linear in ξi and in ζ (with
constant coefficients) in the expression for L are not essential. �

More generally, we can consider Lagrangian densities depending on � scalar
functions u1, u2, . . . , u�. The variational problem can be stated in a similar way,
leading to an equation of the type (16.40) for every unknown function uk.

16.4 Applications of the Lagrangian formalism to continuum
mechanics

We now consider a few concrete examples illustrating the theory developed in
the previous section.

(A) Longitudinal vibrations of an elastic rod

Using the Lagrangian density (16.36) in equation (16.40), we clearly find the
d’Alembert equation (16.29).

(B) Linear acoustics

To determine the Lagrangian density for ‘small perturbations’ of a perfect gas,
neglecting the effect of the body forces, we note that in the Lagrangian density
there must appear two contributions, due to the specific kinetic energy, and to
the specific potential energy (which must be subtracted from the former).
Denoting by u(x, t) the displacement vector, the kinetic energy of the unit of

mass is 1
2 (∂u/∂t)

2. To evaluate the potential energy V of the unit of mass we
write the energy balance

dV+ pd
1
ρ
= 0, (16.41)

where pd(1/ρ) is the work done by the unit of mass of the gas for the variation
d(1/ρ) of its volume. Recall that we are dealing with a barotropic fluid, and
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hence that ρ = ρ(p) (in the case of sound vibrations one must consider adiabatic
transformations, hence pρ− γ = constant). We then obtain from (16.41) that

V = −
1/ρ∫

1/ρ0

p dη,

where we have introduced the variable η = 1/ρ. Consider the linear approximation
of p as a function of η around η0 = 1/ρ0 (henceforth, zero subscripts denote
quantities at equilibrium):

p = p0 + (η − η0)
(
dp
dη

)
η=η0

.

Computing the integral, we obtain

V = −
{
p0

(
1
ρ

− 1
ρ0

)
+

1
2

(
dp
dη

)
η=η0

(
1
ρ

− 1
ρ0

)2}
. (16.42)

We now compute (dp/dη)η=η0
, writing η = 1/ρ(p) and differentiating with respect

to η:

1 = − ρ′(p)
ρ2(p)

dp
dη

,

from which (
dp
dη

)
η=η0

= −ρ20
ρ′
0
· (16.43)

We now express (1/ρ) − (1/ρ0) through the variation relative to ρ, i.e. δ =
(ρ− ρ0)/ρ:

1
ρ

− 1
ρ0

= − 1
ρ0

δ, (16.44)

and we substitute (16.43) and (16.44) into equation (16.42):

V =
p0
ρ0

δ +
1
2
1
ρ′
0
δ2. (16.45)

Recall that we set 1/ρ′
0 = c2.

The last step to obtain the Lagrangian density consists of expressing δ in
terms of the displacement u. To this end, it is sufficient to write the linearised
continuity equation

∂ρ

∂t
+ ρ0 div

∂u
∂t

= 0
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in the form

∂δ

∂t
+ div

∂u
∂t

= 0. (16.46)

Integrating the latter expression (and denoting by γ the value of δ + div u for
t = 0) we find the relation

δ = −div u+ γ. (16.47)

This yields the sought Lagrangian density

L =
1
2

(
∂u
∂t

)2
+
(
p0
ρ0

+ c2γ

)
divu− 1

2
c2(div u)2,

and, recalling Remark 16.1, we can suppress the linear term in div u, and arrive
at the expression

L =
1
2

(
∂u
∂t

)2
− 1

2
c2(div u)2. (16.48)

It is a trivial exercise to check that (16.43) leads to

∇(∇ · u)− 1
c2

∂2u
∂t2

= 0,

from which, by taking the divergence, we obtain the wave equation for δ.

(C ) Electromagnetic field

The idea of deducing the field equations from a Lagrangian density is entirely
general and can be applied to fields other than mechanics as well, although outside
the conceptual framework of mechanics, there does not exist a general criterion
to deduce the Lagrangian density. We now consider an example and illustrate
how it is possible to derive the Maxwell equations for the electromagnetic field
in a vacuum from a Lagrangian density.
The unknown functions on which the Lagrangian density L depends are the

scalar potential φ(x, t) and the vector potential A(x, t) (Section 4.7), through
which we can express the electric field E and the magnetic induction field B:

E = −∇φ− 1
c

∂A
∂t

, (16.49)

B = curl A. (16.50)

The equations

div B = 0, (16.51)

curl E+
1
c

∂B
∂t

= 0 (16.52)

are automatically satisfied thanks to (16.49) and (16.50).
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The equations to be deduced from the Lagrangian formulation are therefore
the remaining Maxwell equations:

div E = 4πρ, (16.53)

curl B− 1
c

∂E
∂t

=
1
c
4πj. (16.54)

Let us check that a correct choice for L is

L =
1
8π

(E2 −B2) +
1
c
j ·A− ρφ, (16.55)

where E and B are given by (16.49), (16.50).
The equation for φ is ∑

i

∂

∂xi

∂L

∂(∂φ/∂xi)
− ∂L

∂φ
= 0. (16.56)

Since

E2 =
∑
i

(
∂φ

∂xi

)2
+

2
c

∑
i

∂φ

∂xi

∂Ai

∂t
+

1
c2

∑
i

(
∂Ai

∂t

)2
,

equation (16.56) takes the form

1
4π

(
∆φ+

1
c

∂

∂t
divA

)
+ ρ = 0, (16.57)

and hence it coincides with (16.53).
We now write

B2 =
∑
i<j

(
∂Ai

∂xj
− ∂Aj

∂xi

)2
and compute for example

∂

∂t

∂L

∂(∂A1/∂t)
=

1
4πc2

∂2A1

∂t2
+

1
4πc

∂2φ

∂t∂x1
= − 1

4πc
∂E1
∂t

,

−
∑
i

∂

∂xi

∂L

∂(∂A1/∂xi)
=

1
4π

∂

∂x2

(
∂A1

∂x2
− ∂A2

∂x1

)
+

1
4π

∂

∂x3

(
∂A1

∂x3
− ∂A3

∂x1

)

= − 1
4π

(
∂B2

∂x3
− ∂B3

∂x2

)
,

∂L

∂A1
=

1
c
j1.

It is now immediate to verify that the equation

∂

∂t

∂L

∂(∂A1/∂t)
+
∑
i

∂

∂xi

∂L

∂(∂A1/∂xi)
− ∂L

∂A1
= 0

coincides with the first component of (16.54). The computation for the other
components is similar.
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16.5 Hamiltonian formalism

For the mechanics of continua and for field theory, just as for the mechanics
of systems of point particles, it is possible to develop a Hamiltonian formalism
parallel to the Lagrangian formalism.
If L (u, ∂u/∂x1, ∂u/∂x2, ∂u/∂x3, ∂u/∂t,x, t) is a Lagrangian density depending

on an unknown vector u(x, t) ∈ R�, we can define the vector π of the densities
of momenta:

πk =
∂L

∂(∂uk/∂t)
, k = 1, 2, . . . , �. (16.58)

To pass to the Hamiltonian formalism it is necessary for the system (16.58) to
be invertible, and hence it must be possible to write ∂uk/∂t as functions of the
vector π. We can then define the Hamiltonian density :

H = π · ∂u
∂t

− L, (16.59)

with

H = H

(
u,

∂u
∂x1

,
∂u
∂x2

,
∂u
∂x3

,π,x, t
)
. (16.60)

Computing the derivatives ∂H/∂uk, ∂H/∂πk using (16.58), (16.59) and (16.40)
(written for each component uk), we arrive at Hamilton’s equations:

∂H

∂πk
=

∂uk
∂t

,

∂H

∂uk
= − ∂L

∂uk
= −∂πk

∂t
−
∑
i

∂

∂xi

∂L

∂(∂uk/∂xi)
,

(16.61)

and hence, noting that ∂H/[∂(∂uk/∂xi)] = −∂L/[∂(∂uk/∂xi)], we have

∂H

∂uk
= −∂πk

∂t
+
∑
i

∂

∂xi

∂H

∂(∂uk/∂xi)
. (16.62)

The lack of formal symmetry between the two expressions (16.61) and (16.62)
can be corrected by introducing the operators

δ

δuk
=

∂

∂uk
−
∑
i

∂

∂xi

∂

∂(∂uk/∂xi)
,

δ

δπk
=

∂

∂πk
−
∑
i

∂

∂xi

∂

∂(∂uk/∂πi)
=

∂

∂πk
,
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through which we find the more familiar expressions

∂uk
∂t

=
δH

δπk
, (16.63)

∂πk
∂t

= − δH

δuk
, k = 1, 2, . . . , �. (16.64)

Example 16.4
Using the Lagrangian density (16.36) for the longitudinal vibrations of an elastic
rod, we have

π = ρ
∂u

∂t
,

from which it follows that

H =
π2

2ρ
+

1
2
E

(
∂u

∂x

)2
,

and Hamilton’s equations are

∂u

∂t
=

π

ρ
,

∂π

∂t
= E

∂2u

∂x2
.

The first is the definition of π; the combination of the two yields the d’Alembert
equation. �

16.6 The equilibrium of continua as a variational problem.
Suspended cables

The stationary points of the functional (16.39) with respect to the perturbations
described in Postulate 16.1 define the motion of the system. Similarly equilibrium
is characterised by the stationary points of the functional

V =
∫
C

V

(
u,

∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3
, x1, x2, x3

)
dx, (16.65)

where V is obtained by suppressing the kinematic terms in L, with respect to
the subclass of perturbations which vanish on the boundary. Clearly V can be
interpreted as the total potential energy. The Euler equation is therefore∑

i

∂

∂xi

∂V

∂ξi
− ∂V

∂u
= 0 (16.66)

(as usual, ξi = ∂u/∂xi), with which one needs to associate possible constraints.
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As an application, consider the two problems relating to the equilibrium of
suspended cables, where a ‘cable’ is a homogeneous string, perfectly flexible and
of constant length.

(A) Cable subject only to weight (catenary, Fig. 16.3)

If y = f(x) is the equation for the generic configuration of the cable, the potential
energy is proportional to the height of the centre of mass, defined by

�yG(f) =

xB∫
0

f(x)
√
1 + f ′2(x) dx. (16.67)

This must be minimised by imposing the constraint that the cable has fixed
length �, and hence

xB∫
0

√
1 + f ′2(x) dx = �. (16.68)

y

TA

A x

G

–TB –TA

p

TB

B (xB, yB), xB > 0

Fig. 16.3 Suspended cable: catenary.



16.6 Lagrangian formalism in continuum mechanics 687

We now write the Euler equation for the functional

xB∫
0

(f − λ)
√
1 + f ′2 dx.

Setting f − λ = g, the latter becomes

F (g, g′) =

xB∫
0

g
√
1 + g′2 dx, (16.69)

for which the Euler equation takes the form

gg′ = 1 + g′2. (16.70)

Recalling the identities cosh2α = 1 + sinh2α and (coshα)′′ = coshα, the general
solution of (16.70) is

g(x) =
1
µ
cosh(µx+ c),

from which

f(x) = λ+
1
µ
cosh(µx+ c). (16.71)

The conditions determining the constants µ and c and the multiplier λ are the
boundary conditions at A, B:

λ+
1
µ
cosh c = 0, (16.72)

λ+
1
µ
cosh(µxB + c) = yB (16.73)

and the constraint (16.68):

� =

xB∫
0

√
1 + sinh2(µx+ c) dx =

1
µ
[sinh(µxB + c)− sinh c]. (16.74)

Using the first two we eliminate λ:

yB =
1
µ
[cosh(µxB + c)− cosh c], (16.75)

and between the latter and (16.74), isolating the hyperbolic sine and cosine of
µxB + c, taking the square, and subtracting, we find

µ =
e−c

�− yB
− ec

�+ yB
(16.76)
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cosh v
h (v)

0 v0 v

Fig. 16.4

(note that we must have � > |yB |). In addition, adding term by term
equations (16.77) and (16.75) we obtain

µ(�+ yB) = ec(eµxB − 1), (16.77)

and we finally arrive at the equation for µ:

cosh µxB = 1 +
1
2
µ2(�2 − y2B). (16.78)

Setting ν = µxB , we compare the functions cosh ν and h(ν) = 1 + 1
2γν

2, with
γ = (�2 − y2B)/x

2
B > 1 (Fig. 16.4). Since h′′(ν) = γ > 1, we have h(ν) > cosh ν

in a neighbourhood of the origin. Then the equation cosh ν = h(ν) has a first
root ν0. Since also sinh(ν) = h′(ν) for some ν ∈ (0, ν0) and since sinh(ν) > h′(ν)
for ν > ν, there cannot be other roots. Hence µ is uniquely determined by
(16.78) (the sign must be chosen compatibly with the orientation of the axes).
The constant c can then be found from (16.77), while λ can be obtained from
(16.72). The problem is therefore solved.
To determine the tensions at the two endpoints, note that for the second

cardinal equation to be satisfied, the tensions act along lines (tangent to the
cable) that must intersect on the vertical through the centre of mass of the
cable (see Fig. 16.3). Denoting by p the weight of the cable, it is sufficient to
decompose p along the two directions tangent at A and B, to obtain −TA and
−TB .
The equilibrium profile of a suspended cable is a curve called a catenary.

Remark 16.2
It is a useful exercise to verify that for every arc of the catenary, the tan-
gents through the endpoints intersect on the vertical through the centre of mass
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of the arc. Imposing this condition it is in fact possible to obtain independently
the equilibrium profile. �

Proposition 16.1 The horizontal component of the tension is constant along
the cable, and the vertical component is equal to the weight of the arc of the
catenary between the point considered and the vertex.

Proof
Suppose first of all that the vertex V belongs to the cable. Since the tension at
the vertex is horizontal (Fig. 16.5), imposing the equilibrium conditions on each

arc
�

PV we see that only the vertical component of T(P ) varies to balance the

weight of the arc
�

PV . If V does not belong to the cable, it is enough to consider
the ideal extension of the cable along the same catenary and apply the same
reasoning to the extended cable. �

Remark 16.3
The property that the horizontal component of the tension is constant depends
only on the fact that the external forces distributed along the cable (in this case,
gravity) are vertical. Indeed, if ρF is the (linear) density of the external forces,
the equilibrium equation of the cable is clearly

−ρF(s) =
d
ds
T(s), (16.79)

where s is the curvilinear coordinate along the cable. �

(B) Suspended bridge

We now consider the problem of a bridge suspended by a cable through a series
of hangers numerous enough that the weight can be considered to be distributed
along the cable (Fig. 16.6).

T(P)

T(V) V

P

Fig. 16.5
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A

y

B

x

Fig. 16.6

Knowing the length of the cable and the weight of the load (such that we can
neglect the weight of the cable), we want to determine the profile of the cable
and the tension along it.
Since we neglect the weight of the cable, the force acting on each arc ds

is γ (γ = weight per unit length of the load). Therefore the specific force
applied to the cable is γdx/ds, and, if y = f(x) describes the profile of the
cable, this force has the expression γ/

√
1 + f ′2. The dependence on f ′ prevents

the definition of a specific potential. The problem must therefore be solved by
applying equation (16.79) directly.
We again find that the horizontal component of the tension is constant:

[T (s)x′(s)]′ = 0. (16.80)

For the vertical component we find

[T (s)y′(s)]′ = γx′(s). (16.81)

Eliminating T using (16.80) and (16.81), we find that the profile of the cable is
a parabola. The rest of the problem is left as an exercise to the reader.
Note that it is not possible to use the variational method because in this case

the forces are non-conservative.

16.7 Problems

1. Following the example of (16.36), write down the Lagrangian density for
the vibrating string.
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2. Extend the previous Lagrangian density to the case in which the function
u depends on two space variables x1, x2 and deduce the equation for the small
vibrations of perfectly flexible elastic membranes.
3. Write down the Hamiltonian density corresponding to the Lagrangian dens-

ity (16.48) for sound waves and show that Hamilton’s equations reduce to wave
equations.

16.8 Additional solved problems

Problem 1
Use equation (16.79) to solve the problem of a suspended cable, computing also
the tension T(s).

Solution
Writing the two components of T in the form Tdx/ds, Tdy/ds, the equations
to be integrated are

[T (s)x′(s)]′ = 0,

[T (s)y′(s)]′ = ρg.

Since

d
ds

=

[
1 +

(
dy
dx

)2]−1/2
d
dx

,

eliminating T we arrive at a differential equation for the function y(x):

d2y
dx2

= c

[
1 +

(
dy
dx

)2]1/2
,

where c is a constant to be determined. This can be integrated by separation
of variables, etc. Note that the vertical component of the tension is ρgs if the
origin of the arcs is chosen at the vertex. This is therefore equal to the weight
of the cable between the point P (s) and the vertex (whether or not this belongs
to the cable).

Problem 2
A heavy cable of linear density ρ and length � is fixed at the endpoint A, and
runs without friction on a pulley B at the same height as A. The cable is kept
in tension by a weight p applied to the other endpoint. Find the equilibrium
configuration.

Solution
We know that the profile of the cable between the two suspending points A,
B is given by (16.71). Since A and B are at the same height, the catenary is
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symmetric with respect to the y-axis, and hence we write (16.71) in the form

f(x) =
1
µ
(coshµx− 1)− β. (16.82)

Denoting by 2a the distance between the points A, B (Fig. 16.7), we must impose
the condition f(±a) = 0, and hence

1
µ
(coshµa− 1) = β. (16.83)

We also know that the tension at the point B is given by p+ ρg(� − λ), where

λ is the length of the arc
�

AB:

λ = 2

a∫
0

√
1 + f ′2 dx =

2
µ
sinh aµ. (16.84)

If ϕ is the angle that the tension in B forms with the x-axis, we have tan ϕ =
f ′(a) = sinh aµ and sinϕ = sinh aµ/cosh aµ.
We now use Proposition 16.1 to write

ρg

µ
sinh aµ =

[
p+ ρg

(
�− 2

µ
sinh aµ

)]
sinh aµ
cosh aµ

, (16.85)

which, setting ν = aµ, γ = dx(p/ρg), δ = dx(γ + l)/a, reduces to

cosh ν + 2sinh ν = δν. (16.86)

For ν > 0 the left-hand side of (16.86) and all its derivatives are positive. Denote
it by χ(ν) and define ν0 such that χ′(ν0) = δ. This equation has only one positive
solution ν0(δ), as long as δ > χ′(0) = 2. It is easy to verify that

eν0 =
1
3

(
δ +

√
δ2 − 3

)
. (16.87)

We can now conclude that equation (16.86) is solvable if and only if δ ≥ δ0,
with δ0 defined by

δ0ν0(δ0) = χ(ν0(δ0)). (16.88)

We leave as an exercise the proof of the existence of a unique solution δ0 > 2
to (16.88). For fixed parameters l, a, ρ, the inequality δ ≥ δ0 becomes a condition
on the weight p: if this is too small, there cannot exist a solution.
Equation (16.88) has the unique solution ν = ν0(δ0), if δ = δ0, and has two

solutions, ν1(δ), ν2(δ), such that ν1(δ) < ν0(δ) < ν2(δ), when δ > δ0.
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A B

TB

h

p

y

O x
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Fig. 16.7

We note that the solutions we obtained must be checked, to make sure they
are compatible with the constraint λ < l, and hence, by (16.84), we have

l

a
ν > 2 sinh ν, (16.89)

fixing a maximum admissible value ν∗ for ν. The solutions νi(δ) are acceptable
if they are in the interval (0, ν∗).
Note that for δ → ∞ we have ν1 → 0 and ν2 → ∞. Therefore for sufficiently

large p the problem always admits a solution, in correspondence to the root
ν1(δ). The definition of the profile (16.82) of the catenary is completed by
equation (16.83), which yields the value of β. It is possible in particular to study
the case p = 0, characterising the conditions on l that guarantee the existence of
solutions.
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APPENDIX 1: SOME BASIC RESULTS ON
ORDINARY DIFFERENTIAL EQUATIONS

A1.1 General results

In this appendix we list some results of the theory of ordinary differential
equations which are especially relevant for the aims of this book. For a more
detailed exposition, or for the proofs that we omit, we refer the reader to Hirsch
and Smale (1974) and Arnol’d (1978b).
Let A ⊂ Rl be an open set and X : A → Rl be a vector field of class C1.

Consider the differential equation

ẋ = X(x), (A1.1)

with the initial condition x(0) = x0 ∈ A.

Theorem A1.1 (Existence and uniqueness) There exist δ > 0 and a unique map
x : (−δ, δ) → A, x = x(t) of class C1, which is a solution of (A1.1) satisfying the
initial condition x(0) = x0. �

Remark A1.1
It is well known that our hypotheses are stronger than necessary. For the exist-
ence of a solution, it is sufficient for X to be continuous, while to guarantee
uniqueness one must assume that X is locally Lipschitz: for every x0 ∈ A there
exist a neighbourhood U0 ⊂ A of x0 and a constant K0 > 0 such that

|X(x)−X(y)| ≤ K0|x− y| (A1.2)

for every x, y ∈ U0. �

Example A1.1
The equation ẋ = x2/3, x ∈ R, has two distinct solutions such that x(0) = 0:
x(t) = 0 and x(t) = t3/27. �

Theorem A1.2 (Continuous dependence on the initial conditions) Assume that
x1(t), x2(t) are both solutions of (A1.1) in the interval [0, t ] corresponding to
the initial conditions x1(0) = x10, x2(0) = x20. There exists K > 0 such that for
every t ∈ [0, t ] we have

|x1(t)− x2(t)| ≤ |x10 − x20|eKt. (A1.3)

�

Remark A1.2
K can be chosen to be equal to the Lipschitz constant of X. �
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Remark A1.3
The estimate (A1.3) is sharp. This can be verified by considering the equation
ẋ = kx, whose solutions are x(t) = x(0)ekt. �

In general the solutions of (A1.1) are not defined for every t. Theorem A1.1
guarantees existence of a solution only in an interval (−δ, δ) ⊆ R. However it is
not difficult to prove that for every x0 ∈ A there exists a maximal open interval
(t1, t2), 0 ∈ (t1, t2), in which there exists a solution x(t) of (A1.1), satisfying the
initial condition x(0) = x0. Note that it is possible that t1 = −∞, or t2 = +∞,
or both. If t1 = −∞, t2 = +∞ the solution x(t) is global.
The following theorem illustrates the behaviour of the solutions which are not

global.

Theorem A1.3 If x(t) is a solution of (A1.1) whose maximal interval of defini-
tion is (t1, t2) for bounded t2, for every compact set C ⊆ A there exists t ∈ (t1, t2)
such that x(t) �∈ C. �

Remark A1.4
By Theorem A1.3, if x(t) is not a global solution, when t → t2 then either
x(t) → ∂A or |x(t)| → +∞. �

Example A1.2
The equation ẋ = −x + x2, x ∈ R, has the solution x(t) = −x(0)[et(x(0) − 1) −
x(0)]−1. This solution is not global if x(0) > 1 or x(0) < 0. �

A result on the continuous dependence on the data, frequently used in
Chapter 12, is the following.

Lemma A1.1 Let X be a vector field of class C1 and A be an open subset of
Rn, such that

sup
x∈A

|X(x)| ≤ ε.

Let x(t) be a solution of ẋ = X(x) with the initial condition x(0) = x0 ∈ A, and
let (t1, t2) be the maximal interval of definition of x(t). Then

|x(t)− x0| ≤ εt

for every t ∈ (t1, t2).

Proof
The function f : (t1, t2) → R, defined by f(t) = |x(t)− x0| satisfies f(0) = 0 and

∣∣∣∣dfdt (t)
∣∣∣∣ = ∣∣∣∣ x(t)− x0

|x(t)− x0| ·X(x(t))
∣∣∣∣ ≤ |X(x(t))| ≤ ε
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for every t ∈ (t1, t2), from which it follows that

|f(t)| =
∣∣∣∣∫ t

0

df
dt

(t) dt
∣∣∣∣ ≤ ∫ t

0

∣∣∣∣dfdt
∣∣∣∣ dt ≤ εt. �

A1.2 Systems of equations with constant coefficients

In a neighbourhood of a singular point x0 one can obtain useful information
about the solutions by considering the linearised equations, following a procedure
analogous to the one described in Section 4.10. Setting x = x0 + y, substituting
the latter into (A1.1) and expanding the result in Taylor series in X(x0 + y) to
first order, neglecting the remainder term one arrives at the system

ẏ = Ay, (A1.4)

where A =
(
∂Xi

∂xj
(x0)

)
.

The system of ordinary differential equations with constant coefficients (A1.4)
can immediately be integrated: the solution corresponding to the initial condition
y(0) = y0 is given by y(t) = etAy0, where

etA :=
∞∑
n=0

tn

n!
An (A1.5)

(cf. e.g. Arnol’d (1978b, section 14)).

Example A1.3

The matrix A =

⎛⎝2 1 3
0 2 0
1 0 0

⎞⎠ has eigenvalues {−1, 2, 3} to which there correspond

the eigenvectors

⎛⎝ 1
0
−1

⎞⎠,

⎛⎝ 2
−3
1

⎞⎠,

⎛⎝3
0
1

⎞⎠.

Setting M =

⎛⎝ 1 2 3
0 −3 0
−1 1 1

⎞⎠ one has M−1 =
1
12

⎛⎝3 −1 −9
0 −4 0
3 3 3

⎞⎠ and

A=M

⎛⎝−1 0 0
0 2 0
0 0 3

⎞⎠M−1, and therefore

etA =
∞∑
n=0

tn

n!
An =

∞∑
n=0

tn

n!
M

⎛⎝−1 0 0
0 2 0
0 0 3

⎞⎠n

M−1 = M

⎛⎝e−t 0 0
0 e2t 0
0 0 e3t

⎞⎠M−1.

�
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saddle

(repulsive)
mode

(repulsive)
Jordan mode (attractive)

star mode

(attractive)
focus

centre

Fig. A1.1

We briefly summarise the behaviour of the solutions of (A1.4) in the case
y ∈ R2, with the help of Fig. A1.1.
Let λ1, λ2 ∈ C be the eigenvalues of A. We distinguish two cases:

Case I : the eigenvalues of A are real;
Case II : the eigenvalues of A are complex conjugates.
Case I : We need to distinguish various subcases. All eigenvalues of A are real.

(I.1) λ1 < λ2 < 0 (attracting node)
Let v1,v2 be the eigenvectors corresponding to λ1, λ2. Setting y(t) = η1(t)v1+
η2(t)v2 we find η̇i = λiηi, i = 1, 2. Therefore y(t) = c1etλ1v1 + c2etλ2v2
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and the constants can be determined by decomposing the initial condition
y(0) = c1v+ c2v2 in the basis of R2 given by v1 and v2. When t → ∞ we
have y(t) → 0 and the trajectory in the phase plane is tangent in y = 0 to
v2 (except if y(0) = c1v1).

(I.2) 0 < λ1 < λ2 (repulsive node)
The discussion for case (I.1) can be repeated for the limit t → −∞.

(I.3) λ1 < 0 < λ2 (saddle)
The solutions are y(t) = c1etλ1v1 + c2etλ2v2, and hence are asymptotic to
the direction v1 for t → +∞ and v2 for t → −∞.

(I.4) λ1 = λ2 and A diagonalisable (star node)

In this case A = λ1

(
1 0
0 1

)
, every vector of the plane is an eigenvector and

the trajectories are rays of the form y(t) = y(0)eλ1t.
(I.5) λ1 = λ2 and A non-diagonalisable (Jordan node)

By an invertible linear transformation, A can be reduced to a Jordan block(
λ1 k
0 λ1

)
, k =/ 0. If λ1 =/ 0, the trajectories of the resulting system have

equation x1 = (k/λ1)x2 log |x2/c|.
The case λ1 = 0 is trivial.

Case II : Since the eigenvalue equation is λ2 − Tr(A)λ + det (A) = 0, setting
θ = 1

2 Tr(A) and ω =
√
detA− θ2 we obtain λ1 = θ+ iω, λ2 = θ− iω. Note that

in this case, detA > θ2.
The matrix A is diagonalisable in the complex field, and we can easily see that

S−1
(
θ + iω 0
0 θ − iω

)
S =

(
θ −ω
ω θ

)
,

with S =
(
1 i
i 1

)
. We can therefore reduce to the case

A =
(
θ −ω
ω θ

)
,

where complex numbers do not appear. The corresponding differential system is

ẋ1 = θx1 − ωx2,

ẋ2 = ωx1 + θx2.

To study the trajectories in the plane (x1, x2) it is convenient to change to polar
coordinates (r, ϕ) for which the equations decouple:

ṙ = θr, ϕ̇ = ω.

Hence we simply obtain
dr
dϕ

=
θ

ω
r and finally r = r0e(θ/ω)ϕ.
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Now the classification is evident.

(II.1) θ = 0 (centre)
The trajectories are circles.

(II.2) θ =/ 0 (focus)
The trajectories are spirals converging towards the centre if θ < 0 (attractive
case), and they move away from the centre if θ > 0 (repulsive case).

Remark A1.5
A particularly interesting case for mechanics is when A is Hamiltonian, i.e.
a 2× 2 matrix with trace zero:

A =
(
a b
c −a

)
which corresponds to the quadratic Hamiltonian H = 1

2 (cx
2
1 − 2ax1x2 − bx22).

The equation for the eigenvalues is λ2 + detA = 0. Therefore we have the
following cases:

(1) detA = −(a2 + bc) > 0, the origin is a centre (this is the only stable case);
(2) detA < 0, the eigenvalues are real and opposite (saddle point);
(3) detA = 0, the eigenvalues are both zero (finish as an exercise). �

In the n-dimensional case, suppose that u1, . . . ,un is a basis of Rn of eigen-
vectors of A. Exploiting the invariance of the eigenspaces of A for etA we can
better understand the behaviour of the solutions of (A1.4) by introducing

Es =
{
v ∈ Rn, v =

∑ns

i=1
viui where Aui = λiui, %λi < 0, i = 1, . . . , ns

}
Eu =

{
v ∈ Rn, v =

∑nu+ns

i=ns+1
viui where Aui = λiui, %λi > 0, i = ns + 1, . . . , nu

}
Ec =

{
v ∈ Rn, v =

∑n

i=ns+nu+1
viui

where Aui = λiui, %λi = 0, i = nu + ns + 1, . . . , n
}
.

These subspaces of Rn are invariant under etA and are called, respectively,
the stable subspace Es, unstable subspace Eu and central subspace Ec. Clearly
Rn = Es ⊕ Eu ⊕ Ec.

Example A1.4

Assume A =

⎛⎝−1 −1 0
1 −1 0
0 0 2

⎞⎠. Then Eu = {(0, 0, y3), y3 ∈ R}, corresponding to

the eigenvalue λ3 = 2; Es = {(y1, y2, 0), (y1, y2) ∈ R2}, corresponding to the
eigenvalues λ1 = −1− i, λ2 = −1+ i. The restriction A|Es has an attractive focus
at the origin (see Fig. A1.2). �
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Fig. A1.2

Definition A1.1 A point x0 is called singular if X(x0) = 0. �

Theorem A1.4 (Rectification) If x0 is not a singular point, there exists a neigh-
bourhood V0 of x0 and an invertible coordinate transformation y = y(x), defined
on V0 and of class C1 which transforms the equation (A1.1) into

ẏ1 = 1,

ẏi = 0, i = 2, . . . , l.
(A1.6)

�

Remark A1.6
If X is of class Cr, 1 ≤ r ≤ ∞, the transformation y is also of class Cr. �

A1.3 Dynamical systems on manifolds

The problem of the global existence of solutions of ordinary differential equations
can be formulated in greatest generality in the context of differentiable manifolds.
The existence, uniqueness, continuous dependence and rectification theorems are
easily extended to the case of differential equations on manifolds.
Let M be a differentiable manifold of dimension l, and X : M → TM be

a C1 vector field. A curve x : (t1, t2) → M is a solution of the differential
equation (A1.1) on the manifold M if it is an integral curve of X, and hence if
for every t ∈ (t1, t2) the vector ẋ(t) ∈ Tx(t)M satisfies ẋ(t) = X(x(t)) (note that
by definition X(x(t)) ∈ Tx(t)M).
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Theorem A1.4 If X is not zero only on a compact subset C ⊆ M , i.e. if
X(x) = 0, ∀ x ∈ M\C, every solution of (A1.1) is global. �

Remark A1.7
If M = Rl, as is known, the conditions for global existence are less restrictive
(see, e.g. Piccinini et al. 1984). �

From Theorem A1.4 we easily deduce the following.

Corollary A1.1 If M is a compact manifold, the solutions of (A1.1) are
global. �

Henceforth we generally assume the global existence of the solutions of (A1.1).
Consider the map

g : M ×R −→ M,

which to each point x0 ∈ M and each time t associates the solution x(t) of
(A1.1) satisfying the initial condition x(0) = x0, and write

x(t) = g(x0, t) = gtx0.

Clearly

g(x0, 0) = g0x0 = x0, (A1.7)

for every x0 ∈ M , and from the uniqueness theorem it follows that gt is invertible:

x = gtx0 ⇔ x0 = g−tx. (A1.8)

Hence, for every t ∈ R, gt is a diffeomorphism of M . In addition, for every t,
s ∈ R and for every x0 ∈ M we have

gt(gsx0) = gt+sx0. (A1.9)

Definition A1.2 A one-parameter family (gt)t∈R of diffeomorphisms of M
satisfying the properties (A1.7)–(A1.9) is called a one-parameter group of
diffeomorphisms. �

Remark A1.8
A one-parameter group of diffeomorphisms of M defines an action (cf. Section 1.8)
of the additive group R on the manifold M . �

The manifold M is called the phase space of the differential equation (A1.1),
and the group gt is called the phase flow of the equation. The integral curve of
the field X passing through x0 at time t = 0 is given by {x ∈ M |x = gtx0} and
it is also called the phase curve.1

We can now give the abstract definition of a dynamical system on a manifold.

1 The phase curves are therefore the orbits of the points of M under the action of R,
determined by the phase flow.
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Definition A1.3 A dynamical system on a manifold M is an action of R
on M . �

Clearly the phase flow associated with a differential equation on a manifold is
an example of a dynamical system on a manifold. Indeed, the two notions are
equivalent.

Theorem A1.5 Every dynamical system on a manifold M determines a
differential equation on M .

Proof
Let g : R × M → M be the given dynamical system; we denote by gt = g(t, ·)
the associated one-parameter group of diffeomorphisms. The vector field

X(x) =
∂gt

∂t
(x)

∣∣∣∣
t=0

(A1.10)

is called the infinitesimal generator of gt. Setting x(t) = gtx0, it is easy to verify
that x(t) is the solution of (A1.1) with initial condition x(0) = x0, where X is
given by (A1.10). Indeed,

ẋ(t) = lim
∆ t→0

gt+∆ tx0 − gtx0
∆ t

= lim
∆ t→0

g∆ tx(t)− g0x(t)
∆ t

= X(x(t)).

(A1.11)

�

Remark A1.9
An interesting notion connected to the ones just discussed is that of a discrete
dynamical system, obtained by substituting t ∈ R with t ∈ Z in the definition
of a one-parameter group of diffeomorphisms. For example, if f : M → M is a
diffeomorphism, setting f0 = idM , the identity on M , and fn = f ◦ · · · ◦ f n
times, f−n = f−1 ◦ · · · ◦f−1 n times, we see that (fn)n∈Z is a discrete dynamical
system.
The study of discrete dynamical systems is as interesting as that of ordinary

differential equations (see Hirsch and Smale 1974, Arrowsmith and Place 1990,
and Giaquinta and Modica 1999). �

Besides the singular points, i.e. the fixed points of the infinitesimal generator,
particularly important orbits of a dynamical system are the periodic orbits x(t) =
gtx0 = gt+Tx0 = x(t + T ) for every t ∈ R. The period is min{T ∈ R such that
x(t+ T ) = x(t), ∀ t ∈ R}.
In the case of dynamical systems on the plane or on the sphere, the dynamics

are described asymptotically by periodic orbits or by singular points. To make
this idea more precise we introduce the ω-limit set of a point x0 (cf. Problem
15 of Section 13.13, for the notion of an ω-limit set in the discrete case):
ω(x0) = ∩

t0>0
{gtx0, t ≥ t0}. It is immediate to verify that x ∈ ω(x0) if and only

if there exists a sequence tn → ∞ such that gtnx0 → x for n → ∞.
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(a) singular point (b) periodic orbit

(c) polycycle (d) polycycle

Fig. A1.3

Theorem A1.6 (Poincaré–Bendixon) Assume that the orbit {gtx0, t ≥ 0} of a
dynamical system on the plane (or on the two-dimensional sphere) is contained
in a bounded open set. Then the ω-limit set of x0 is necessarily a singular point
or a periodic orbit or a polycycle, and hence the union of singular points and of
phase curves each tending for t → ±∞ to a singular point (not necessarily the
same for all) (see Fig. A1.3).

Only in dimension greater than two can the behaviour of a dynamical system
be significantly more complex, including the possibility of chaotic motions, whose
study employs the ideas of ergodic theory, introduced in Chapter 13.



APPENDIX 2: ELLIPTIC INTEGRALS AND
ELLIPTIC FUNCTIONS

The elliptic integrals owe their name to the fact that Wallis (in 1655) first
introduced them in the calculation of the length of an arc of an ellipse. In their
most general form they are given by∫

R(x, y) dx, (A2.1)

where R is a rational function of its arguments and y =
√
P (x), with P a

fourth-degree polynomial. Legendre showed in 1793 that every elliptic integral
(A2.1) can be expressed as the sum of elementary functions plus a combination
of integrals of the following three kinds:

(1) F (ϕ, k) =
∫ ϕ

0

dψ√
1− k2 sin2 ψ

=
∫ z

0

dx√
(1− x2)(1− k2x2)

, (A2.2)

(2) E(ϕ, k) =
∫ ϕ

0

√
1− k2 sin2 ψ dψ =

∫ z

0

√
1− k2x2

1− x2
dx, (A2.3)

(3) Π(ϕ, k, n) =
∫ ϕ

0

dψ

(1 + n sin2 ψ)
√
1− k2 sin2 ψ

=
∫ z

0

dx
(1 + nx2)

√
(1− x2)(1− k2x2)

, (A2.4)

where z = sin ϕ, ϕ is called the amplitude, the number k ∈ [0, 1] is called the
modulus and n is the parameter (for elliptic integrals of the third kind). When
ϕ = π/2, the elliptic integrals are called complete: we then have the complete
integral of the first kind :

K(k) = F
(π
2
, k
)
=
∫ π/2

0

dψ√
1− k2 sin2 ψ

. (A2.5)

It is easy to check that K(k) is a strictly increasing function of k, and K(0) = π/2,
while lim

k→1−
K(k) = +∞. In addition, it admits the series expansion

K(k) =
π

2

[
1 +

∞∑
n=1

(
(2n− 1)!!
(2n)!!

)2
k2n

]
. (A2.6)
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Indeed, expanding as a series (1− k2 sin2 ψ)−1/2 we find∫ π/2

0

dψ√
1− k2 sin2 ψ

=
π

2

[
1 +

2
π

∞∑
n=1

(2n− 1)!!
2nn!

k2n
∫ π/2

0
(sinψ)2n dψ

]
,

from which equation (A2.6) follows, taking into account that∫ π/2

0
(sinψ)2n dψ =

1
22n

(
2n
n

)
π

2

and the identity

(2n− 1)!!
23n(n!)3

(2n)! =
(
(2n− 1)!!
(2n)!!

)2
,

that can be proved by induction.
Similarly we introduce the complete integral of the second kind :

E(k) = E
(π
2
, k
)
=
∫ π/2

0

√
1− k2 sin2 ψ dψ. (A2.7)

Setting u = F (ϕ, k), the problem of the inversion of the elliptic integral consists
of finding the unknown function ϕ(u, k), and hence the amplitude as a function
of u, for fixed k:

ϕ = am(u). (A2.8)

This is possible because ∂F/∂ϕ =/ 0. The sine and cosine of ϕ are called the sine
amplitude and cosine amplitude of u and are denoted sn and cn:

sn(u) = sin am(u),

cn(u) = cos am(u).
(A2.9)

When it is necessary to stress the dependence on k we write sn(k, u), etc.
We also set

dn(u) =
√
1− k2 sn2(u), (A2.10)

and the function dn(u) is called the delta amplitude. The functions sn(u), cn(u)
and dn(u) are the Jacobi elliptic functions, and as we have seen, they appear
in the solution of the equation of motion in various problems of mechanics (see
Chapters 3 and 7). The functions sn and cn are periodic of period 4K(k), while
dn is periodic of period 2K(k).
In addition sn is odd, while cn and dn are even functions; sn and cn take

values in the interval [−1, 1], while dn takes values in the interval [
√
1− k2, 1].
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The following are important identities:

sn2(u) + cn2(u) = 1,

dn2(u) + k2 sn2(u) = 1,

sn(0) = sn(2K) = 0,

sn(K) = −sn(3K) = 1,

(A2.11)

and differentiation formulas:

d
du

sn(u) = cn(u) dn(u),

d
du

cn(u) = −sn(u) dn(u),
d
du

dn(u) = −k2 sn(u) cn(u).

(A2.12)

If k = 0, the elliptic functions reduce to simple trigonometric functions (in this
case ϕ = u), while for k = 1 the elliptic functions are no longer periodic and can
be expressed through hyperbolic functions:

k = 1, sn(u) = tanh(u), cn(u) = dn(u) =
1

cosh(u)
. (A2.13)

The Jacobi elliptic functions, as functions of the complex variable u ∈ C, have
the following complex periods: sn(u+2iK(k′)) = sn(u), cn(u+2(K(k)+iK(k′))) =
cn(u) and dn(u + 4iK(k′)) = dn(u), where k′ =

√
1− k2. They are therefore an

example of doubly periodic functions.
For more information on elliptic functions and integrals, and for a more detailed

study, we refer the reader to the beautiful classical books of Whittaker and Watson
(1927) and Tricomi (1937). An interesting exposition of the history of elliptic
functions can be found in Dieudonné (1978, chapter 7).
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APPENDIX 3: SECOND FUNDAMENTAL FORM OF
A SURFACE

As seen in Section 1.6, the first fundamental form of a surface S expresses in
the tangent space the notion of a scalar product of the Euclidean space in which
the surface is embedded, and allows one to measure lengths, angles and areas.
For planar curves the curvature measures how much the curve is far from being

straight. To quantify how much a surface S in three-dimensional Euclidean space
deviates from the tangent plane at one of its points P , one can study the unit
normal vector of S in a neighbourhood of P .
The second fundamental form of a surface, which we discuss here, expresses

precisely the rate of change of the normal to the surface S for infinitesimal
displacements on the surface. Since there exist two independent directions to
move along the surface, the second fundamental form is a quadratic form.
Let S be a regular surface, and x(u, v) be a local parametrisation. Let n be

the normal unit vector

n =
xu × xv

|xu × xv| =
xu × xv√
EG− F 2

. (A3.1)

Consider a curve s → x(s) on the surface S parametrised by the arc length
parameter s. Let t be the tangent unit vector to the curve and k(s) its curvature.
The curvature vector of the curve

k =
dt
ds

, (A3.2)

whose modulus is the curvature k(s), admits a unique decomposition

k = kn + kg (A3.3)

into two vectors: the normal curvature vector

kn = (k · n)n ∈ (Tx(s)S)⊥, (A3.4)

and the geodesic curvature vector

kg = k− kn ∈ Tx(s)S. (A3.5)

The modulus kg = |kg| is called the geodesic curvature of the curve. We observe
that if the curve is a geodesic, then its geodesic curvature is zero.
Since t ∈ Tx(s)S, it must be that t · n = 0, and hence by differentiation it

follows that the normal curvature kn has the expression

kn = k · n = −dx
ds

· dn
ds

.
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On the other hand (ds)2 = dx · dx, and therefore

kn = −dx · dn
dx · dx . (A3.6)

Using the parametrisation of the surface, we have that

dx = xu du+ xv dv,

dn = nu du+ nv dv,
(A3.7)

where nu = ∂n/∂u and nv = ∂n/∂v. Inserting the equations (A3.7) into the
expression (A3.6) for the normal curvature we find

kn = − (xu · nu)(du)2 + (xu · nv + xv · nu)(du)(dv) + (xv · nv)(dv)2

E(du)2 + 2F (du)(dv) +G(dv)2
. (A3.8)

Definition A3.1 The numerator −dx · dn of (A3.8) is called the second fun-
damental form of the surface S. It is a quadratic form on the tangent space to
the surface S, given by

−dx · dn = e(u, v)(du)2 + 2f(u, v)(du)(dv) + g(u, v)(dv)2, (A3.9)

where

e(u, v) = −xu · nu = xuu · n,
2f(u, v) = −(xu · nv + xv · nu) = 2xuv · n,
g(u, v) = −xv · nv = xvv · n.

(A3.10)

�

It is immediate to check that the following relations hold:

e(u, v) =
xuu · xu × xv√

EG− F 2
=

1√
EG− F 2

∣∣∣∣∣∣
xuu yuu zuu
xu yu zu
xv yv zv

∣∣∣∣∣∣ ,
f(u, v) =

xuv · xu × xv√
EG− F 2

=
1√

EG− F 2

∣∣∣∣∣∣
xuv yuv zuv
xu yu zu
xv yv zv

∣∣∣∣∣∣ ,
g(u, v) =

xvv · xu × xv√
EG− F 2

=
1√

EG− F 2

∣∣∣∣∣∣
xvv yvv zvv
xu yu zu
xv yv zv

∣∣∣∣∣∣ .
(A3.11)

Example A3.1
Consider the sphere of radius r with the parametrisation x =
r(cosu cos v, cosu sin v, sinu). The first fundamental form has value (ds)2 =
r2(du)2 + r2 cos2 u(dv)2, and hence

√
EG− F 2 = r2 cosu. From the definition



A3 Second fundamental form of a surface 711

of the normal unit vector it follows that n = −(cosu cos v, cosu sin v, sinu), and
it is immediate to check that the second fundamental form is given by

e = r, f = 0, g = r cos2 u. �

Remark A3.1
From (A3.8) it follows that the normal curvature kn depends only on the point P
(of coordinates (u, v)) on the surface and on the tangent space TPS (determined
by du/dv or by dv/du): all curves through a point P of the surface tangent to
the same direction have the same normal curvature. We can hence study how the
normal curvature kn varies as the direction in a fixed point of the surface varies.
Since the first fundamental form is positive definite, the sign of the normal

curvature kn depends only on the second fundamental form. There are three
possible cases.

(1) If at a point P of the surface eg − f2 > 0, the second fundamental form
applied to different directions always has the same sign, and the point is
then called elliptic; the centres of curvature of all the normal sections to the
surface passing through the point P lie on the same side of the surface. This
situation is satisfied, for example, at all points of a sphere or of an ellipsoid.

(2) If eg−f2 = 0, there exists a direction in which the normal curvature vanishes.
The point is then called parabolic. An example is given by any point of a
cylinder.

(3) If eg−f2 < 0, the second fundamental form changes sign as the direction var-
ies: the surface S crosses its tangent plane and the point is called hyperbolic.
This is what happens if the point P is a saddle point. �

We now look for the directions along which the normal curvature has a max-
imum or a minimum. A direction in the tangent space TPS to the surface at the
point P is determined by λ = dv/du, and the expression of the normal curvature
kn in terms of λ can be obtained immediately from equation (A3.8):

kn = kn(λ) =
e+ 2fλ+ gλ2

E + 2Fλ+Gλ2
. (A3.12)

Hence the condition for a maximum or a minimum follows from requiring that

dkn
dλ

(λ) = 0,

i.e.

2(f + gλ)(E + 2Fλ+Gλ2)− 2(F +Gλ)(e+ 2fλ+ gλ2)
(E + 2Fλ+Gλ2)2

= 0. (A3.13)

Since the first fundamental form is positive definite, the denominator of (A3.13)
is never zero; the condition for the normal curvature to be stationary is

(E + Fλ)(f + gλ) = (e+ fλ)(F +Gλ), (A3.14)
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which when substituted into (A3.12) gives

kn =
(e+ fλ) + λ(f + gλ)
(E + Fλ) + λ(F +Gλ)

=
f + gλ

F +Gλ
=

e+ fλ

E + Fλ

=
e(du) + f(dv)
E(du) + F (dv)

=
f(du) + g(dv)
F (du) +G(dv)

.

(A3.15)

Hence we find that the maximum and minimum values of kn are solutions of the
system

(e− knE)(du) + (f − knF )(dv) = 0,

(f − knF )(du) + (g − knG)(dv) = 0,
(A3.16)

and hence of the eigenvalue problem for the second fundamental form FII relative
to the first fundamental form FI :

det(knFI − FII) =
∣∣∣∣Ekn − e Fkn − f
Fkn − f Gkn − g

∣∣∣∣ = 0. (A3.17)

The maximum and minimum values of kn are given by the roots of the
characteristic polynomial

(EG− F 2)k2n − (eG+ Eg − 2fF )kn + eg − f2 = 0. (A3.18)

Definition A3.2 The two roots k1 and k2 of (A3.18) are called the principal
curvatures of the surface S at the point P . Moreover the mean curvature M is
the arithmetic mean of the principal curvatures:

M =
k1 + k2

2
=

Eg + eG− 2fF
2(EG− F 2)

, (A3.19)

while the Gaussian curvature K is defined as the square of the geometric mean
of the principal curvatures:

K = k1k2 =
eg − f2

EG− F 2 . (A3.20)

�

Note that on the basis of the latter formula the classification given in
Remark A3.1 can be reformulated in terms of the sign of K.
One can prove (cf. Dubrovin et al. 1991a) that the vanishing of the mean

curvature characterises the minimal surfaces (i.e. the surfaces of minimal area).
The Gaussian curvature measures how far the metric of the surface is from

the Euclidean metric. Indeed, we have the following.

Theorem A3.1 A necessary and sufficient condition for a surface to be isomet-
ric to an open set of a Euclidean plane is that the Gaussian curvature K is
identically zero. �
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Clearly, the second fundamental form, and consequently the Gaussian curvature,
are defined independently of the first. However, Gauss proved that K is in fact
determined by the first fundamental form.

Theorem A3.2 (Egregium theorem of Gauss) The Gaussian curvature depends
only on the first fundamental form and on its derivatives:

K =
1√

EG− F 2

[
∂

∂u

(
FEv − EGu

2E
√
EG− F 2

)
+

∂

∂v

(
2EFu − FEu − EEv

2E
√
EG− F 2

)]
,

(A3.21)

where Ev = ∂E/∂v, Gu = ∂G/∂u, etc. �

Remark A3.2
If the coordinate system u, v that parametrises the surface is orthogonal, and
hence if F = 0, equation (A3.21) simplifies to

K = − 1√
EG

[
∂

∂u

1√
E

∂

∂u

√
G+

∂

∂v

1√
G

∂

∂v

√
E

]
.

If also f = 0, then (A3.18) becomes

EGk2n − (gE + eG)kn + eg = 0,

from which it follows that the principal curvatures are k1 = e/E, k2 = g/G
(corresponding in (A3.12) to the two cases λ = 0, λ → ∞), and hence

M =
eG+ gE

2EG
,

K =
eg

EG
. �

For a more detailed discussion of the theory of the curvature of a surface, and
for its formulation on a Riemannian manifold, we refer the reader to the texts
already cited. In addition, we recommend the survey article by Osserman (1990)
which illustrates the various, fascinating developments of modern Riemannian
geometry.

Problems

1. Prove that the second fundamental form for surfaces of revolution, given by
the parametrisation x = (u cos v, u sin v, ψ(u)) has coefficients

e =
ψ′′(u)√

1 + (ψ′(u))2
, f = 0, g =

uψ′(u)√
1 + (ψ′(u))2

.

Along which directions do the principal curvatures lie?
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2. Compute the second fundamental form for the ellipsoid with the paramet-
risation x = (a cos u cos v, b cos u sin v, c sin u), where a > b > c > 0. Verify
that in the case a = b we again find the expression already derived for surfaces
of revolution, and in the case a = b = c the formula derived for the sphere.
3. Prove that the second fundamental form for the torus parametrised by

x = (cos v(1+a cos u), sin v(1+a cos u), a sin u), with 0 < a < 1, has coefficients
given by

e = a, f = 0, g = (1 + a cos u) cos u.

4. Compute the second fundamental form of the circular paraboloid x =
(u cos v, u sin v, u2).
5. Determine the elliptic, parabolic and hyperbolic points of the torus.
6. Compute the second fundamental form for a surface S which is the graph

of the function ψ(x, y), and prove that its Gaussian curvature has value

K =

∣∣∣∣∣∣∣∣
∂2ψ

∂x∂x

∂2ψ

∂x∂y
∂2ψ

∂y∂x

∂2ψ

∂y∂y

∣∣∣∣∣∣∣∣(
1 +

(
∂ψ

∂x

)2
+
(
∂ψ

∂y

)2)2 .

7. Prove that the Gaussian curvature of an ellipsoid with semi-axes a, b, c is

K =
1

a2b2c2
(
x2

a4
+

y2

b4
+

z2

c4

)2 .
8. Prove that the Gaussian curvature of a surface of revolution x =

(u cos v, u sin v, ψ(u)) is given by

K =
ψ′(u)ψ′′(u)

u(1 + (ψ′(u))2)2
.

For example, for the circular paraboloid ψ(u) = u2, we have

K =
4

(1 + 4u2)2
,

which vanishes in the limit u → ∞, in agreement with geometrical intuition.
9. Prove that the Gaussian curvature of the catenary

x =
(
u cos v, u sin v, c cosh−1

(u
c

))
,

where c > 0 is a fixed constant, is K = −c2/u4, and that the mean curvature is
M = 0 (the catenary is an example of a ‘minimal surface’).



APPENDIX 4: ALGEBRAIC FORMS, DIFFERENTIAL
FORMS, TENSORS

The use of differential forms allows one to generalise to the case of manifolds of
any dimension the ordinary concepts of work of a vector field along a path, of
flow through a surface and in general the results of classical vector analysis.
The use of differential forms is important for a deeper understanding of

Hamiltonian mechanics (see Abraham and Marsden 1978, Arnol’d 1979a, and
Meyer and Hall 1992), although in the present text we have avoided their use
(except for differential 1-forms).
In this appendix we limit ourselves to a brief introduction to the study of

differential forms, and refer the interested reader to one of the numerous treatises
on the subject (e.g. Flanders 1963, or the cited books of Abraham and Marsden
and of Arnol’d) for a more detailed study and for the proofs we omit. In addition,
we systematically adopt the repeated index summation convention (covariant and
contravariant, below and above, respectively, following the classical notation).

A4.1 Algebraic forms

Let V be a real vector space of dimension l.

Definition A4.1 The dual space V ∗ of V is the space of all linear maps
ϑ : V → R. The elements ϑ ∈ V ∗ are called covectors or (algebraic) 1-forms. �

It is immediate to check that V ∗ is a real vector space, and that dimV ∗ =
dimV = l. The sum of two covectors ϑ1, ϑ2 ∈ V ∗ is defined by the formula

(ϑ1 + ϑ2)(v) = ϑ1(v) + ϑ2(v), (A4.1)

for every v ∈ V , and the product with a real number λ yields

(λϑ)(v) = λϑ(v). (A4.2)

If e1, . . . , el is any basis of V , we can associate with it the dual basis e1∗, . . . , el∗

of V ∗, defined by the conditions

ei∗(ej) = δij =

{
1, if i = j,

0, otherwise,
(A4.3)

and every covector ϑ can be expressed through its components:

ϑ = ϑiei∗. (A4.4)
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It is not difficult to check that if e′
1, . . . , e

′
l is a new basis of V , and M is the

l× l matrix whose entries M j
i are the components e′j

i of e′
i expressed in the basis

e1, . . . , el, we have

e′i∗ = Ai
ke

k∗, (A4.5)

where Ai
kM

k
j = δij , i.e. A = (MT )− 1, and the components of the vectors v =

viei = v′ie′
i and of the covectors ϑ = ϑiei∗ = ϑ′

ie
i′∗ are transformed according to

the following rules:

v′i = Ai
jv

j ,

ϑ′
i = M j

i ϑj .
(A4.6)

Because of this transformation property, the components vi of the vectors are
called contravariant and the components ϑi of the covectors are called covariant.
Indeed, they are transformed, respectively, through the matrix A, the (transposed)
inverse of the change of basis, and the matrix M of the change of basis.

Definition A4.2 An (algebraic) k-form is a map ω : V k → R, where V k =
V × . . . × V (k times), multilinear and skew-symmetric: for any choice of k
vectors (v1, . . . ,vk) ∈ V k, v′

1 ∈ V and two scalars λ1, λ2 ∈ R we have

ω(λ1v1 + λ2v′
1,v2, . . . ,vk) = λ1ω(v1, . . . ,vk) + λ2ω(v′

1, . . . ,vk) (A4.7)

and

ω(vi1 , . . . ,vik) = (−1)νω(v1, . . . ,vk), (A4.8)

where ν = 0 if the permutation (i1, . . . , ik) of (1, . . . , k) is even, and ν = 1 if it is
odd. �

Recall that a permutation is even if it is obtained by an even number of
exchanges of pairs of indices.

Example A4.1
The oriented area of the parallelogram in R2 with sides v1, v2 is given by

ω(v1,v2) = det
(
v11 v21
v12 v22

)
.

This is clearly an algebraic 2-form. Similarly the oriented volume of the solid
with parallel sides v1, . . . ,vl in Rl is an algebraic l-form, while the oriented
volume of the projection of such a solid onto x1, . . . , xk is a k-form. �

Example A4.2
A symplectic vector space V is endowed with a skew-symmetric linear form ω
which is clearly an example of a 2-form. �
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The set of all the k-forms is a vector space, if we introduce the operations of
sum and product with a scalar λ ∈ R:

(ω1 + ω2)(v1, . . . ,vk) = ω1(v1, . . . ,vk) + ω2(v1, . . . ,vk),

(λω)(v1, . . . ,vk) = λω(v1, . . . ,vk).
(A4.9)

We denote this space by Λk(V ).

Definition A4.3 Let α ∈ Λr, β ∈ Λs. The exterior product of α and β, denoted
by α ∧ β, is the (r + s)-form given by

(α ∧ β)(v1, . . . ,vr+s) =
∑
σ∈P

ν(σ)α(vσ1 , . . . ,vσr )β(vσr+1 , . . . ,vσr+s), (A4.10)

where σ = (σ1, . . . , σr+s), P denotes the set of all possible permutations of
(1, . . . , r + s) and ν(σ) = ±1 according to whether σ is even or odd. �

It is not difficult to check that the exterior product satisfies the following
properties: if α ∈ Λr, β ∈ Λs and γ ∈ Λt, we have

α ∧ (β ∧ γ) = (α ∧ β) ∧ γ,

α ∧ (β + γ) = α ∧ β + α ∧ γ (t = s),

α ∧ β = (−1)rsβ ∧ α.

(A4.11)

Hence it is associative, distributive and anticommutative.

Example A4.3
Let V = R2l, ω =

∑l
i=1 e

i∗ ∧ e(i+l)∗, where (e1, . . . , e2l) denotes the canonical
basis of R2l. It is immediate to check that for every k = 1, . . . , l, setting Ωk =
ω ∧ . . . ∧ ω (k times), we have

Ωk = (−1)k − 1k!
∑

1≤i1<···<ik≤l

ei1∗ ∧ . . . ∧ eik∗ ∧ e(i1+l)∗ ∧ . . . ∧ e(ik+l)∗. (A4.12)

�

Example A4.4
Let ω be a 2-form on R3. If (e1, e2, e3) is a basis of R3 it can be checked that
for every v, w ∈ R3 we have

ω(v,w) = ω(viei, wjej) = (v1w2 − v2w1)ω(e1, e2)

+ (v2w3 − v3w2)ω(e2, e3) + (v3w1 − v1w3)ω(e3, e1)

= (ω12e1∗ ∧ e2∗ + ω23e2∗ ∧ e3∗ + ω31e3∗ ∧ e1∗)(v,w),

(A4.13)

where clearly ω12 = ω(e1, e2), ω23 = ω(e2, e3) and ω31 = ω(e3, e1). Therefore
dim Λ2(R3) = 3. �



718 Algebraic forms, differential forms, tensors A4.1

Example A4.5
Let V = R3. Because of the Euclidean space structure of R3, we can associate
with each vector in R3, a 1-form ϑv and a 2-form ωv by setting

ϑv(w) = v ·w, ωv(w1,w2) = v ·w1 ×w2,

where, as usual, w1 × w2 denotes the vector product of w1 and w2. We can
check then that, for a fixed orthonormal basis (e1, e2, e3) of R3, we have

ϑv = v1e1∗ + v2e2∗ + v3e3∗,

ωv = v1e2∗ ∧ e3∗ + v2e3∗ ∧ e1∗ + v3e1∗ ∧ e2∗. �

Theorem A4.1 Let (e1, . . . , el) be a basis of V . A basis of Λk(V ) is given by⎧⎨⎩ ∑
1≤i1<i2<···<ik≤l

ei1∗ ∧ . . . ∧ eik∗

⎫⎬⎭ .

Therefore dim Λk(V ) =
(
l
k

)
and every k-form α can be uniquely expressed as

follows:

α =
∑

1≤i1<i2<···<ik≤l

αi1...ike
i1∗ ∧ . . . ∧ eik∗, (A4.14)

where

αi1...ik = α(ei1 , . . . , eik). (A4.15)
�

The proof of this theorem is a good exercise, that we leave to the reader.
Such k-forms have additional transformation properties under changes of basis,

or under the action of a linear map. These properties generalise the properties
of covectors. If (e1, . . . , el) and (e′

1, . . . , e
′
l) are two bases of V , M is the matrix

of the change of basis, and A is given by (A4.5), for every k-form we have the
representations ω =

∑
ωi1...ike

i1∗ ∧ eik∗ =
∑

ω′
i1...ik

e′i1∗ ∧ e′ik∗, where

ω′
i1...ik

= M j1
i1

. . .M jk
ik
ωj1...jk . (A4.16)

Every linear map f : V → V induces a linear map f∗ on Λk(V ):

(f∗(α))(v1, . . . ,vk) = α(f(v1), . . . , f(vk)). (A4.17)

If (f j
i ) is the matrix representing f , f(v) = f

(∑
viei

)
=

∑
vif j

i ej , if α =∑
αi1,...ike

i1∗ ∧ eik∗, setting

(f∗α) =
∑

1≤i1<...<ik≤l

(f∗α)i1...ike
i1∗ ∧ . . . ∧ eik∗, (A4.18)
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we find

(f∗α)i1...ik = f j1
i1

. . . f jk
ik
αj1...jk . (A4.19)

Equation (A4.19) is immediately verified, once one shows that f∗ preserves the
exterior product:

f∗(α ∧ β) = (f∗α) ∧ (f∗β). (A4.20)

A4.2 Differential forms

Let M be a connected differentiable manifold of dimension l.

Definition A4.4 The dual space T ∗
PM of the tangent space TPM to M in P

is called the cotangent space to M in P . The elements ϑ ∈ T ∗
PM are called

cotangent vectors to M in P . �

It is possible to identify the tangent vectors with differentiations (along a curve),
so that if (x1, . . . , xl) is a local parametrisation of M a basis of TPM is given
by ∂/∂x1, . . . , ∂/∂xl. In the same way, every cotangent vector is identified with
the differential of a function. Therefore a basis of T ∗

PM is given by (dx1, . . . ,dxl)
and every cotangent vector ϑ ∈ T ∗

PM can be written as

ϑ = ϑi dxi. (A4.21)

It is immediate to check that, if (x′1, . . . , x′l) is a different local parametrisation
of M in P , setting

ϑ = ϑ′
i dx

′i,

we have

ϑ′
i = ϑj

∂xj

∂x′i .

Hence the components of a cotangent vector are covariant.

Definition A4.5 We call the cotangent bundle T ∗M of the manifold M the
union of the cotangent spaces to M at all of its points:

T ∗M =
⋃

P∈M
{P} × T ∗

PM. (A4.22)
�

Remark A4.1
The cotangent bundle T ∗M is naturally endowed with the structure of a dif-
ferentiable manifold of dimension 2l. If (x1, . . . , xl) is a local parametrisation
of M , and (ϑ1, . . . , ϑl) are the components of a covector with respect to the
basis (dx1, . . . ,dxl) of T ∗

PM , a local parametrisation of T ∗M can be obtained by
considering (x1, . . . , xl, ϑ1, . . . , ϑl). �

Example A4.6
If M = Rl, T ∗M � R2l; if M = Tl, T ∗M � Tl ×Rl. �
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Example A4.7
Let (M, (ds)2) be a Riemannian manifold and V : M → R be a regular function.
Consider the Lagrangian

L : TM → R, L =
1
2

∣∣∣∣dsdt
∣∣∣∣2 − V. (A4.23)

If (q1, . . . , ql, q̇1, . . . , q̇l) is a local parametrisation of TM and

(ds)2 = gij(q) dqi dqj , (A4.24)

we have

L(q, q̇) =
1
2
gij(q)q̇iq̇j − V (q). (A4.25)

The kinetic moments p1, . . . , pl conjugate to (q1, . . . , ql):

pi =
∂L

∂q̇i
= gij(q)q̇j (A4.26)

are covariant and can therefore be considered as the components of a cotangent
vector to M at the point with coordinates (q1, . . . , ql). The Hamiltonian of the
system

H(p,q) =
1
2
gij(q)pipj + V (q), (A4.27)

where gij(q)gjk(q) = δik, is a regular function defined on the cotangent bundle
of M :

H : T ∗M → R. (A4.28)

It follows that the Hamiltonian phase space of the system coincides with the
cotangent bundle of M . �

The cotangent bundle T ∗M is endowed with a natural projection:

π : T ∗M → M,

(P, ϑ) �→ P.
(A4.29)

Note that π− 1(P ) = T ∗
PM .

Definition A4.6 The field of cotangent vectors (or differential 1-forms on M)
of a manifold M is a section of T ∗M , i.e. a regular map

Θ : M → T ∗M (A4.30)

such that

π ◦ Θ = idM . (A4.31)
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If (x1, . . . , xl, ϑ1, . . . , ϑl) is a local parametrisation of T ∗M , Θ can be written in
the form

Θ(x) = ϑi(x) dxi, (A4.32)

where the functions ϑi are regular. �

Remark A4.2
A field of cotangent vectors Θ can be identified with a regular map Θ̃ on
the tangent bundle TM with values in R, linear on each tangent space TPM :

Θ̃ : TM → R,

(P,v) �→ Θ̃(P,v) = Θ(P )(v).
(A4.33)

If (x1, . . . , xl) is a local parametrisation of M , we have

Θ(x,v) = ϑi(x)vi. (A4.34)
�

Example A4.8
Let f : N → R be a regular function. The differential of f :

df(x) =
∂f

∂xi
(x) dxi (A4.35)

defines a field of cotangent vectors. It is indeed immediate to verify the covariance
of its components:

ϑ′
i =

∂f

∂x′i =
∂f

∂xj
∂xj

∂x′i =
∂xj

∂x′i ϑj . �

Definition A4.7 Let P ∈ M and denote by Λk
P (M) the vector space of algebraic

k-forms on TPM . We call a differential k-form on M a regular map

Ω : M →
⋃

P∈M
{P} × Λk

P (M), (A4.36)

that associates with every point P ∈ M a k-form on TPM with a reg-
ular dependence on P . The space of differential k-forms M is denoted
by Λk(M). �

Remark A4.3
Note that

⋃
P∈M

{P} × Λ1P (M) = T ∗M . �

In local coordinates (x1, . . . , xl) we have

Ω(x1, . . . , xl) =
∑

1≤i1<···<ik≤l

Ωi1...ik (x) dx
i1 ∧ . . . ∧ dxik , (A4.37)

and the
(

l
k

)
functions Ωi1...ik : M → R are regular.
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Given a function f : M → R, which can be considered as a ‘differential 0-form’,
its differential df is a 1-form. This procedure can be generalised to an operation
called ‘exterior derivation’ that transforms k-forms into (k + 1)-forms.

Definition A4.8 Let Ω ∈ Λk(M). The exterior derivative dΩ ∈ Λk+1(M) is the
(k + 1)-form

dΩ =
l∑

j=1

∑
1≤i1<...<ik≤l

∂ Ωi1...ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik . (A4.38)

�

Remark A4.4
It is immediate to check that if Ω ∈ Λ0(M), i.e. a function, dΩ is its
differential. �

Theorem A4.2 (properties of exterior differentiation)
(1) If Ω, Ω̃ ∈ Λk(M), then d(Ω+ Ω̃) = dΩ+dΩ̃.
(2) If Ω ∈ Λk(M), Ω̃ ∈ Λj(M), then d(Ω∧ Ω̃) = dΩ∧ Ω̃+ (−1)k Ω∧dΩ̃.
(3) For any Ω ∈ Λk(M), we have d(dΩ) = 0.

Proof
We leave (1) and (2) as an exercise, and we prove (3). Setting i = (i1, . . . , ik),
where 1 ≤ i1 < · · · < ik ≤ l, and dxi = dxi1 ∧ . . . ∧ dxik , by (A4.38) we have

d(dΩ) = d
l∑

j=1

∑
i

∂ Ωi

∂xj
dxj ∧ dxi

=
l∑

j,k=1

∑
i

∂2 Ωi

∂xj∂xk
dxk ∧ dxj ∧ dxi

=
∑
i

∑
j<k

(
∂2 Ωi

∂xj∂xk
− ∂2 Ωi

∂xk∂xj

)
dxk ∧ dxj ∧ dxi = 0. �

Example A4.9: vector calculus in R3

If f : R3 → R is a regular function, its differential

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3

is identified with the gradient vector field of f :

∇f =
∂f

∂x1
e1 +

∂f

∂x2
e2 +

∂f

∂x3
e3,

where e1, e2, e3 are the unit vectors of the canonical of R3.
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If Θ ∈ Λ1(R3), Θ(x) = ϑ1(x) dx1 + ϑ2(x) dx2 + ϑ3(x) dx3, by identifying Θ(x)
with the vector field Θ = ϑ1(x)e1+ϑ2(x)e2+ϑ3(x)e3, the exterior derivative dΘ:

dΘ =
(
∂ϑ2
∂x1

− ∂ϑ1
∂x2

)
dx1 ∧ dx2 +

(
∂ϑ3
∂x1

− ∂ϑ1
∂x3

)
dx1 ∧ dx3

+
(
∂ϑ3
∂x2

− ∂ϑ2
∂x3

)
dx2 ∧ dx3

can be identified with the curl of the vector field Θ:

∇ × Θ =
(
∂ϑ3
∂x2

− ∂ϑ2
∂x3

)
e1 +

(
∂ϑ1
∂x3

− ∂ϑ3
∂x1

)
e2 +

(
∂ϑ2
∂x1

− ∂ϑ1
∂x2

)
e3,

since dx2∧dx3= e2× e3= e1, dx1∧dx2= e1× e2= e3 and dx1∧dx3= e1× e3= −
e2.
Finally, if Ω ∈ Λ2(R3), Ω(x) = Ω12(x) dx1 ∧dx2 − Ω31(x) dx1 ∧dx3 +

Ω23(x) dx2 ∧dx3, identifying this with the vector field Ω = Ω23 e1+Ω31 e2+Ω12 e3,
the exterior derivative

dΩ =
(
∂ Ω12
∂x3

+
∂ Ω23
∂x1

+
∂ Ω31
∂x2

)
dx1 ∧ dx2 ∧ dx3

can be identified with the divergence of Ω:

∇ · Ω =
∂ Ω12
∂x3

+
∂ Ω31
∂x2

+
∂ Ω23
∂x1

.

The vanishing of d2 (the second exterior derivative), in the context of vec-
tor analysis in R3, summarises the two classical results ∇ × (∇f) = 0 and
∇ · (∇ × Θ) = 0. �

Definition A4.9 A differential k-form Ω ∈ Λk(M) is closed if dΩ = 0, and
exact if there exists a (k − 1)-form Θ such that Ω = dΘ. �

Remark A4.5
By property (3) (Theorem A4.2) of exterior differentiation, every exact form
is closed. The converse is in general false, except in open simply connected sets
of Rl. �

Theorem A4.3 (Poincaré’s lemma) Let A ⊆ Rl be an open simply connected
set, and Ω be a differential k-form on A. If Ω is closed, then Ω is exact. �

For the proof, see any one of the books suggested in this appendix.
From Poincaré’s lemma it immediately follows that a vector field X on Rl is

a gradient vector field if and only if the Jacobian matrix ∂Xi/∂x
j of the field is

symmetric.
We end this brief introduction to forms by studying their behaviour under the

action of a diffeomorphism f between two differentiable manifolds M and N .
Let Ω ∈ Λk(N), and let f : M → N be a diffeomorphism. Since the differential
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f∗(P ) = df(P ) is an isomorphism of TPM and Tf(P )N (cf. Section 1.7) it is
possible to associate with Ω a k-form on Λk(M), denoted by f∗ Ω (the pull-back
of Ω) defined as follows:

(f∗ Ω)(P )(v1, . . . ,vk) = Ω(f(P ))(f∗(P )v1, . . . , f∗(P )vk), (A4.39)

where P ∈ M and v1, . . . ,vk ∈ TPM .
If (y1, . . . , yl) are local coordinates on N and

Ω(y) =
∑
i

Ωi(y) dyi,

it is straightforward to check that (cf. (A4.19))

(f∗ Ω)(x) =
∑
i,j

Ωi(f(y))
∂f i1

∂xj1
· · · ∂f

ik

∂xjk
dxj1 ∧ . . . ∧ dxjk , (A4.40)

where i = (i1, . . . , ik), j = (j1, . . . , jk).

A4.3 Stokes’ theorem

The theory of integration of differential forms defined on a manifold is rather
rich, and cannot be covered in this brief introduction. We can however devote
a little space to Stokes’ theorem, whose statement is very simple and which has
useful consequences for a better understanding of some of the topics considered
in this book (e.g. the Poincaré–Cartan form, see Section 10.3).
A differentiable manifold with boundary M is a manifold whose atlas

(Uα,xα)α∈A contains the two following types of charts. If we denote by
Hl = {x ∈ Rl|xl ≥ 0} the upper half-space Rl, for some charts x−1

α (Uα) is
an open set of Rl homeomorphic to Rl, and for others it is homeomorphic to
Hl. The boundary ∂M of M is then the set of points P of M whose images
x− 1(P ) ∈ ∂Hl = {x ∈ Rl|xl = 0} � Rl − 1.
Clearly the boundary ∂M of M is a smooth manifold of dimension l − 1.

Example A4.10
The half-sphere

M = {x ∈ Rl+1|(x1)2 + · · ·+ (xl)2 + (xl+1)2 = 1, xl+1 ≥ 0}
is a differentiable manifold with boundary

∂M = {x ∈ Rl|(x1)2 + · · ·+ (xl)2 = 1, xl+1 = 0} � Sl − 1. �

Let M be an l-dimensional oriented manifold with boundary ∂M (hence a
manifold of dimension l − 1 coherently oriented). It is not difficult to introduce
the notion of the integral of an l-form on M , although a rigorous definition
requires the use of a partition of unity (see Singer and Thorpe 1980). We simply
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note that if (x1, . . . , xl) is a local parametrisation of M , any l-form Ω can be
written as

Ω(x) = ω(x) dx1 . . .dxl,

and hence is identified with a function ω(x) that can be integrated on the
corresponding chart U . Evidently the theorem of change of integration variable
ensures that the result is independent of the parametrisation. Indeed, if (y1, . . . , yl)
is a new parametrisation, and V is the image of the open U in the new local
coordinates, from (A4.40) it follows that∫

U

ω(x) dlx =
∫
V

ω(x(y)) det
(
∂xi
∂yj

)
dly

(note that det(∂xi/∂yj) > 0 since M is oriented).
Hence the integral can be extended to M (and we denote it by

∫
M
Ω) or to

a part of it.

Theorem A4.4 (Stokes) Let M be an l-dimensional oriented manifold with
boundary, and let Ω ∈ Λl − 1(M); then∫

M

dΩ =
∫
∂M

Ω . (A4.41)
�

Remark A4.6
If M = [a, b], Ω = f : [a, b] → R, equation (A4.41) becomes∫ b

a

f ′(x) dx = [f(x)]ba = f(b)− f(a),

and we recover the fundamental theorem of calculus. Similarly it is not difficult to
check, using example A4.24, that Stokes’ theorem summarises Green’s theorem,
the divergence theorem and the classical Stokes’ theorem of vector calculus (see
Giusti 1989). �

Corollary 4.1 (Stokes’ lemma) If ω is a non-singular 1-form (see Defini-
tion 10.9) in R2l+1 and γ1, γ2 are two closed curves enclosing the same tube of
characteristics of ω, then ∫

γ1

ω =
∫
γ2

ω.

Proof
By Remark 10.15, dω = 0 on a tube of characteristics. If σ is the portion of the
tube of characteristics having as boundary γ1 − γ2 (Fig. A4.1) we have∫

γ1

ω −
∫
γ2

ω =
∫
∂σ

ω =
∫
σ

dω = 0.
�
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g1

g2

s

∂s = g1 – g2

Fig. 4.1 ∂σ = γ1 − γ2.

A4.4 Tensors

We only give the definition of a tensor field on a differentiable manifold, and
refer the interested reader to Dubrovin et al. (1991a).
Let M be a differentiable manifold of dimension l, P ∈ M .

Definition A4.10 An element of the vector space of multilinear forms

τ : TPM × · · · × TPM︸ ︷︷ ︸
m times

×T ∗
PM × · · · × T ∗

PM︸ ︷︷ ︸
n times

→ R (A4.42)

is an m times covariant, n times contravariant tensor (or of type (m,n) and
order m+ n).
If (x1, . . . , xl) is a local parametrisation in a neighbourhood of P ∈ M and we

denote by (e1, . . . , el) the basis
(
∂/∂x1, . . . , ∂/∂xl

)
of TPM , and by (e1∗, . . . , el∗)

the (dual) basis (dx1, . . . ,dxl) of T ∗
PM , a tensor of type (m,n) can be expressed

through its components:

τ = τ
im+1...im+n
i1...im

ei1∗ ⊗ · · · ⊗ eim∗ ⊗ eim+1 ⊗ · · · ⊗ eim+n , (A4.43)

where ⊗ denotes the tensor product: if ϑ1, ϑ2 ∈ T ∗
PM then

ei ⊗ ej(ϑ1, ϑ2) = (ϑ1)i(ϑ2)j , (A4.44)

where (ϑ1)i denotes the ith component of ϑ1 = ϑ1iei∗. If, on the other hand, v1,
v2 ∈ TPM , we have

ei∗ ⊗ ej∗(v1,v2) = vi1v
j
2. (A4.45)

�
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The vector space of tensors of type (m,n) therefore coincides with the tensor
product

m⊗
T ∗
PM

n⊗
TPM (A4.46)

of m cotangent spaces T ∗
PM with n tangent spaces TPM , and hence has dimension

lm+n.

Remark A4.7
It is necessary to take care of the fact that the tensor product is distributive with
respect to addition, it is associative (as follows from (A4.44) and (A4.45)) but it
is not commutative: the spaces T ∗

PM ⊗ TPM and TPM ⊗ T ∗
PM are both vector

spaces of tensors once covariant and once contravariant, but T ∗
PM⊗TPM =/ TPM

⊗ T ∗
PM . �

Let (y1, . . . , yl) be a new choice of local coordinates in a neighbourhood of
P ∈ M . Denote by (e′

1, . . . , e
′
l) = (∂/∂y1, . . . , ∂/∂yl) the associated basis of TPM

and by (e′1∗, . . . , e′l∗) = (dy1, . . . ,dyl) the dual basis. If we denote by

Jj
k =

∂xj

∂yk
, (J− 1)jk =

∂yj

∂xk
(A4.47)

the elements of the Jacobian matrix of the transformation of the change of chart
and of its inverse, a tensor (A4.43) is transformed into

(τ ′)im+1...im+n
i1...im

e′i1∗ ⊗ · · · ⊗ e′im∗ ⊗ e′
im+1

⊗ · · · ⊗ e′
im+n

, (A4.48)

where the old and new components are related by

τ
im+1...im+n
i1...im

= (J− 1)j1i1 · · · (J− 1)jmimJ
im+1
jm+1

· · ·J im+n
jm+n

· (τ ′)jm+1...jm+n
j1...jm

. (A4.49)

Definition A4.11 A tensor field of type (m,n) on a manifold M is a regular
map

τ : M →
⋃

P∈M
{P} ×

m⊗
T ∗
PM

n⊗
TPM (A4.50)

that associates with every point P ∈ M a tensor of type (m,n) belonging to
m⊗

T ∗
PM

n⊗
TPM and depending regularly on P .

In local coordinates (x1, . . . , xl) we have

τ(x1, . . . , xl) = τ(x)im+1...im+n
i1...im

dxi1 . . .dxim
∂

∂xim+1
· · · ∂

∂xim+n
. �

Vector fields are examples of tensor fields of type (0, 1). The fields of cotangent
vectors are tensor fields of type (1, 0). A differential k-form on M is a tensor
field of type (k, 0) that is totally skew-symmetric: if we denote by τi1...ik(x) its
components, then τi′1...i′k = ±τi1...ik , where the sign is positive if i′1 . . . i

′
k is an

even permutation of i1 . . . ik, and negative otherwise (hence τi1...ijij ...ik = 0).
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APPENDIX 5: PHYSICAL REALISATION OF
CONSTRAINTS

The notion of a system subject to an ideal bilateral frictionless holonomic con-
straint was introduced in Chapter 1 and further discussed in Chapters 2 and 4.
Our discussion, however rigorous from the point of view of mathematical mod-
elling, does not consider the more complex issue of the physical phenomenon
responsible for the effect of the constraint.
Consider, as an example, a point particle of mass m constrained to move on

the surface of a sphere of radius R and subject to gravity (spherical pendulum).
If (r, ϑ, ϕ) indicate spherical coordinates in R3, the Lagrangian of the system is
given by

L(ϑ, ϕ, ϑ̇, ϕ̇) =
1
2
mR2(ϑ̇2 + sin2 ϑϕ̇2)−mgR cos ϑ. (A5.1)

From a physical point of view, we expect the constraint reactions to be due to the
elastic reaction of the materials subject to a small deformation due to contact—in
the example under consideration—between the particle and the sphere. Assume
then that the constraint is realised physically through a spring of negligible mass,
length at rest equal to R and a very large elastic constant k. We then want to use
a limiting procedure for k → ∞, in analogy with what was done in Section 2.6
to study unilateral constraints.
Setting ξ = r − R, the Lagrangian of the system (that now has three degrees

of freedom) can be written as

L̂ =
1
2
mξ̇2 +

1
2
m(R+ ξ)2(ϑ̇2 + sin2 ϑϕ̇2)−mg(R+ ξ) cos ϑ− 1

2
kξ2. (A5.2)

The problem is to compare the solutions of the system (A5.2) for very large
values of k, corresponding to initial conditions belonging to the sphere of radius
R (i.e. ξ = 0, ξ̇ = 0) with the solutions of the system (A5.1). Note that, in spite
of the fact that for t = 0 we have ξ = 0, ξ̇ = 0, for t > 0 in general ξ =/ 0, ξ̇ =/ 0,
since the Lagrange equations associated with (A5.2) couple the variables (ξ, ξ̇)
with (ϑ, ϕ, ϑ̇, ϕ̇).
More generally, consider a point particle P of mass m and Cartesian coordinates

x = (x1, x2, x3) subject to a smooth holonomic constraint with equation

f(x1, x2, x3) = 0, (A5.3)

and under the action of a conservative force field with potential energy
V (x1, x2, x3). If f is of class C2 and ∇xf =/ 0, equation (A5.3) defines a sur-
face S ⊂ R3. Assume that the constraint is realised through a recoiling elastic
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force proportional to f2, vanishing on S and with a very large constant k. The
Lagrangian corresponding to this system is given by

L̂(x, ẋ) =
m

2
(ẋ21 + ẋ22 + ẋ23)− V (x1, x2, x3)− 1

2
k(f(x1, x2, x3))2. (A5.4)

Let x(t, k) be a solution of the Lagrange equations associated with (A5.4) with
initial conditions

x(0, k) = x0 ∈ S, ẋ(0, k) = ẋ0 ∈ Tx0S, (A5.5)

independent of k. If x = x(q1, q2) is a local parametrisation of S in a neighbour-
hood of x0, let (q1(0), q2(0), q̇1(0), q̇2(0)) be the local coordinates corresponding
to the initial conditions (A5.5). To compare with (A5.4) we then consider the
Lagrangian of the system subject to the constraint, given by

L(q, q̇) =
m

2
(E(q1, q2)q̇21 + 2F (q1, q2)q̇1q̇2 +G(q1, q2)q̇22)− V (x(q1, q2)) (A5.6)

(where E, F , G are the coefficients of the first fundamental form associated with
S) and the solution q1(t), q2(t) of the Lagrange equations associated with (A5.6)
and corresponding to initial conditions (q1(0), q2(0), q̇1(0), q̇2(0)). The Lagrangian
(A5.6) is obtained from (A5.4) by imposing the restrictions x ∈ S, ẋ ∈ TxS and
introducing local coordinates.
Under the above assumptions the following important result holds.

Theorem A5.1 (Rubin, Hungar, Takens) Fix T > 0. Then for every t ∈ [0, T ]
the limit

x̂(t) = lim
k→∞

x(t, k) (A5.7)

exists. The function t → x̂(t) is of class C2, x̂(t) belongs to S for every t ∈ [0, T ]
and hence can be written using the local parametrisation of S as

x̂(t) = x(q1(t), q2(t)). (A5.8)

Here (q1(t), q2(t)) is a solution of the Lagrange equations associated with the
Lagrangian (A5.6) and satisfying the initial conditions (q1(0), q2(0), q̇1(0), q̇2(0))
associated with (A5.5) by the parametrisation. �

We shall not give the proof of this theorem (see Rubin and Hungar 1957,
Takens 1970, or Gallavotti 1980), which guarantees that the limiting procedure
used to build a physical model of a system subject to a constraint converges to
the ideal notion discussed in Chapters 1, 2, and 4. We remark, however, that
a fundamental step in the proof is the following observation. If e denotes the
total mechanical energy of the system with Lagrangian (A5.4), by the theorem
of conservation of energy x(t, k) cannot have a distance larger than e/

√
k → 0

from S, as k → ∞.
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The problem of the physical realisation of constraints is also of considerable
interest in the study of classical statistical mechanics. In particular, it is at the
centre of several research projects on the so-called problem of the ‘ultraviolet
catastrophe’ predicted by classical statistical mechanics (see Born 1927), and
hence the conflict between the predictions of the equipartition theorem and of
some experimental evidence relating to the specific heat of polyatomic gases, or to
the form of the spectrum of black body radiation.1 This problem deserves a more
detailed discussion, which however cannot find space in this brief introduction.

1 In a remarkable series of recent papers, Benettin, Galgani and Giorgilli have studied
in great detail the consequences of the modern canonical theory of perturbations for this
problem, and deduced interesting physical outcomes: see the original papers cited in the
bibliography (1985, 1987a, 1987b, 1989).
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APPENDIX 6: KEPLER’S PROBLEM, LINEAR
OSCILLATORS AND GEODESIC FLOWS

In this appendix we briefly study the connections between some seemingly
unrelated dynamical systems.

(1) Kepler’s problem (cf. Section 5.2): a point particle of unit mass moves in
the plane of coordinates (x, y) under the action of the central field with
potential energy V (r) = −k/r, with fixed k > 0.

(2) Linear oscillators: a point particle of unit mass moves in the (x, y) plane
under the action of a central field with potential energy V (r) = 1

2 αr
2 =

1
2 α(x

2 + y2), α > 0 fixed.
(3a) Geodesic flow on the sphere (cf. Section 1.6): a point particle of unit mass

moves freely on the sphere of radius R immersed in three-dimensional
Euclidean space.

(3b) Geodesic flow on the Poincaré disc (cf. Section 1.7): a point particle of unit
mass moves freely on the Riemannian manifold (D,ds2R) where D = {w =
x+ iy ∈ C| |w| < 1} and

ds2R = 4R2 dw dw
(1− |w|2)2 = 4R2 (dx)2 + (dy)2

(1− x2 − y2)2
. (A6.1)

Remark A6.1
The Gaussian curvature (see Appendix 3) of the sphere of radius R is equal
to 1/R2, while that of the Poincaré disc (D,ds2R) is −1/R2. �

The dynamical systems (1) and (2) are related by the theorem of Bertrand
(Theorem 5.3). This is not by chance; in fact, by an appropriate coordinate and
time transformation, it is possible to transform one into the other (see Levi-Civita
1920).

Theorem A6.1 (Levi-Civita transformation) Setting

z = x+ iy ∈ C, (A6.2)

the change of (space and time) variables

z =
w2

2
, w ∈ C,

dt
dτ

= |w|2 = 2|z|
(A6.3)
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transforms the equations of motion of the Kepler problem

z̈ = −k
z

|z|3 , (A6.4)

for a fixed value of the energy E:

E =
1
2

|ż|2 − k

|z| , (A6.5)

into the equations of a linear oscillator:

w′′ − 2Ew = 0, (A6.6)

where w′′ = d2w/dτ2.

Proof
We check first of all that equation (A6.4) coincides with the equation of motion
for Kepler’s problem. Separating real and imaginary parts in (A6.4) we find

ẍ = − k

r2
x

r
, ÿ = − k

r2
y

r
, (A6.7)

and similarly we check that equation (A6.6) coincides with the equation of a
linear oscillator (set w = ξ + iη, α = −2E) and that (A6.5) is the energy of
Kepler’s problem.
From equations (A6.3) it follows that

ż =
dz
dt

=
dz
dw

dw
dτ

dτ
dt

=
w

|w|2 w
′ (A6.8)

and |z| = |w|2/2; hence in the new variables the energy is expressed as

E =
1

2|w|2 |w′|2 − 2k
|w|2 ,

and multiplying by |w|2, it follows that
1
2

|w′|2 = E|w|2 + 2k. (A6.9)

Equation (A6.6) is obtained by computing

z̈ =
1

|w|2
d
dτ

ww′

|w|2 =
1

|w|2
d
dτ

w′

w
,

substituting this into (A6.4) and taking into account (A6.9). �
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Remark A6.2
An analogous theorem holds for the three-dimensional Kepler’s problem (the
transformation then goes under the name of Kustaanheimo–Stiefel–Schiefele; see
Schiefele and Stiefel 1971). �

Remark A6.3
It is interesting—and applicable to the numerical study of orbits—to note that
equations (A6.6) are regular at |w| = |z| = 0. At the same point, equations (A6.4)
are singular. �

Remark A6.4
Theorem A6.1 relates Keplerian motions with fixed energy E and solutions of the
linear oscillator with α = −2E (then with the harmonic oscillator of frequency
ω2 = −2E, if E < 0, while for E > 0 the oscillator if hyperbolic). �

The relation between problem (1) (Kepler) (and, thanks to Theorem A6.1,
linear oscillators) and the geodesic flows (3a) and (3b) is the object of the
following theorem (see Moser 1970 and Alekseev 1981).

Theorem A6.2 The phase flow of the plane Kepler problem for a fixed value E
of the energy is equivalent, up to a time parametrisation, to the geodesic flow on
a surface with constant Gaussian curvature −2E/k2.
After the addition of a point, this surface is isometric to the sphere of radius

R = k/
√−2E if E < 0, to the Euclidean plane if E = 0 or to the Poincaré disc

(D,ds2R), with R = k/
√
2E if E > 0. �

Remark A6.5
The meaning of the ‘equivalence’ of two phase flows will be made clear in
the course of the proof. �

Remark A6.6
An analogous theorem holds for the Kepler problem in three-dimensional
space. �

Proof of Theorem A6.2
Let q = (x, y), p = q̇. The Hamiltonian of the plane Kepler problem is

H(p,q) =
1
2

|p|2 − k

|q| . (A6.10)

Consider a fixed value of the energy E and the three-dimensional manifold of
constant energy

ME = {(p,q) ∈ R2 ×R2\{(0, 0)}|H(p,q) = E}. (A6.11)

Introduce the transformation

dt
dτ

=
|q|
k
. (A6.12)
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We want to show that on the manifold ME , Hamilton’s equations for (A6.10)
become

dpi
dτ

= −∂H̃

∂qi
,

dqi
dτ

=
∂H̃

∂pi
,

(A6.13)

where i = 1, 2,

H̃(p,q) =
|q|
k

(H(p,q)− E) =
|q|
2k

(|p|2 − 2E)− 1 (A6.14)

and the manifold ME coincides with

M̃E = {(p,q) ∈ R2 ×R2\{(0, 0)}|H̃(p,q) = 0}. (A6.15)

Indeed on M̃E we have

∂H̃

∂pi
=

|q|
k

∂H

∂pi
=

dt
dτ

dqi
dt

=
dqi
dτ

,

−∂H̃

∂qi
= −1

k

(
∂

∂qi
|q|
)
[H(p,q)− E]

∣∣∣∣
ME

− |q|
k

∂H

∂qi
=

dt
dτ

ṗi =
dpi
dτ

.

In addition, note that ME = M̃E and the following identity holds:

|q|
2k

(|p|2 − 2E) = 1. (A6.16)

This identity, applied to Hamilton’s equations (A6.13), yields

dpi
dτ

= −|q|
2k

(|p|2 − 2E)
∂

∂qi

[ |q|
2k

(|p|2 − 2E)
]
= −∂H

∂qi
,

dqi
dτ

=
|q|
2k

(|p|2 − 2E)
∂

∂pi

[ |q|
2k

(|p|2 − 2E)
]
=

∂H

∂pi
,

(A6.17)

where we set

H(p,q) =
|q|2(|p|2 − 2E)2

8k2
(A6.18)

and the manifolds ME = M̃E coincide with

ME =
{
(p,q) ∈ R2 ×R2\{(0, 0)}| |p|2 > 2E,H(p,q) =

1
2

}
(A6.19)

(the requirement that |p|2 > 2E allows one to select the sign of H1/2).
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From the first of equations (A6.17) we deduce q as a function of p and dp/dτ :
indeed, taking into account (A6.18) we find

dp
dτ

= −∇qH = −q (|p|2 − 2E)2

4k2
, (A6.20)

from which it follows that

q = − 4k2

(|p|2 − 2E)2
dp
dτ

. (A6.21)

Differentiating the expression (A6.21) we have

dq
dτ

=
8k2

(|p|2 − 2E)3
2
(
p · dp

dτ

)
dp
dτ

− 4k2

(|p|2 − 2E)2
d2p
dτ2

, (A6.22)

to be compared with

dq
dτ

= ∇pH =
|q|2
2k2

(|p|2 − 2E)p =
8k2

(|p|2 − 2E)3

∣∣∣∣ dpdτ2
∣∣∣∣2 p (A6.23)

(where we used (A6.21) in the last equality). Equating (A6.22) and (A6.23) we
find

8k2

(|p|2 − 2E)3
2
(
p · dp

dτ

)
dp
dτ

− 8k2

(|p|2 − 2E)3

∣∣∣∣dpdτ
∣∣∣∣2 p =

4k2

(|p|2 − 2E)2
d2p
dτ2

,

and hence the second-order equation

d2p
dτ2

=
2

|p|2 − 2E

[
2
(
p · dp

dτ

)
dp
dτ

− p
∣∣∣∣dpdτ

∣∣∣∣2
]
. (A6.24)

From (A6.20), (A6.16) it also follows that∣∣∣∣dpdτ
∣∣∣∣ = (|p|2 − 2E)2

4k2
|q| = |p|2 − 2E

2k
. (A6.25)

Consider the projection

π : ME → R2,

(p,q) �→ π(p,q) = p.

It is immediate to check that:

(a) if E < 0, π(ME) = R2;
(b) if E = 0, π(ME) = R2\{(0, 0)};
(c) if E > 0, π(ME) = R2\D√

2E = {(p1, p2) ∈ R2|p21 + p22 > 2E}.
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Let AE = π(ME) and introduce the Riemannian metric

(dsE)2 =
4k2

(|p|2 − 2E)2
[(dp1)2 + (dp2)2]. (A6.26)

We now check that equation (A6.24) is the geodesic equation on the two-
dimensional Riemannian manifold (AE , (dsE)2), and that τ is the arc length
parameter along the geodesic. By (A6.26) the components of the metric tensor
are

gij(E) =
4k2δij

(|p|2 − 2E)2
, gij(E) =

(|p|2 − 2E)2

4k2
δij , (A6.27)

and hence it is immediate to compute the Christoffel symbols (see (1.69))

Γijk(E) =
1
2

2∑
n=1

gni(E)
(
∂gjn(E)
∂pk

+
∂gkn(E)

∂pj
− ∂gjk(E)

∂pn

)

=
1
2

2∑
n=1

(|p|2 − 2E)2

4k2
δni

(
− 8k2

(|p|2 − 2E)3

)
[2pkδjn + 2pjδkn − 2pnδjk]

= − 2
(|p|2 − 2E)

2∑
n=1

δni[pkδjn + pjδkn − pnδjk]

= − 2
(|p|2 − 2E)

(δijpk + δikpj − piδjk). (A6.28)

The geodesic equation (see (1.68)) on (AE , (dsE)2) can then be written as

d2pi
ds2

= −
2∑

j,k=1

Γijk(E)
dpj
ds

dpk
ds

=
2

(|p|2 − 2E)

2∑
j,k=1

(δijpk + δikpj − δjkpi)
dpj
ds

dpk
ds

=
2

(|p|2 − 2E)

[
2
(
p · dp

ds

)
dpi
ds

− pi

∣∣∣∣dpds
∣∣∣∣2
]
,

(A6.29)

which coincides with (A6.24) by setting s = τ .
Finally, we consider the map

ψ : ME → TAE ,

(p,q) �→ (p,u),
(A6.30)

where TAE is the tangent bundle of AE and

u =
dp
dτ

. (A6.31)
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Since from (A6.25), (A6.26) it follows that

|u|dsE =
2k

(|p|2 − 2E)

∣∣∣∣dpdτ
∣∣∣∣ = 1, (A6.32)

and the projection π : ME → AE is onto, the map ψ is a diffeomorphism from
ME to UAE , the bundle of tangent vectors of unit length:

UAE = {(p,u) ∈ TAE | |u|dsE = 1}. (A6.33)

In addition, ψ transforms the Hamiltonian flow ME into the geodesic flow, since,
as we have seen, s = τ and (A6.24) coincides with (A6.29) (recall that q is
uniquely determined by the knowledge of p and of dp/dτ , see (A6.21)).
Due to Remark A3.2, it is immediate to compute the Gaussian curvature of

the Riemannian manifold (AE ,ds2E). Indeed, setting

g =
4k2

(|p|2 − 2E)2
, (A6.34)

the Gaussian curvature K of (AE ,ds2E) is given by

K = −1
g

[
∂

∂p1

1√
g

∂

∂p1

√
g +

∂

∂p2

1√
g

∂

∂p2

√
g

]
=

(|p|2 − 2E)2

4k2

[
∂

∂p1

(
2p1

|p|2 − 2E

)
+

∂

∂p2

(
2p2

|p|2 − 2E

)]
= − 1

4k2
[4p21 + 4p22 − 4(|p|2 − 2E)] = −2E

k2
.

(A6.35)

If E < 0, the stereographic projection

p1 =
k√
2|E|

x1

k/
√
2|E| − x0

, p2 =
k√
2|E|

x2

k/
√
2|E| − x0

(A6.36)

transforms AE into the sphere

x20 + x21 + x22 =
k2

2|E| (A6.37)

without the point x0 = k/
√
2|E|, x1 = x2 = 0. The sphere (A6.37) has radius

k/
√
2|E|, and it is immediate to check that the metric (A6.26) is transformed

into the first fundamental form (A6.37).
If E = 0, setting

z = p1 + ip2 = Reiϑ,

w = x1 + ix2 = reiϕ,
(A6.38)
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the inversion

z =
2k
w

(A6.39)

transforms AE into R2\{(0, 0)} with the Euclidean metric (dx1)2 + (dx2)2 =
dw dw = (dr)2 + r2(dϕ)2.
Finally, for E > 0, with the same notation as in (A6.38), the inversion

z =
√
2E
w

transforms AE into D and (A6.26) into

(dsE)2 =
4k2

(|z|2 − 2E)2
dz dz =

4k2

(2E/|w|2 − 2E)2
2E
|w|4 dw dw

=
4

2E/k2
dw dw

(1− |w|2)2 ,
(A6.40)

which coincides with (A6.1) by setting R = k/
√
2E. �



APPENDIX 7: FOURIER SERIES EXPANSIONS

Fourier trigonometric series are a particular case of the more general concept
of expansion of any element of a Hilbert space with respect to a complete
orthonormal basis.
We briefly summarise the essential notions (for more details and proofs, see

for example Rudin (1974)).
A real (respectively, complex) vector space V is endowed with a norm if to all

its elements x we can associate a real number ‖x‖ (its norm) with the following
properties:

(i) ‖x‖ ≥ 0, ∀ x ∈ V ;
(ii) ‖λx‖ = |λ| ‖x‖, ∀ x ∈ V , ∀ λ ∈ R (respectively, ∀ λ ∈ C);
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀ x, y ∈ V .

A sequence {xn} in a normed space V converges in the norm to the limit
x ∈ V if lim

n→∞ ‖xn − x‖ = 0.

A sequence {xn} in a normed space is a Cauchy sequence if ‖xn − xm‖ → 0
for n,m → +∞.
A normed space is complete if all Cauchy sequences are convergent.
A complete normed space is called a Banach space.
A Banach space whose norm is generated by a scalar product is called a

Hilbert space. If the space is real (respectively, complex) a scalar product (x, y)
is a symmetric (respectively, Hermitian) positive definite bilinear form.
It is easily seen that (x, x)1/2 has the properties of a norm. In a Hilbert space

we then set ‖x‖2 = (x, x).
A complete orthonormal basis {ei}, i ∈ N, of a Hilbert space is a basis such

that (ei, ej) = δij and (x, ei) = 0, ∀ i ⇒ x = 0.

Theorem A7.1 Let {ei} be a complete orthonormal basis of a Hilbert space H.
Then every element x ∈ H can be uniquely represented by the series

x =
∑
i

αiei. (A7.1)

The coefficients αi are called Fourier coefficients and are defined by

αi = (x, ei). (A7.2)

The Parseval identity

‖x‖2 =
∑
i

α2i (A7.3)

holds. �
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Theorem A7.2 A Hilbert space has a complete orthonormal basis if and only if
it is separable. �

Corollary A7.1 Every separable real (respectively, complex) Hilbert space
(infinite dimensional) is isomorphic to the space �2 of sequences (αi)i∈N in R
(respectively, in C) for which the series of

∑
i |αi|2 is convergent with respect to

the scalar product (x, y) =
∑∞

i=1 xiyi (respectively (x, y) =
∑∞

i=1 xiyi). �

Consider the Hilbert space L2((0, 2π),R) of measurable functions v : (0, 2π) →
R which are square integrable, with the scalar product (u, v) =

∫ 2π
0 u(x)v(x) dx. A

complete orthonormal basis for it is given by the functions 1/
√
2π, (1/

√
π) sinnx,

(1/
√
π) cosnx, n ∈ N, n > 0. Every measurable function V : R → R, 2π-

periodic (hence such that V (x + 2π) = V (x) for every x ∈ R), such that its
restriction v = V |(0,2π) is also square integrable, determines uniquely an element
v ∈ L2((0, 2π),R) which can be written as

v(x) = a0 +
∞∑
n=1

[an cos(nx) + bn sin(nx)], (A7.4)

where

a0 =
1√
2π

∫ 2π

0
v(x) dx, an =

1√
π

∫ 2π

0
v(x) cos(nx) dx, bn =

1√
π

∫ 2π

0
v(x) sin(nx) dx.

(A7.5)

Equations (A7.4) and (A7.5) take a particularly compact form if we express sine
and cosine through complex exponentials:

v(x) =
∑
k∈Z

v̂keikx, v̂k =
1√
2π

∫ 2π

0
v(x)e−ikx dx. (A7.6)

The relation between the coefficients (v̂k)k∈Z and (an, bn)n∈N is given by

v̂0 = a0, v̂k =
1
2
(ak − ibk) if k ≥ 1, v̂k =

1
2
(a−k + ib−k) = v̂∗

−k if k ≤ −1.
(A7.7)

Now let v : Rl → R be a measurable function, periodic of period 2π in each of
its arguments:

v(x1 + 2π, . . . , xl) = v(x1, x2 + 2π, . . . , xl) = . . .

= v(x1, x2, . . . , xl + 2π)

= v(x1, . . . , xl).

(A7.8)

Assume also that its restriction v to (0, 2π)l is square integrable.
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The function v is hence defined on the l-dimensional torus Tl = (R/2πZ)l,
and it is possible to expand it in Fourier series:

v(x) =
∑

m∈Zl

v̂meim·x. (A7.9)

The coefficients v̂m of the series expansion (A7.9) are determined as follows:

v̂m =
1

(2π)l

∫
Tl

v(x)e−im·x dx. (A7.10)

If the function v is regular, its Fourier coefficients belong to �2(Zl,C) and decay
at infinity at a rate related to the degree of regularity of the function.

Theorem A7.3 If v is of class Cr, there exists a constant M > 0 such that for
every m ∈ Zl, m =/ 0 we have

|v̂m| ≤ M(|m1|+ · · ·+ |ml|)−r. (A7.11)

If v is of class C∞, for every positive integer r there exists a constant M > 0
such that for every m ∈ Zl, m =/ 0 we have

|v̂m| ≤ M(|m1|+ · · ·+ |ml|)−r. (A7.12)

If v is analytic, there exist two constants M > 0 and δ > 0 such that for every
m ∈ Zl we have

|v̂m| ≤ Me−δ(|m1|+···+|ml|). (A7.13)

Proof
For simplicity we only prove the estimates (A7.11) and (A7.12). For the proof
of (A7.13) see for example Sternberg (1969) and Rudin (1974).
We first remark that (A7.12) is an obvious consequence of (A7.11).
Let l = 1. The proof of (A7.11) depends on the identity

e−imx =
1

−im
d
dx

e−imx, m =/ 0. (A7.14)

From (A7.10) it follows that

v̂m =
1
2π

∫ 2π

0
v(x)e−imx dx =

1
2π

∫ 2π

0
v(x)

1
−im

d
dx

e−imx dx,

and hence, integrating by parts, we find

v̂m =
1
2π

[
1

(−im)
v(x)e−imx

]x=2π
x=0

+
1

i2πm

∫ 2π

0
v′(x)e−imx dx.
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The first term is zero due to the periodicity of v(x)e−imx. If v is of class Cr we
can iterate this procedure r times to obtain

v̂m =
1

2π(im)r

∫ 2π

0
v(r)(x)e−imx dx,

from which it immediately follows that

|v̂m| ≤ 1
2π|m|r

∫ 2π

0
|v(r)(x)|dx ≤ M

|m|r ,

where M = max0≤x≤2π |v(r)(x)|. The existence of M is guaranteed by the
assumption that v is of class Cr.
If l ≥ 1, it is sufficient to observe the following. Since m =/ 0, there exists at

least one component mj =/ 0. From (A7.10), integrating by parts, we find

v̂m =
1

(2π)l

∫
Tl

v(x)
(
− 1
imj

∂

∂xj

)
e−im·xdx

= − 1
imj

1
(2π)l

∫
Tl

∂v

∂xj
(x)e−im·x dx,

from which, iterating this procedure r times, we obtain

|v̂m| ≤ M̃

(max1≤j≤l |mj |)r , (A7.15)

where M̃ = max1≤j≤l maxx∈Tl

∣∣∂rv/∂xrj (x)
∣∣ .

On the other hand, max1≤j≤l |mj | ≤ |m1| + · · · + |ml| ≤ l max1≤j≤l |mj |.
Substituting this into (A7.15) yields the desired estimate (A7.11), with
M = lrM̃ . �



APPENDIX 8: MOMENTS OF THE GAUSSIAN
DISTRIBUTION AND THE EULER Γ FUNCTION

The moments of the Gaussian distribution are the integrals of the type

µn =
∫ +∞

−∞
xne−ax2

dx, (A8.1)

with a being a positive constant and n ∈ N.

Proposition A8.1 The moments µn of the Gaussian distribution are

µ0 =
√

π

a
,

µ2n+1 = 0, for every n ≥ 0, (A8.2)

µ2n = (2n− 1)!!
√

π

a
(2a)−n, for every n ≥ 0.

Proof
The proof is a direct computation. First of all, consider µ20:

µ20 =
( ∫ +∞

−∞
e−ax2

dx
)2

=
∫ +∞

−∞
e−ax2

dx
∫ +∞

−∞
e−ay2

dy

=
∫ +∞

−∞
dx

∫ +∞

−∞
e−a(x2+y2) dy =

∫ 2π

0
dϕ

∫ +∞

0
re−ar2

dr =
π

a
,

where we have used the substitution x = r cos ϕ, y = r sin ϕ.
Evidently µ2n+1 = 0, because the integrand is an odd function of x. To compute

µ2n we first note that

x2ne−ax2
= (−1)n ∂n

∂an
e−ax2

,

From which it immediately follows that

µ2n = (−1)n dn

dan

∫ +∞

−∞
e−ax2

dx

=
√
π(−1)n

(
−1
2

)(
−3
2

)
· · ·

(
−2n− 1

2

)
a−(2n+1)/2

= (2n− 1)!!
√

π

a
(2a)−n. �
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It is often also useful to compute the integral between 0 and ∞. For integrals
with even n it is enough to divide the previous result by two. For those with
odd n, we can check with a sequence of integration by parts that∫ ∞

0
x2n+1 e−x2

dx =
1
2
n!, (A8.3)

and hence ∫ ∞

0
x2n+1 e−ax2

dx =
1
2
a−(n+1)n!. (A8.4)

There exists an obvious relation between the moments of the Gaussian distribution
and the Euler Γ function

Γ(z) =
∫ ∞

0
tz−1 e−t dt, z > 0. (A8.5)

Indeed, after the substitution ax2 = t we immediately find∫ ∞

0
xn e−ax2

dx =
1
2
a−(n+1)/2 Γ

(
n+ 1
2

)
. (A8.6)

For the function Γ we have

Γ(n+ 1) = n!, ∀ n ∈ N. (A8.7)

This can be deduced by induction from equation (A8.10) below, while
equation (A8.2) yields

Γ

(
1
2

)
=

√
π, Γ

(
k +

1
2

)
= 2−k(2k − 1)!

√
π. (A8.8)

Another interesting formula is

Γ(z)Γ(1− z) =
π

sin zπ
, 0 < z < 1, (A8.9)

illustrating that Γ(z) diverges for z → 0+ as 1/z.
Equation (A8.9) is important because, by using recursively the property

Γ(z + 1) = z Γ(z), (A8.10)

we can reduce to the computation of Γ only for z ∈ (0, 1) and, due to (A8.9),
for z ∈ (

0, 12
)
.

We can also see that Γ(z) has a unique minimum for z � 1.4616 . . ..
For z � 1 the famous Stirling formula holds:

Γ(z + 1) =
√
2πz zz e−z eα(z)/12z, with α ∈ (0, 1), (A8.11)
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and the approximation

Γ(z + 1) �
√
2πz

(z
e

)z

(A8.12)

can be used when z(log z−1) � 1 (e.g. for z = 10 we have z(log z−1) � 15.4 and
the relative error in (A8.12) is less than 1%, while for z = 50, z(log z−1) � 1680
and the relative error is about 0.2%).
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Pignedoli, Università di Bologna, CNR, 1–13.
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integrali uniformi di un sistema di equazioni canoniche normali, Nuovo Cimento,
26, 105–15.

——(1923c). Beweis dass ein mechanisches Normalsystem im allgemeinen quasi-
ergodisch ist, Phys. Z., 24, 261–5.
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motion of a spaceship around a planet
426

multiplicative ergodic theorem 579

n-body problem 201–5, 207
natural Lagrangian systems 133
natural parametrisation, length of a

curve and 3–7
Newton, view on the Solar System 582
Newton’s binomial formula 392
Noether’s theorem 147–50, 181, 395
nodes
attracting 698
Jordan 699
repulsive 699
star 699

non-degenerate Hamiltonians 525
non-holonomic constraints 53
non-singular differentiable forms 352,

354
non-singular points 1, 3
normal curvature vectors 709

one-dimensional motion 91–123
problems 108–12
solved motion 113–23

one-dimensional uniform motion, time
periodic perturbations of
499–502

open systems, with fixed temperature
647–51

orbit equation
first form of the 181
second form of the 184

orbits, potentials admitting closed
187–93

orbits in a central field 179–85
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orbits of the planets in the Solar
System 469–71

chaotic behaviour of 582–4
ordinary differential equations 695–704
general results 695–7

oriented surfaces 24
Ornstein theorem 574
orthodic statistical sets 615
orthogonal parametrisation 27
oscillations, damped and forced 103–7
oscillators, linear 734
oscillatory motion 431
osculating circle 9
osculating plane 12
Oseledec theorem 578–81

p-adic transformations 552
parabolic coordinates 425–6
paraboloids 21
parallel curves 31
parametrisation
of ellipsoids 20
length of a curve and natural 3–7
of spheres 19

Parseval identity 741
partition functions
canonical 638
grand canonical 649

pendulum, simple 96–8
perfect fluids 673
perihelion argument 469
period, of oscillations of a heavy point

particle 94–5
periodic motion 93, 94
permanent rotations 254–6
perpetual adiabatic invariants 530
perturbation methods 487
perturbation theory
canonical 487–544
fundamental equation of classical 495

perturbations, of harmonic oscillators
516–22

Pesin’s formula 582
phase flow 702

phase plane and equilibrium 98–103
phase space 54–6
of precessions 221–3

phase transitions 654–6
physical realisation of constraints

729–31
plane curves, curvature of 7–11
plane rigid motions 221
plane waves 674
planets in the Solar System
chaotic behaviour of orbits of 582–4
orbits of the 469–71

Poincaré 207, 526, 527, 545
Poincaré-Cartan differential form 363
Poincaré disc, geodesic flow on the 733
Poincaré recurrence theorem 287–8,

551
Poincaré theorem 622–3
on the non-existence of first integrals

of the motion 513–16
Poincaré variables 466–71
Poincaré–Bendixon theorem 704
Poincaré–Cartan integral invariant

352–64
Poincaré’s lemma 723
Poinsot cones 229
Poinsot theorem 251
point mass
motion in a one-dimensional field

320–1
motion under gravity mass

312–13
point motion
in the absence of forces 318
on an equipotential surface 318

point particles
general laws and the dynamics of

69–90
isolated 69
motion on an equipotential surface

79
motion of 87–9
subject to unilateral constraints

81–3
point transformations 343, 344
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points
critical 99
equilibrium 86, 87, 99
non-singular 1, 3

Poisson brackets 371–4
properties of 378

Poisson’s formula (attitude equation)
217

polar moment of inertia 204
polhodes 236–9, 252
classification of 253
for ellipsoid of revolution 255
limiting 253

potentials 138
admitting closed orbits 187–93
generalised 142–4
interaction 139

power 75
precessions 221
by inertia 251–4
composition with the same pole 225
Euler equations for 250–1
gyroscopic 259–60
of a heavy gyroscope 261–3
phase space of 221–3
of a spinning top 261–3

principal axes of inertia 236–9
principal curvatures 157, 712
principal normal vector 8
principal reference frame 237
principle of the stationary action

316–18
probability density 615
probability measure 547
probability space 547
problem of small divisors 504
problems
canonical formalism 399–404
canonical perturbation theory 532–5
ergodic theory and chaotic motion

584–6
geometric and kinematic foundations

of Lagrangian mechanics 58–61
Gibbs sets 656–9

Hamilton–Jacobi theory and
integrability 477–80

Hamiltonian formalism 288–90
kinetic theory 609–10
Lagrangian formalism in continuum

mechanics 690–1
Lagrangian formalism in dynamics of

discrete systems 162–5
mechanics of rigid bodies 265–6
motion in a central field 205–7
one-dimensional motion 108–12
rigid bodies, geometry and

kinematics 230–1
second fundamental form of a surface

713–14
variational principles 323–4
see also solved problems

product manifold 47
product measure 547
product space 547
progressive waves 674

quadratic dispersion 620
quadratic fluctuations, mean 620
quadratures, integrability by 439–46
quasi-integrable Hamiltonian systems

487, 522, 535
degenerate 516

quasi-periodic continuous functions
462–3

quasi-periodic motions 524
and functions 458–66

radius of curvature 7
radius of gyration 236
Radon–Nikodym theorem 549–50
Rayleigh dissipation function 138
regressive waves 675
regular curves 1
regular submanifolds, parametrising 35
regular surfaces 17
relative dynamics 226–8
relative kinematics 223–6
repulsive node 699
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resonance 103–7
resonance frequency 106
resonance modules 460, 461
resonance multiplicity 460
restricted three-body problem,

Hamiltonian of 489
revolution
ellipsoids of 255, 256
surfaces of 20

Riemannian geometry 61
Riemannian manifolds 133
differentiable 33–46
geodesics 307

Riemannian metrics, on differentiable
manifolds 42

rigid bodies
configuration space 214
definition 213
dynamics of constrained 245–50
dynamics of 126
geometry and kinematics 213–34
mechanics of 235–77
problems 230–1
solved problems 231–4

rigid motions
composition of 225f
plane 221
precessions 221
rotations 221
ruled surfaces in 228–30

rigid systems, kinematics of 216–19
rod, longitudinal vibrations of a 676
rotations 221, 263–5, 433
permanent 254–6

Rubin, Hungar, Takens theorem 730
Ruelle’s inequality 582
ruled surfaces, in a rigid motion 228–30

saddle 699
satellites, effect of solar radiation on

426
scale transformations 342
Schrödinger equation of wave

mechanics 476

second form of the orbit equation 184
second fundamental form of a surface

709–14
problems 713–14

separatrix curve 101
series inversion (Lagrange formula)

197–200
sets, microcanonical 624–7
Shannon–Breiman–McMillan theorem

569–70
Siegel theorem 520
simple constraints 80
simple pendulum 96–8
Sinai billiards 577
sine amplitude 706
small divisors, problem of 504
small oscillations, equilibrium, stability

and 150–9
smooth constraints 77
holonomic systems with 127–8

smooth holonomic constraints,
dynamics of a point constrained
by 77–80

solar radiation pressure, effect on
satellites 426

Solar System
chaotic behaviour of orbits of planets

582–4
orbits of the planets in the 469–70

solved problems
canonical formalism 405–11
canonical perturbation theory

535–44
dynamics of discrete systems,

Lagrangian formalism 165–78
ergodic theory and chaotic motion

586–9
general laws and the dynamics of a

point particle 83–90
geometric and kinematic foundations

of Lagrangian mechanics 62–8
Gibbs sets 662–9
Hamilton–Jacobi theory and

integrability 481–6
Hamiltonian formalism 291–300
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kinetic theory 610–11
Lagrangian formalism in continuum

mechanics 691–3
mechanics of rigid bodies 266–77
motion in a central field 208–12
one-dimensional motion 113–23
rigid bodies, geometry and

kinematics 231–4
variational principles 324–9
see also problems

spheres
geodesic flow on 733
parametrisation of 19

spherical coordinates 423–4
spin–orbit problem 490–3
spinning top, precessions of a 261–3
square billiards 557
stability and small oscillations,

equilibrium 150–9
stable equilibrium configuration 87
static friction coefficients 80
static friction cones 80
stationary action, principle of the

316–18
stationary action of Maupertuis’

principle 317
stationary functionals, Euler equations

for 302–11
stationary subgroups 450
stationary waves 675
statistical mechanics
Gibbs sets 613–69
kinetic theory 591–612

statistical sets 613–15
star node 699
Stirling’s formula 197, 747
Stokes’ lemma 353, 725
Stokes’ theorem 724–5
stress symmetry 673
string, vibrating 675
subgroups
discrete 450
stationary 450

submanifolds 33
tangent space to regular 34

subsets, metrically indecomposable
invariant 619

Sundman inequality 204
Sundman theorem 204
surface of revolution 20
geodesic curves on 31
reversal of geodesics 32
separability of Hamilton–Jacobi

equation for geodesic motion
428–9

surfaces 16–33
area of 27
computing area of 27
first fundamental form 25
oriented 24
regular 17
second fundamental form of

709–14
suspended bridges 689–90
suspended cables 685–90
symmetries, and first integrals 393–5
symmetries and conservation laws

147–50
symmetry, material orthogonal 237
symplectic diffeomorphism 396
symplectic manifolds 395
and Hamiltonian dynamical systems

397–9
symplectic matrix, determinant of

405–6
symplectic rectification 380–4
systems
closed isolated 624–7
separable with respect to elliptic

coordinates 426–8
separable with respect to parabolic

coordinates 425–6
separable with respect to spherical

coordinates 423–4
systems of equations, with constant

coefficients 697–701

tangent bundles 41
base spaces of 41
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tangent spaces 334
to differentiable manifold 39
to regular submanifold 34

tangent vectors 8
temperature 602–4, 627
tensor of inertia 241
tensors 725–7
thermodynamical limits 651–3
time dependence 91
time periodic perturbations of

one-dimensional uniform
motions 499–502

topology 38
tori 21, 49
actions of groups and 46–9
invariant l-dimensional 446–53
linear automorphisms of 565

torsion 13
trajectories in phase space 287
transformations
baker’s 552
canonical and completely canonical

340–52
Gauss 552
p-adic 552

tubes of characteristics 353
two-body problem 200–1

unilateral constraints, point particle
subject to 81–3

unit tangent vectors 8
unit vectors 8
binormal 12
principal normal 8
tangent 8

variables
action-angle 431–9

Delaunay and Poincaré 466–71
separation for the Hamilton–Jacobi

equation 421–31
variance 620
variational principles 301–29
problems 323–4
solved problems 324–9

variational problems, introduction to
301–2

vector fields
commutator of two 376
complete 16
Hamiltonian 338
and integral curves 15–16

velocity 10, 55
angular 217

velocity field 216
vibrating string 675
virial theorem 635
virtual velocity 55
visits, ergodicity and frequency of

554–62

wave interpretation of
mechanics 471–6

wave mechanics, Schrödinger equation
476

waves
plane 674
progressive 674
regressive 675
stationary 675

Weierstrass, K. 527
Weierstrass’s theorem 464
work, and conservative fields 75–6

Young inequality 280
Young’s modulus 676, 677



Non senza fatica si giunge al fine

(Girolamo Frascobaldi, Toccata IX del II libro, 1627)

(Not without effort is the end gained)
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